Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11

Size: px
Start display at page:

Download "Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11"

Transcription

1 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract We will itroduce the otio of reproducig kerels ad associated Reproducig Kerel Hilbert Spaces (RKHS). We will cosider couple of easy examples to get some ituitio. Next we will motivate a importace of RKHS for machie learig by cosiderig represeter theorem, which we will also prove. Fially, we will cosider several scearios where represeter theorem actually becomes very useful. Blue colour will be used to highlight parts appearig i the upcomig homework assigmets. Reproducig kerels ad RKHS Cosider ay iput space X. We will call a fuctio k : X X R a kerel or a reproducig kerel if it is symmetric k(x, y) = k(y, x) for all x, y X ad positive defiite, which meas N, α,..., α R, x,..., x X, α i α j k(x i, x j ) 0. j= It ca be show that k defies a uique Hilbert space of real-valued fuctios o X, such that:. Fuctios k(x, ): X R for all X X belog to ;. f(x) = f, k(x, ) Hk for ay f ad X X. (the reproducig property) Throughout this lecture we will write, Hk to deote the ier product of ad Hk the orm iduced by, Hk. The space is commoly kow as Reproducig Kerel Hilbert Space (RKHS). Notice that, because is a vector space, all the fuctios of the form α i k(x i, ) i also belog to for ay fiite sequece of real coefficiets α, α,... ad poits X, X,... from X. A Hilbert space is a vector space with a ier product, which is complete with respect to the orm iduced by the ier product.

2 Feature map Aother way to look at this costructio is to say that all the poits X of the iput space X are beig mapped to the elemets k(x, ) of the Hilbert space. Moreover, for ay two poits X, X X the ier product betwee their images is equal to k(x, ), k(x, ) Hk = k(x, X ). This observatio leads to very useful implicatios. It turs out that, o matter what the iput space X is (R d, a set of strigs, a set of graphs, pg pictures,... ), oce we come up with a kerel fuctio k defied over X we simultaeously get a way to embed the whole X ito a Hilbert space. This embeddig is very useful, sice the RKHS has a very ice geometry: it is a vector space with a ier product, which meas we ca add its elemets with each other ad compute distaces betwee them somethig which was ot ecessarily possible for elemets of X (thik of a set of graphs). Next we cosider two simple examples of kerels k ad correspodig RKHS:. Liear kerel Cosider X = R d ad defie k(x, y) := x, y R d. First of all, let s check that this is ideed a kerel. It is obviously symmetric. Also ote that j= α i α j k(x i, x j ) = j= α i α j x i, x j R d = α i x i 0. R d Thus, k is ideed a kerel. It is ow easy to see that all the homogeeous liear fuctios of the form f(x) = w, x R d, w R d () belog to the RKHS. As well as all their fiite liear combiatios. Actually, it ca be show that does ot cotai aythig but the fuctios of the form (). I this case it is obvious that is of a fiite dimesioality d. The ier product i betwee its two elemets w, R d ad v, R d (which are two liear fuctios) is defied by w, R d, v, R d = w, v R d.. Polyomial kerel of a secod degree Cosider X = R ad k(x, y) := ( x, y R + ). Expadig the brackets we see: k(x, y) = x y + x y + x x y y + x y + x y +. First we eed to check that it is ideed a kerel. It is symmetric. To check the positive defiiteess ote that if we defie a mappig ψ : X R 6 by we may write ψ(x) = (x, x, x x, x, x, ) k(x, y) = ψ(x), ψ(y) R 6, x, y X. I other words, we showed that k ca be expressed as a liear kerel after mappig X ito R 6 usig ψ. We already showed i the previous example that liear kerel is ideed positive defiite. Iterestigly otice that the image of ψ is oly a subset of R 6, i.e. there are poits z R 6 such that z ca ot be expressed as ψ(x) for ay x X. Let us show that cotais all the polyomials up to degree, i.e. fuctios of the form: f(x) = v x + v x + v 3 x x + v 4 x + v 5 x + v 6, x X, v R 6. ()

3 First, we kow that all the fuctios of the form k(x, ) belog to for sure, i.e. all the fuctios of the form f(x) = w x + w x + w w x x + w x + w x +, x, w X. (3) These are polyomials with moomials of order up to two. However, we see that coefficiets of moomials are iterdepedet, ad they are all defied by settig oly two coefficiets w ad w. This is quite differet from (), where we are free to choose ay coefficiets of moomials. However, recall that RKHS is a vector space, thus it cotais all the liear combiatios of its elemets. Now, do we get all the fuctios of the form () if we take all the liear combiatios of the fuctios of the form (3)? It turs out that if we take the liear spa of the vectors of the form {(w, w, w w, w, w, ): w, w R} R 6 we will get the whole R 6 (HW). This shows that ideed cotais all the polyomials up to degree. It ca be also show that o other fuctios are cotaied i. Two examples above showed that RKHS ca be of a fiite dimesio, which may or may ot be larger tha the dimesioality of X. At this poit it is importat to say that actually RKHS ca be eve ifiite dimesioal. This is the case, for istace, for the so-called Gaussia kerel k(x, y) = e (x y) /σ. Represeter theorem Why are RKHS ad kerels so importat for machie learig? I all the previous lectures we studied problems of biary classificatio ad also shortly metioed regressio problems. But what type of predictors did we actually see? It turs out that the mai focus was o liear predictors. These fuctios (classifiers) are a good start, but of course they are ot too flexible. We also saw a example of oliear methods, such as KNN. Note, however, that KNN ca t be cosidered as a learig algorithm which chooses a predictor ĥ from a fixed set of predictors H. Fially, we saw the AdaBoost algorithm, which outputs a complex compositio of base classifiers. This compositio is of course ot a liear classifier (eve if the base classifiers were liear). Kerels ad RKHS provide a very coveiet way to defie classes H cosistig of oliear fuctios. As we saw, it is eough to specify oe kerel fuctio k to implicitly get the whole RKHS. Now, assume we would like to choose our predictors from. How do we do that? Next result shows that ofte this problem ca be solved quite efficietly. Theorem (Represeter theorem). Assume k is a kerel defied over ay X ad is a correspodig RKHS. Take ay poits X,..., X X. Cosider the followig optimizatio problem: ( mi l i f(xi ) ) + Q( f Hk ), f (4) where l i : R R, i =,..., are ay fuctios ad Q: R + R is a odecreasig. The there exist α,..., α R such that f = α i k(x i, ) solves (4). 3

4 Proof. Assume there is f solvig (4). Because is a Hilbert space we may write f = β i k(x i, ) + u, where u, ad u, k(x i, ) Hk = 0 for all i =,...,. We used the fact that ay vector (fuctio) i a Hilbert space ca be uiquely expressed as a sum of its orthogoal projectio oto the liear subspace ad a complemet, which is orthogoal to that subspace. It is also easy to check that f = β i k(x i, ) + u H k ad thus where we deoted f Hk f X Hk, f X := β i k(x i, ). Because Q is odecreasig we coclude that Q( f Hk ) Q( f X Hk ). Now ote that because of the reproducig property ( l i f (X i ) ) ( = l i f ) ( ) ( ) (, k(x i, ) Hk = li f X + u, k(x i, ) Hk = l i f X, k(x i, ) Hk = l i fx (X i ) ). I other words we shoed that ( l i f (X i ) ) = ( l i fx (X i ) ). Thus, the value of the objective fuctioal (4) at f X is ot larger tha for f, which shows that f X also solves the optimizatio problem. I order to motivate represeter theorem we will first cosider two cocrete examples of Problem 4. Biary classificatio Ca we use the real-valued fuctios from for a biary classificatio with Y = {, +}? Of course! We just eed to take the sig of f, which gives us a biary-valued fuctio. Cosider a traiig sample S = {(X i, Y i )} with X i X for ay iput space X ad Y i Y. Take ay kerel k o X. Fially, set l i (z) := {Y i z 0}. I this case ( l i f(xi ) ) = {Y i f(x i ) 0} is just a empirical biary loss associated with a classifier sgf(x). Settig Q(z) = 0 we see that (4) correspods to the empirical risk miimizatio of a biary loss over. 4

5 Squared loss regressio We may also use elemets of for predictig real-valued outputs. Set Y = R ad l i (z) = (Y i z). I this case ( l i f(xi ) ) = ( Yi f(x i ) ) is just a empirical squared loss ad thus, settig Q(z) = 0 we get the empirical squared loss miimizatio over. What is the importace of Theorem? A surprisig message is the followig. Origially, (4) is a optimizatio with respect to elemets of, which are high-dimesioal objects ad potetially eve ifiite-dimesioal. I other words, solvig (4) requires choosig m real umbers if is m-dimesioal (with m potetially huge) or choosig a fuctio, which ca ot be described by ay fiite umber of parameters if is ifiite-dimesioal. Still, Theorem tells us that i ay case this problem may be reduced to choosig oly real-valued parameters. This gives a huge boost i efficiecy if dim( ), ad especially if is ifiite-dimesioal. Usig represeter theorem ad reproducig property we may restate the Problem 4 i the followig form: mi l i α j k(x i, X j ) + Q α,...,α R α j k(x j, ) j= j= Hk = mi l i α j k(x i, X j ) + Q α i α j k(x i, X j ). α,...,α R j= j= We see that this optimizatio problem depeds o X i ad k oly through the kerel matrix K X R with (i, j)-th elemet beig k(x i, X j ). 5

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract I this lecture we derive risk bouds for kerel methods. We will start by showig that Soft Margi kerel SVM correspods to miimizig

More information

Linear Classifiers III

Linear Classifiers III Uiversität Potsdam Istitut für Iformatik Lehrstuhl Maschielles Lere Liear Classifiers III Blaie Nelso, Tobias Scheffer Cotets Classificatio Problem Bayesia Classifier Decisio Liear Classifiers, MAP Models

More information

6.867 Machine learning, lecture 7 (Jaakkola) 1

6.867 Machine learning, lecture 7 (Jaakkola) 1 6.867 Machie learig, lecture 7 (Jaakkola) 1 Lecture topics: Kerel form of liear regressio Kerels, examples, costructio, properties Liear regressio ad kerels Cosider a slightly simpler model where we omit

More information

18.657: Mathematics of Machine Learning

18.657: Mathematics of Machine Learning 8.657: Mathematics of Machie Learig Lecturer: Philippe Rigollet Lecture 0 Scribe: Ade Forrow Oct. 3, 05 Recall the followig defiitios from last time: Defiitio: A fuctio K : X X R is called a positive symmetric

More information

Math 61CM - Solutions to homework 3

Math 61CM - Solutions to homework 3 Math 6CM - Solutios to homework 3 Cédric De Groote October 2 th, 208 Problem : Let F be a field, m 0 a fixed oegative iteger ad let V = {a 0 + a x + + a m x m a 0,, a m F} be the vector space cosistig

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 3

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 3 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture 3 Tolstikhi Ilya Abstract I this lecture we will prove the VC-boud, which provides a high-probability excess risk boud for the ERM algorithm whe

More information

10-701/ Machine Learning Mid-term Exam Solution

10-701/ Machine Learning Mid-term Exam Solution 0-70/5-78 Machie Learig Mid-term Exam Solutio Your Name: Your Adrew ID: True or False (Give oe setece explaatio) (20%). (F) For a cotiuous radom variable x ad its probability distributio fuctio p(x), it

More information

Algebra of Least Squares

Algebra of Least Squares October 19, 2018 Algebra of Least Squares Geometry of Least Squares Recall that out data is like a table [Y X] where Y collects observatios o the depedet variable Y ad X collects observatios o the k-dimesioal

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

Support Vector Machines and Kernel Methods

Support Vector Machines and Kernel Methods Support Vector Machies ad Kerel Methods Daiel Khashabi Fall 202 Last Update: September 26, 206 Itroductio I Support Vector Machies the goal is to fid a separator betwee data which has the largest margi,

More information

REGRESSION WITH QUADRATIC LOSS

REGRESSION WITH QUADRATIC LOSS REGRESSION WITH QUADRATIC LOSS MAXIM RAGINSKY Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X, Y ), where, as before, X is a R d

More information

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion .87 Machie learig: lecture Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu Topics The learig problem hypothesis class, estimatio algorithm loss ad estimatio criterio samplig, empirical ad epected losses

More information

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT OCTOBER 7, 2016 LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT Geometry of LS We ca thik of y ad the colums of X as members of the -dimesioal Euclidea space R Oe ca

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machie Learig Theory (CS 6783) Lecture 2 : Learig Frameworks, Examples Settig up learig problems. X : istace space or iput space Examples: Computer Visio: Raw M N image vectorized X = 0, 255 M N, SIFT

More information

Lecture 7: Density Estimation: k-nearest Neighbor and Basis Approach

Lecture 7: Density Estimation: k-nearest Neighbor and Basis Approach STAT 425: Itroductio to Noparametric Statistics Witer 28 Lecture 7: Desity Estimatio: k-nearest Neighbor ad Basis Approach Istructor: Ye-Chi Che Referece: Sectio 8.4 of All of Noparametric Statistics.

More information

Support vector machine revisited

Support vector machine revisited 6.867 Machie learig, lecture 8 (Jaakkola) 1 Lecture topics: Support vector machie ad kerels Kerel optimizatio, selectio Support vector machie revisited Our task here is to first tur the support vector

More information

Math Solutions to homework 6

Math Solutions to homework 6 Math 175 - Solutios to homework 6 Cédric De Groote November 16, 2017 Problem 1 (8.11 i the book): Let K be a compact Hermitia operator o a Hilbert space H ad let the kerel of K be {0}. Show that there

More information

6.867 Machine learning

6.867 Machine learning 6.867 Machie learig Mid-term exam October, ( poits) Your ame ad MIT ID: Problem We are iterested here i a particular -dimesioal liear regressio problem. The dataset correspodig to this problem has examples

More information

Regression with quadratic loss

Regression with quadratic loss Regressio with quadratic loss Maxim Ragisky October 13, 2015 Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X,Y, where, as before,

More information

Solutions to home assignments (sketches)

Solutions to home assignments (sketches) Matematiska Istitutioe Peter Kumli 26th May 2004 TMA401 Fuctioal Aalysis MAN670 Applied Fuctioal Aalysis 4th quarter 2003/2004 All documet cocerig the course ca be foud o the course home page: http://www.math.chalmers.se/math/grudutb/cth/tma401/

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4.

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4. 4. BASES I BAACH SPACES 39 4. BASES I BAACH SPACES Sice a Baach space X is a vector space, it must possess a Hamel, or vector space, basis, i.e., a subset {x γ } γ Γ whose fiite liear spa is all of X ad

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

Intro to Learning Theory

Intro to Learning Theory Lecture 1, October 18, 2016 Itro to Learig Theory Ruth Urer 1 Machie Learig ad Learig Theory Comig soo 2 Formal Framework 21 Basic otios I our formal model for machie learig, the istaces to be classified

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014. Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

More information

MATH 205 HOMEWORK #2 OFFICIAL SOLUTION. (f + g)(x) = f(x) + g(x) = f( x) g( x) = (f + g)( x)

MATH 205 HOMEWORK #2 OFFICIAL SOLUTION. (f + g)(x) = f(x) + g(x) = f( x) g( x) = (f + g)( x) MATH 205 HOMEWORK #2 OFFICIAL SOLUTION Problem 2: Do problems 7-9 o page 40 of Hoffma & Kuze. (7) We will prove this by cotradictio. Suppose that W 1 is ot cotaied i W 2 ad W 2 is ot cotaied i W 1. The

More information

Lecture 15: Learning Theory: Concentration Inequalities

Lecture 15: Learning Theory: Concentration Inequalities STAT 425: Itroductio to Noparametric Statistics Witer 208 Lecture 5: Learig Theory: Cocetratio Iequalities Istructor: Ye-Chi Che 5. Itroductio Recall that i the lecture o classificatio, we have see that

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture & 3: Pricipal Compoet Aalysis The text i black outlies high level ideas. The text i blue provides simple mathematical details to derive or get to the algorithm

More information

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution EEL5: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we begi our mathematical treatmet of discrete-time s. As show i Figure, a discrete-time operates or trasforms some iput sequece x [

More information

Lecture 7: October 18, 2017

Lecture 7: October 18, 2017 Iformatio ad Codig Theory Autum 207 Lecturer: Madhur Tulsiai Lecture 7: October 8, 207 Biary hypothesis testig I this lecture, we apply the tools developed i the past few lectures to uderstad the problem

More information

CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) CSCI567 Machie Learig (Fall 2014) Drs. Sha & Liu {feisha,yaliu.cs}@usc.edu October 9, 2014 Drs. Sha & Liu ({feisha,yaliu.cs}@usc.edu) CSCI567 Machie Learig (Fall 2014) October 9, 2014 1 / 49 Outlie Admiistratio

More information

Linear Regression Demystified

Linear Regression Demystified Liear Regressio Demystified Liear regressio is a importat subject i statistics. I elemetary statistics courses, formulae related to liear regressio are ofte stated without derivatio. This ote iteds to

More information

Math 203A, Solution Set 8.

Math 203A, Solution Set 8. Math 20A, Solutio Set 8 Problem 1 Give four geeral lies i P, show that there are exactly 2 lies which itersect all four of them Aswer: Recall that the space of lies i P is parametrized by the Grassmaia

More information

Inverse Matrix. A meaning that matrix B is an inverse of matrix A.

Inverse Matrix. A meaning that matrix B is an inverse of matrix A. Iverse Matrix Two square matrices A ad B of dimesios are called iverses to oe aother if the followig holds, AB BA I (11) The otio is dual but we ofte write 1 B A meaig that matrix B is a iverse of matrix

More information

Lecture Notes for Analysis Class

Lecture Notes for Analysis Class Lecture Notes for Aalysis Class Topological Spaces A topology for a set X is a collectio T of subsets of X such that: (a) X ad the empty set are i T (b) Uios of elemets of T are i T (c) Fiite itersectios

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 5: SINGULARITIES.

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 5: SINGULARITIES. ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 5: SINGULARITIES. ANDREW SALCH 1. The Jacobia criterio for osigularity. You have probably oticed by ow that some poits o varieties are smooth i a sese somethig

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

Chapter 0. Review of set theory. 0.1 Sets

Chapter 0. Review of set theory. 0.1 Sets Chapter 0 Review of set theory Set theory plays a cetral role i the theory of probability. Thus, we will ope this course with a quick review of those otios of set theory which will be used repeatedly.

More information

Lecture 4: Grassmannians, Finite and Affine Morphisms

Lecture 4: Grassmannians, Finite and Affine Morphisms 18.725 Algebraic Geometry I Lecture 4 Lecture 4: Grassmaias, Fiite ad Affie Morphisms Remarks o last time 1. Last time, we proved the Noether ormalizatio lemma: If A is a fiitely geerated k-algebra, the,

More information

Assignment 2 Solutions SOLUTION. ϕ 1 Â = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ.

Assignment 2 Solutions SOLUTION. ϕ 1  = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ. PHYSICS 34 QUANTUM PHYSICS II (25) Assigmet 2 Solutios 1. With respect to a pair of orthoormal vectors ϕ 1 ad ϕ 2 that spa the Hilbert space H of a certai system, the operator  is defied by its actio

More information

M A T H F A L L CORRECTION. Algebra I 1 4 / 1 0 / U N I V E R S I T Y O F T O R O N T O

M A T H F A L L CORRECTION. Algebra I 1 4 / 1 0 / U N I V E R S I T Y O F T O R O N T O M A T H 2 4 0 F A L L 2 0 1 4 HOMEWORK ASSIGNMENT #4 CORRECTION Algebra I 1 4 / 1 0 / 2 0 1 4 U N I V E R S I T Y O F T O R O N T O P r o f e s s o r : D r o r B a r - N a t a Correctio Homework Assigmet

More information

lim za n n = z lim a n n.

lim za n n = z lim a n n. Lecture 6 Sequeces ad Series Defiitio 1 By a sequece i a set A, we mea a mappig f : N A. It is customary to deote a sequece f by {s } where, s := f(). A sequece {z } of (complex) umbers is said to be coverget

More information

b i u x i U a i j u x i u x j

b i u x i U a i j u x i u x j M ath 5 2 7 Fall 2 0 0 9 L ecture 1 9 N ov. 1 6, 2 0 0 9 ) S ecod- Order Elliptic Equatios: Weak S olutios 1. Defiitios. I this ad the followig two lectures we will study the boudary value problem Here

More information

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5 Ma 42: Itroductio to Lebesgue Itegratio Solutios to Homework Assigmet 5 Prof. Wickerhauser Due Thursday, April th, 23 Please retur your solutios to the istructor by the ed of class o the due date. You

More information

Introduction to Optimization Techniques

Introduction to Optimization Techniques Itroductio to Optimizatio Techiques Basic Cocepts of Aalysis - Real Aalysis, Fuctioal Aalysis 1 Basic Cocepts of Aalysis Liear Vector Spaces Defiitio: A vector space X is a set of elemets called vectors

More information

Optimally Sparse SVMs

Optimally Sparse SVMs A. Proof of Lemma 3. We here prove a lower boud o the umber of support vectors to achieve geeralizatio bouds of the form which we cosider. Importatly, this result holds ot oly for liear classifiers, but

More information

TENSOR PRODUCTS AND PARTIAL TRACES

TENSOR PRODUCTS AND PARTIAL TRACES Lecture 2 TENSOR PRODUCTS AND PARTIAL TRACES Stéphae ATTAL Abstract This lecture cocers special aspects of Operator Theory which are of much use i Quatum Mechaics, i particular i the theory of Quatum Ope

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Chapter 7. Support Vector Machine

Chapter 7. Support Vector Machine Chapter 7 Support Vector Machie able of Cotet Margi ad support vectors SVM formulatio Slack variables ad hige loss SVM for multiple class SVM ith Kerels Relevace Vector Machie Support Vector Machie (SVM)

More information

Recurrence Relations

Recurrence Relations Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial(-)); } Let t be the umber of multiplicatios eeded to calculate factorial(). The

More information

HILBERT SPACE GEOMETRY

HILBERT SPACE GEOMETRY HILBERT SPACE GEOMETRY Defiitio: A vector space over is a set V (whose elemets are called vectors) together with a biary operatio +:V V V, which is called vector additio, ad a eteral biary operatio : V

More information

8. Applications To Linear Differential Equations

8. Applications To Linear Differential Equations 8. Applicatios To Liear Differetial Equatios 8.. Itroductio 8.. Review Of Results Cocerig Liear Differetial Equatios Of First Ad Secod Orders 8.3. Eercises 8.4. Liear Differetial Equatios Of Order N 8.5.

More information

Notes for Lecture 5. 1 Grover Search. 1.1 The Setting. 1.2 Motivation. Lecture 5 (September 26, 2018)

Notes for Lecture 5. 1 Grover Search. 1.1 The Setting. 1.2 Motivation. Lecture 5 (September 26, 2018) COS 597A: Quatum Cryptography Lecture 5 (September 6, 08) Lecturer: Mark Zhadry Priceto Uiversity Scribe: Fermi Ma Notes for Lecture 5 Today we ll move o from the slightly cotrived applicatios of quatum

More information

Square-Congruence Modulo n

Square-Congruence Modulo n Square-Cogruece Modulo Abstract This paper is a ivestigatio of a equivalece relatio o the itegers that was itroduced as a exercise i our Discrete Math class. Part I - Itro Defiitio Two itegers are Square-Cogruet

More information

Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001.

Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001. Physics 324, Fall 2002 Dirac Notatio These otes were produced by David Kapla for Phys. 324 i Autum 2001. 1 Vectors 1.1 Ier product Recall from liear algebra: we ca represet a vector V as a colum vector;

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

Empirical Process Theory and Oracle Inequalities

Empirical Process Theory and Oracle Inequalities Stat 928: Statistical Learig Theory Lecture: 10 Empirical Process Theory ad Oracle Iequalities Istructor: Sham Kakade 1 Risk vs Risk See Lecture 0 for a discussio o termiology. 2 The Uio Boud / Boferoi

More information

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = =

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = = Review Problems ICME ad MS&E Refresher Course September 9, 0 Warm-up problems. For the followig matrices A = 0 B = C = AB = 0 fid all powers A,A 3,(which is A times A),... ad B,B 3,... ad C,C 3,... Solutio:

More information

Some examples of vector spaces

Some examples of vector spaces Roberto s Notes o Liear Algebra Chapter 11: Vector spaces Sectio 2 Some examples of vector spaces What you eed to kow already: The te axioms eeded to idetify a vector space. What you ca lear here: Some

More information

CHAPTER I: Vector Spaces

CHAPTER I: Vector Spaces CHAPTER I: Vector Spaces Sectio 1: Itroductio ad Examples This first chapter is largely a review of topics you probably saw i your liear algebra course. So why cover it? (1) Not everyoe remembers everythig

More information

Lecture 3: August 31

Lecture 3: August 31 36-705: Itermediate Statistics Fall 018 Lecturer: Siva Balakrisha Lecture 3: August 31 This lecture will be mostly a summary of other useful expoetial tail bouds We will ot prove ay of these i lecture,

More information

Riesz-Fischer Sequences and Lower Frame Bounds

Riesz-Fischer Sequences and Lower Frame Bounds Zeitschrift für Aalysis ud ihre Aweduge Joural for Aalysis ad its Applicatios Volume 1 (00), No., 305 314 Riesz-Fischer Sequeces ad Lower Frame Bouds P. Casazza, O. Christese, S. Li ad A. Lider Abstract.

More information

Chapter 3 Inner Product Spaces. Hilbert Spaces

Chapter 3 Inner Product Spaces. Hilbert Spaces Chapter 3 Ier Product Spaces. Hilbert Spaces 3. Ier Product Spaces. Hilbert Spaces 3.- Defiitio. A ier product space is a vector space X with a ier product defied o X. A Hilbert space is a complete ier

More information

Lecture 3 The Lebesgue Integral

Lecture 3 The Lebesgue Integral Lecture 3: The Lebesgue Itegral 1 of 14 Course: Theory of Probability I Term: Fall 2013 Istructor: Gorda Zitkovic Lecture 3 The Lebesgue Itegral The costructio of the itegral Uless expressly specified

More information

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j. Eigevalue-Eigevector Istructor: Nam Su Wag eigemcd Ay vector i real Euclidea space of dimesio ca be uiquely epressed as a liear combiatio of liearly idepedet vectors (ie, basis) g j, j,,, α g α g α g α

More information

CHAPTER 5. Theory and Solution Using Matrix Techniques

CHAPTER 5. Theory and Solution Using Matrix Techniques A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 3 A COLLECTION OF HANDOUTS ON SYSTEMS OF ORDINARY DIFFERENTIAL

More information

6.895 Essential Coding Theory October 20, Lecture 11. This lecture is focused in comparisons of the following properties/parameters of a code:

6.895 Essential Coding Theory October 20, Lecture 11. This lecture is focused in comparisons of the following properties/parameters of a code: 6.895 Essetial Codig Theory October 0, 004 Lecture 11 Lecturer: Madhu Suda Scribe: Aastasios Sidiropoulos 1 Overview This lecture is focused i comparisos of the followig properties/parameters of a code:

More information

1 Last time: similar and diagonalizable matrices

1 Last time: similar and diagonalizable matrices Last time: similar ad diagoalizable matrices Let be a positive iteger Suppose A is a matrix, v R, ad λ R Recall that v a eigevector for A with eigevalue λ if v ad Av λv, or equivaletly if v is a ozero

More information

Real Numbers R ) - LUB(B) may or may not belong to B. (Ex; B= { y: y = 1 x, - Note that A B LUB( A) LUB( B)

Real Numbers R ) - LUB(B) may or may not belong to B. (Ex; B= { y: y = 1 x, - Note that A B LUB( A) LUB( B) Real Numbers The least upper boud - Let B be ay subset of R B is bouded above if there is a k R such that x k for all x B - A real umber, k R is a uique least upper boud of B, ie k = LUB(B), if () k is

More information

1 Review and Overview

1 Review and Overview CS9T/STATS3: Statistical Learig Theory Lecturer: Tegyu Ma Lecture #6 Scribe: Jay Whag ad Patrick Cho October 0, 08 Review ad Overview Recall i the last lecture that for ay family of scalar fuctios F, we

More information

4 The Sperner property.

4 The Sperner property. 4 The Sperer property. I this sectio we cosider a surprisig applicatio of certai adjacecy matrices to some problems i extremal set theory. A importat role will also be played by fiite groups. I geeral,

More information

Boosting. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 1, / 32

Boosting. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 1, / 32 Boostig Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machie Learig Algorithms March 1, 2017 1 / 32 Outlie 1 Admiistratio 2 Review of last lecture 3 Boostig Professor Ameet Talwalkar CS260

More information

Sequences, Series, and All That

Sequences, Series, and All That Chapter Te Sequeces, Series, ad All That. Itroductio Suppose we wat to compute a approximatio of the umber e by usig the Taylor polyomial p for f ( x) = e x at a =. This polyomial is easily see to be 3

More information

Homework 2. Show that if h is a bounded sesquilinear form on the Hilbert spaces X and Y, then h has the representation

Homework 2. Show that if h is a bounded sesquilinear form on the Hilbert spaces X and Y, then h has the representation omework 2 1 Let X ad Y be ilbert spaces over C The a sesquiliear form h o X Y is a mappig h : X Y C such that for all x 1, x 2, x X, y 1, y 2, y Y ad all scalars α, β C we have (a) h(x 1 + x 2, y) h(x

More information

Information-based Feature Selection

Information-based Feature Selection Iformatio-based Feature Selectio Farza Faria, Abbas Kazeroui, Afshi Babveyh Email: {faria,abbask,afshib}@staford.edu 1 Itroductio Feature selectio is a topic of great iterest i applicatios dealig with

More information

Machine Learning Assignment-1

Machine Learning Assignment-1 Uiversity of Utah, School Of Computig Machie Learig Assigmet-1 Chadramouli, Shridhara sdhara@cs.utah.edu 00873255) Sigla, Sumedha sumedha.sigla@utah.edu 00877456) September 10, 2013 1 Liear Regressio a)

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

1 Generating functions for balls in boxes

1 Generating functions for balls in boxes Math 566 Fall 05 Some otes o geeratig fuctios Give a sequece a 0, a, a,..., a,..., a geeratig fuctio some way of represetig the sequece as a fuctio. There are may ways to do this, with the most commo ways

More information

1 Review and Overview

1 Review and Overview DRAFT a fial versio will be posted shortly CS229T/STATS231: Statistical Learig Theory Lecturer: Tegyu Ma Lecture #3 Scribe: Migda Qiao October 1, 2013 1 Review ad Overview I the first half of this course,

More information

Second day August 2, Problems and Solutions

Second day August 2, Problems and Solutions FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 August 4, 1997, Plovdiv, BULGARIA Secod day August, 1997 Problems ad Solutios Let Problem 1. Let f be a C 3 (R) o-egative

More information

Lecture 20. Brief Review of Gram-Schmidt and Gauss s Algorithm

Lecture 20. Brief Review of Gram-Schmidt and Gauss s Algorithm 8.409 A Algorithmist s Toolkit Nov. 9, 2009 Lecturer: Joatha Keler Lecture 20 Brief Review of Gram-Schmidt ad Gauss s Algorithm Our mai task of this lecture is to show a polyomial time algorithm which

More information

Singular Continuous Measures by Michael Pejic 5/14/10

Singular Continuous Measures by Michael Pejic 5/14/10 Sigular Cotiuous Measures by Michael Peic 5/4/0 Prelimiaries Give a set X, a σ-algebra o X is a collectio of subsets of X that cotais X ad ad is closed uder complemetatio ad coutable uios hece, coutable

More information

Ada Boost, Risk Bounds, Concentration Inequalities. 1 AdaBoost and Estimates of Conditional Probabilities

Ada Boost, Risk Bounds, Concentration Inequalities. 1 AdaBoost and Estimates of Conditional Probabilities CS8B/Stat4B Sprig 008) Statistical Learig Theory Lecture: Ada Boost, Risk Bouds, Cocetratio Iequalities Lecturer: Peter Bartlett Scribe: Subhrasu Maji AdaBoost ad Estimates of Coditioal Probabilities We

More information

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series.

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series. .3 Covergece Theorems of Fourier Series I this sectio, we preset the covergece of Fourier series. A ifiite sum is, by defiitio, a limit of partial sums, that is, a cos( kx) b si( kx) lim a cos( kx) b si(

More information

Polynomial identity testing and global minimum cut

Polynomial identity testing and global minimum cut CHAPTER 6 Polyomial idetity testig ad global miimum cut I this lecture we will cosider two further problems that ca be solved usig probabilistic algorithms. I the first half, we will cosider the problem

More information

The Growth of Functions. Theoretical Supplement

The Growth of Functions. Theoretical Supplement The Growth of Fuctios Theoretical Supplemet The Triagle Iequality The triagle iequality is a algebraic tool that is ofte useful i maipulatig absolute values of fuctios. The triagle iequality says that

More information

Lecture 2 Clustering Part II

Lecture 2 Clustering Part II COMS 4995: Usupervised Learig (Summer 8) May 24, 208 Lecture 2 Clusterig Part II Istructor: Nakul Verma Scribes: Jie Li, Yadi Rozov Today, we will be talkig about the hardess results for k-meas. More specifically,

More information

TEACHER CERTIFICATION STUDY GUIDE

TEACHER CERTIFICATION STUDY GUIDE COMPETENCY 1. ALGEBRA SKILL 1.1 1.1a. ALGEBRAIC STRUCTURES Kow why the real ad complex umbers are each a field, ad that particular rigs are ot fields (e.g., itegers, polyomial rigs, matrix rigs) Algebra

More information

Questions and answers, kernel part

Questions and answers, kernel part Questios ad aswers, kerel part October 8, 205 Questios. Questio : properties of kerels, PCA, represeter theorem. [2 poits] Let F be a RK defied o some domai X, with feature map φ(x) x X ad reproducig kerel

More information

Computability and computational complexity

Computability and computational complexity Computability ad computatioal complexity Lecture 4: Uiversal Turig machies. Udecidability Io Petre Computer Sciece, Åbo Akademi Uiversity Fall 2015 http://users.abo.fi/ipetre/computability/ 21. toukokuu

More information

Lecture #20. n ( x p i )1/p = max

Lecture #20. n ( x p i )1/p = max COMPSCI 632: Approximatio Algorithms November 8, 2017 Lecturer: Debmalya Paigrahi Lecture #20 Scribe: Yua Deg 1 Overview Today, we cotiue to discuss about metric embeddigs techique. Specifically, we apply

More information

Lecture 16: Monotone Formula Lower Bounds via Graph Entropy. 2 Monotone Formula Lower Bounds via Graph Entropy

Lecture 16: Monotone Formula Lower Bounds via Graph Entropy. 2 Monotone Formula Lower Bounds via Graph Entropy 15-859: Iformatio Theory ad Applicatios i TCS CMU: Sprig 2013 Lecture 16: Mootoe Formula Lower Bouds via Graph Etropy March 26, 2013 Lecturer: Mahdi Cheraghchi Scribe: Shashak Sigh 1 Recap Graph Etropy:

More information

Approximations and more PMFs and PDFs

Approximations and more PMFs and PDFs Approximatios ad more PMFs ad PDFs Saad Meimeh 1 Approximatio of biomial with Poisso Cosider the biomial distributio ( b(k,,p = p k (1 p k, k λ: k Assume that is large, ad p is small, but p λ at the limit.

More information

CALCULATION OF FIBONACCI VECTORS

CALCULATION OF FIBONACCI VECTORS CALCULATION OF FIBONACCI VECTORS Stuart D. Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithaca.edu ad Dai Novak Departmet of Mathematics, Ithaca College

More information

Math 2784 (or 2794W) University of Connecticut

Math 2784 (or 2794W) University of Connecticut ORDERS OF GROWTH PAT SMITH Math 2784 (or 2794W) Uiversity of Coecticut Date: Mar. 2, 22. ORDERS OF GROWTH. Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really

More information

A REMARK ON A PROBLEM OF KLEE

A REMARK ON A PROBLEM OF KLEE C O L L O Q U I U M M A T H E M A T I C U M VOL. 71 1996 NO. 1 A REMARK ON A PROBLEM OF KLEE BY N. J. K A L T O N (COLUMBIA, MISSOURI) AND N. T. P E C K (URBANA, ILLINOIS) This paper treats a property

More information

MATH10212 Linear Algebra B Proof Problems

MATH10212 Linear Algebra B Proof Problems MATH22 Liear Algebra Proof Problems 5 Jue 26 Each problem requests a proof of a simple statemet Problems placed lower i the list may use the results of previous oes Matrices ermiats If a b R the matrix

More information

Lecture 9: Boosting. Akshay Krishnamurthy October 3, 2017

Lecture 9: Boosting. Akshay Krishnamurthy October 3, 2017 Lecture 9: Boostig Akshay Krishamurthy akshay@csumassedu October 3, 07 Recap Last week we discussed some algorithmic aspects of machie learig We saw oe very powerful family of learig algorithms, amely

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture 9: Pricipal Compoet Aalysis The text i black outlies mai ideas to retai from the lecture. The text i blue give a deeper uderstadig of how we derive or get

More information