15 MULTIPLE INTEGRALS

Size: px
Start display at page:

Download "15 MULTIPLE INTEGRALS"

Transcription

1 5 MULTIPLE INTEGRALS 5. Double Integrals over Rectangles. (a) The subrectangles are shown in the figure. Thesurfaceisthegraphof ( ) and 4,soweestimate ( ) (b) () +(4) +(4) +(44) +(6) +(64) 4(4)+8(4)+8(4)+6(4)+(4)+4(4) 88 () +() +() +() +(5) +(5) (4)+(4)+(4)+9(4)+5(4)+5(4) 44. (a) The subrectangles are shown in the figure. Here andweestimate (b) ( ) +() +() +(4 ) +(4) +(4) ()()+()+()()+()()+()+()() () +() +() +() +() +() ()+()+()+()+()()+(7)() 8. (a) Thesubrectanglesareshowninthefigure. Since,weestimate (b) +() + +() ( ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. 5

2 5 CHAPTER 5 MULTIPLE INTEGRALS 4. (a) The subrectangles are shown in the figure. Thesurfaceisthegraphof ( ) + + and 4, so we estimate (+ +) () (b) (+ +) ( ) (a) Each subrectangle and its midpoint are shown in the figure. Theareaofeachsubrectangleis,soweevaluate at each midpoint and estimate ( ) (5) +(5) + (5) +(5) ()+()()+()+() 4 (b) The subrectangles are shown in the figure. In each subrectangle, the sample point closest to the origin isthelowerleftcorner,andtheareaofeachsubrectangleis. Thus we estimate ( ) 4 4 () +(5) +() +(5) + () +(5) +() +(5) + () +(5) +() +(5) + () +(5) +() +(5) +(5) +(6) +(4) +() +() +() +() + + +() c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

3 SECTION 5. DOUBLE INTEGRALS OVER RECTANGLES 5 6. Toapproximatethevolume,let betheplanarregioncorrespondingtothesurfaceofthe waterinthepool,andplace oncoordinateaxessothat and correspondtothe dimensionsgiven. Thenwedefine ( )tobethedepthofthewaterat( ),sothe volumeofwaterinthepoolisthevolumeofthesolidthatliesabovetherectangle [] []andbelowthegraphof ( ). Wecanestimatethisvolumeusing themidpointrulewith and,so. Eachsubrectanglewithits midpointisshowninthefigure. Then [(55)+(55)+(55)+(55)+(55)+(55)] ( ) 6 Thus,weestimatethatthepoolcontains6cubicfeetofwater. Alternatively,wecanapproximatethevolumewithaRiemannsumwhere 4, 6andthesamplepointsaretakento be,forexample,theupperrightcornerofeachsubrectangle. Then 5and 4 6 ( ) 5[ ] 5(4) 5 Soweestimatethatthepoolcontains5ft ofwater. 7. Thevaluesof ( ) 5 getsmalleraswemovefartherfromtheorigin,soonanyofthesubrectanglesinthe problem,thefunctionwillhaveitslargestvalueatthelowerleftcornerofthesubrectangleanditssmallestvalueattheupper rightcorner,andanyothervaluewillliebetweenthesetwo. Sousingthesesubrectangleswehave. (Notethatthis istruenomatterhow isdividedintosubrectangles.) 8. Divide into4equalrectangles(squares)andidentifythemidpoint of each subrectangle as shown in the figure. Theareaofeachsubrectangleis,sousingthecontourmaptoestimatethefunctionvaluesateachmidpoint,wehave ( ) ()()+()()+()()+(5)() Youcouldimprovetheestimatebyincreasing and tousealargernumberofsmallersubrectangles. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

4 54 CHAPTER 5 MULTIPLE INTEGRALS 9. (a) With,wehave 4. Usingthecontourmaptoestimatethevalueof atthecenterofeachsubrectangle, we have ( ) (b) ave ( ) (48) 55 () 6 [()+()+()+()] 4( ) 48. AsinExample4,weplacetheoriginatthesouthwestcornerofthestate. Then [88] [76](inmiles)isthe rectanglecorrespondingtocoloradoandwedefine ( )tobethetemperatureatthelocation( ). Theaverage temperature is given by ave ( ) ( ) () TousetheMidpointRulewith 4,wedivide into6regionsofequalsize,asshowninthefigure,withthecenter of each subrectangle indicated. Theareaofeachsubrectangleis ,sousingthecontourmaptoestimatethefunctionvaluesateach midpoint, we have ( ) 4 Therefore, ave approximately78 F. 4 [ ] 669(65) 78,sotheaveragetemperatureinColoradoat4:PMonFebruary6,7,was c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

5 SECTION 5. DOUBLE INTEGRALS OVER RECTANGLES 55.,sowecaninterprettheintegralasthevolumeofthesolid thatliesbelowtheplane andabovethe rectangle[] [6]. isarectangularsolid,thus for 5,sowecaninterprettheintegralasthevolumeofthesolid thatliesbelowtheplane 5 andabovetherectangle[5] []. isa triangularcylinderwhosevolumeis(areaoftriangle) Thus (5 ) 75. ( ) 4 for. Thustheintegralrepresentsthevolumeofthat partoftherectangularsolid[] [] [4]whichliesbelowtheplane 4. So (4 ) ()()()+ ()()() 4. Here 9,so + 9,. Thustheintegralrepresentsthevolumeof thetophalfofthepartofthecircularcylinder + 9thatliesabovetherectangle [4] []. 5. To calculate the estimates using a programmable calculator, we can use an algorithm similartothatofexercise4..9[et5..9]. InMaple,wecandefinethefunction ( ) + (callingitf),loadthestudentpackage,andthenusethe command middlesum(middlesum(f,x..,m), y..,m); togettheestimatewith squaresofequalsize. Mathematicahasnospecial Riemannsumcommand,butwecandefinefandthenusenestedSum commandsto calculate the estimates. estimate estimate estimate c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

6 56 CHAPTER 5 MULTIPLE INTEGRALS 7. Ifwedivide into subrectangles, But alwaysand points, lim foranychoiceofsamplepoints. areaof ( )( ). Thus,nomatterhowwechoosethesample ( )( )andso lim lim ( )( ) ( )( ). 8. Becausesin isanincreasingfunctionfor 4,wehavesin sin sin 4 sin. Similarly,cos isadecreasingfunctionfor,so cos cos cos. Thuson, 4 4 sin cos. Property(9)gives sin cos have sin cos 4 4.,sobyExercise7we 5. Iterated Integrals (5) 4() 5, () 4 () ( + ) (+) 5+ 5, ( + ) + + (+ ) + 4 (6 ) 4 4 ( 4) 4 4 (56 ) (4 ) (4 9 ) 4 (8 4 ) (4 ) (4 ) 4 7 ( 7) ( ) [asinexample5] (4 )(64 ) ( 4 ) 6. 5 cos 5 cos [byequation5] (+ cos ) 5 sin [5 ()](sin sin ) 6( ) sin c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

7 ln [ln ] + 5 ln [asinexample5] (ln ) 5 [substitute ln () ] (ln ) [(ln5) ] (ln)(ln5) 4 ln + 4 8ln+ ln4 ln 5 ln+ln4 ln SECTION 5. ITERATED INTEGRALS 57 ln+ ln+ ln [ ] ( ) or (6 +) (+ ) 4 5 (+ ) 5 (+ ) 5 (+ ) (+ ) (+ ) 6 [substitute + inthefirstterm]. 6 ( 6 ) ( ) (6 ) 6 + ( + ) [( +) ] [( +) 4 ] 5 ( +) sin sin [asinexample5] + sin [( ) ( )] ( cos) ( ) sin sin (+) [(+) ] 5 (+) [(5 ) ( )] or sin( ) sin( ) [cos( )] cos( ) cos sin( ) sin sin sin sin( ) sin 7. (+ ) + ( ) (+ ) + + (4 ) ( ) 4 + (ln ln) (7+7) 9ln + ln( +) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

8 58 CHAPTER 5 MULTIPLE INTEGRALS sin(+) cos(+) sin sin + 6 (+ ) cos cos + sin sin cos +cos tan [byintegratingbypartsseparatelyforeachterm] ln(+) (+)ln(+) (ln ) (ln ) ln ln(+) ln(+) ln [by integrating by parts] ( +) [ln(++)] [ln(+) ln(+)] (+)ln(+) (+) (+)ln(+) (+) [by integrating by parts separately for each term] (6ln6 65ln5+5) (4ln4 4ln+) 6ln6 5ln5 4ln4+ln. ( ) 4 for and. Sothesolid istheregioninthefirstoctantwhichliesbelowtheplane 4 andabove[] []. 4. for and. Sothesolidisthe region in the first octant which lies below the circular paraboloid andabove[] []. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

9 SECTION 5. ITERATED INTEGRALS Thesolidliesundertheplane or ++ 5 so (+ + 5 ) (++ 5 ) ++ 5 (9+6) ( ) (5 +9) () 5 6. ( +) ( +) + ( ) ( ) (+ sin ) cos (+ + ) (+ ) Hereweneedthevolumeofthesolidlyingunderthesurface sec andabovetherectangle [] [ 4]in the -plane. 4 sec 4 sec 4 tan ( )(tan tan) ( ) 4. Thecylinderintersectsthe -planealongtheline 4,sointhefirstoctant,thesolidliesbelowthesurface 6 andabovetherectangle [4] [5]inthe -plane. 5 4 (6 ) 4 (6 ) (64 64 )(5 ) 64. Thesolidliesbelowthesurface + +( ) andabovetheplane for, 4. Thevolume ofthesolidisthedifferenceinvolumesbetweenthesolidthatliesunder + +( ) overtherectangle [] [4]andthesolidthatliesunder over [+ +( ) ] 4 () 4 (+ +( ) ) ( ( ) ) [] []4 4 +( ) [ ()][4 ] 4 + ( ) ( ) 4 ()(4). Thesolidliesbelowtheplane + andabovethesurface for, 4. Thevolumeofthesolidis + the difference in volumes between the solid that lies under +overtherectangle [] [4]andthesolidthat liesunder over. + [continued] c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

10 5 CHAPTER 5 MULTIPLE INTEGRALS 4 (+) 4 [(4+6) (+)] ln (ln5 ln)(8 ) (8+ ) 8ln5 4 8ln5. InMaple,wecancalculatetheintegralbydefiningtheintegrandasf and then using the command int(int(f,x..),y..);. In Mathematica, we can use the command Integrate[f,{x,,},{y,,}] Wefindthat Wecanuseplotd (in Maple) or PlotD(in Mathematica) to graph the function. 4. In Maple, we can calculate the integral by defining f:exp(-xˆ)*cos(xˆ+yˆ); and g:-xˆ-yˆ; andthen[since cos( + )for, ]usingthecommand evalf(int(int(g-f,x-..),y-..),5);. The 5 indicates that we want only five significant digits; this speeds up the calculation considerably. + In Mathematica, we can use the command NIntegrate[g-f,{x,-,},{y,-,}]. We find that ( ) cos( + ) 7. Wecanusetheplotdcommand(inMaple)orPlotD (in Mathematica) to graph both functions on the same screen. 5. is the rectangle [] [5]. Thus, () 5 and ave () ( ) () 4 4,so 7. function so ave () ( ) [(+) (+) ] 6 5 (+)5 5 (+) (+ ) 6 5 [(4+) ] 5 [(4+) ] [byequation5] but () 4 + isanodd 4 () by(6)insection4.5[et(7)insection5.5]. Thus. +4 c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

11 SECTION 5. DOUBLE INTEGRALS OVER GENERAL REGIONS 5 8. (+ sin + sin ) + sin + sin ()+ sin + sin ()()+ sin + sin But sin isanoddfunction,so sin sin by(6)insection4.5[et(7)insection5.5]and (+ sin + sin ) Let ( ) (+). ThenaCASgives ( ) and ( ). ToexplaintheseemingviolationofFubini stheorem,notethat hasaninfinitediscontinuityat()andthusdoesnot satisfy the conditions of Fubini s Theorem. In fact, both iterated integrals involve improper integrals which diverge at their lower limits of integration. 4. (a) Loosely speaking, Fubini s Theorem says that the order of integration of a function of two variables does not affect the value of the double integral, while Clairaut s Theorem says that the order of differentiation of such a function does not affect the value of the second-order derivative. Also, both theorems require continuity(though Fubini s allows a finite number of smooth curves to contain discontinuities). (b) Tofind,wefirsthold constantandusethesingle-variablefundamentaltheoremofcalculus,part: ( ) ( ) ( ). NowweusetheFundamentalTheoremagain: ( ) ( ). Tofind,wefirstuseFubini stheoremtofindthat ( ) FundamentalTheoremtwice,asabove,toget ( ). So ( ). ( ),andthenusethe 5. Double Integrals over General Regions [( ) ] (64 ). ( ) () () ()+ () ( ) (+) + + ( ) ( 4 ) (4 ) 4 (4 ) 6 4 cos( ) cos( ) cos( ) sin( ) (sin sin) sin c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

12 5 CHAPTER 5 MULTIPLE INTEGRALS (+ ) (+) (+) (+) 4 7. [ ( )] ( + ) sin 5 + (ln ln) ln 5 + []sin sin cos +sin cos +sin +sin ln ln ln 4 4 ln ln integrate by parts with sin integrate by parts with ln. (a) Attherightwesketchanexampleofaregion thatcanbedescribedaslying betweenthegraphsoftwocontinuousfunctionsof (atypeiregion)butnotas lyingbetweengraphsoftwocontinuousfunctionsof (atypeiiregion). The regionsshowninfigures6and8inthetextareadditionalexamples. (b) Nowwesketchanexampleofaregion thatcanbedescribedaslyingbetween thegraphsoftwocontinuousfunctionsof butnotaslyingbetweengraphsoftwo continuousfunctionsof. ThefirstregionshowninFigure7isanotherexample.. (a) Attherightwesketchanexampleofaregion thatcanbedescribedaslying betweenthegraphsoftwocontinuousfunctionsof (atypeiregion)andalsoas lyingbetweengraphsoftwocontinuousfunctionsof (atypeiiregion). For additionalexamplesseefigures9,,,and4 6inthetext. (b) Nowwesketchanexampleofaregion thatcan tbedescribedaslyingbetween thegraphsoftwocontinuousfunctionsof orbetweengraphsoftwocontinuous functionsof. TheregionshowninFigure8isanotherexample. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

13 SECTION 5. DOUBLE INTEGRALS OVER GENERAL REGIONS 5. AsatypeIregion, liesbetweenthelowerboundary andtheupper boundary for,so {( ), }. Ifwe describe asatypeiiregion, liesbetweentheleftboundary andthe rightboundary for,so {( ), }. Thus ( ) or ( ). 4. Thecurves and intersectatpoints(),(9). AsatypeIregion, isenclosedbythelowerboundary andtheupperboundary for,so ( ),. Ifwedescribe asa typeiiregion, isenclosedbytheleftboundary andtherightboundary for 9,so ( ) 9,. Thus (9 4 ) (9 5 ) or Thecurves or +and intersectwhen + ( )(+),,sothepointsof intersectionare( )and(4). Ifwedescribe asatypeiregion,theupper boundarycurveis butthelowerboundarycurveconsistsoftwoparts, for and for 4. Thus {( ), } {( ) 4, }and + 4. Ifwedescribe asatypeiiregion, isenclosedbytheleftboundary andtherightboundary +for,so ( ), + and +. Ineithercase,theresultingiteratedintegralsarenotdifficulttoevaluatebuttheregion is c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

14 54 CHAPTER 5 MULTIPLE INTEGRALS moresimplydescribedasatypeiiregion,givingoneiteratedintegralratherthanasumoftwo,soweevaluatethelatter integral: + + (+ ) ( + ) AsatypeIregion, {( ) 4, 4}and AsatypeIIregion, {( ) 4, }and 4. Evaluating requiresintegrationbypartswhereas doesnot,so theiteratedintegralcorrespondingto asatypeiiregionappearseasiertoevaluate cos sin sin cos ( cos) 8. ( +) ( +) + ( ) [(7 ) ( )] (8 4 ) ( ) ( 4 ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

15 SECTION 5. DOUBLE INTEGRALS OVER GENERAL REGIONS ( ) [Or,notethat4 4 isanoddfunction,so 4 4.]. [( ) () ] ( 6 +9) ( +) + ( ) ( )+( ) ( ) ( )+( ) (+ ) + 4 ( ) ( ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

16 56 CHAPTER 5 MULTIPLE INTEGRALS 6. ( + ) + ( + ) (6 ) 6 6( ) ( ) ( ) ( ) (4 4 ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

17 SECTION 5. DOUBLE INTEGRALS OVER GENERAL REGIONS 57.. Bysymmetry,thedesiredvolume is8timesthevolume inthefirstoctant. Now ( ) Thus 6.. Fromthegraph,itappearsthatthetwocurvesintersectat and at. Thusthedesiredintegralis 4 4 ( 5 ) Thedesiredsolidisshowninthefirstgraph. Fromthesecondgraph,weestimatethat cos intersects at 79. Thereforethevolumeofthesolidis 79 cos 79 cos 79 cos 79 (cos ) cos +sin 79 4 Note: There is a different solid which can also be construed to satisfy the conditions stated in the exercise. This is the solid boundedbyallofthegivensurfaces,aswellastheplane. Incaseyoucalculatedthevolumeofthissolidandwantto checkyourwork,itsvolumeis 79 + cos c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

18 58 CHAPTER 5 MULTIPLE INTEGRALS 5. Thetwoboundingcurves and intersectat(±)with on[]. Withinthis region,theplane + +isabovetheplane,so (++) ( ) (++ ( )) (++8) + +8 ( )+ ( ) +8( ) ( ) ( ) 8( ) ( ) Thetwoplanesintersectintheline,,sotheregionof integrationistheplaneregionenclosedbytheparabola andthe line. Wehave+ for,sothesolidregionis boundedaboveby +andboundedbelowby. (+) () (+ ) ( + 4 ) ( ) 7. Thesolidliesbelowtheplane or ++ andabovetheregion {( ) } inthe -plane. Thesolidisatetrahedron. 8. Thesolidliesbelowtheplane and above the region ( ) inthe -plane. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

19 SECTION 5. DOUBLE INTEGRALS OVER GENERAL REGIONS Thetwoboundingcurves and + intersectattheoriginandat,with + on(). UsingaCAS,wefindthatthevolumeis + + ( 4 + ),984,75,66 4,549,55 4. For and, + 8. Also,thecylinderisdescribedbytheinequalities,. Sothevolumeisgivenby (8 ) ( + ) [using a CAS] 4. Thetwosurfacesintersectinthecircle +, andtheregionofintegrationisthedisk : +. UsingaCAS,thevolumeis ( ) ( ). 4. Theprojectionontothe -planeoftheintersectionofthetwosurfacesisthecircle + + +( ),sotheregionofintegrationisgivenby, +. Inthisregion, + so,usingacas,thevolumeis + [ ( + )] 4. Because the region of integration is {( ) } {( ) } wehave ( ) ( ) ( ). 44. Because the region of integration is wehave ( ) 4 ( ) 4 4 ( ) ( ) 4 ( ). 45. Because the region of integration is we have {( ) cos } ( ) cos cos ( ) ( ) cos ( ). c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

20 5 CHAPTER 5 MULTIPLE INTEGRALS 46. Because the region of integration is ( ) 4 ( ) 4 4 we have 4 ( ) ( ) 4 4 ( ). 47. Because the region of integration is {( ) ln, } {( ), ln} we have ln ( ) 48. Because the region of integration is we have 4 arctan ( ) ln ( ) arctan, 4 ( ) tan, 4 ( ) ( ) 4 tan ( ) ( ) cos( ) cos( ) cos( ) sin( ) (sin sin) cos( ) ln + (ln9 ln) ln9 c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

21 SECTION 5. DOUBLE INTEGRALS OVER GENERAL REGIONS 5 5. ( ) ( ) ( ) 5. arcsin cos +cos sin cos +cos cos +cos sin cos +cos sin Let cos, sin, (sin ) (6 ) {( ), + } {( ), + } {( ), } {( ), }, alltypei [bysymmetryoftheregionsandbecause ( ) ] ( ), ( ),,bothtypeii. + ( 4 + ) + ( 4 + ) ( )+( 7 ) 5 + c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

22 5 CHAPTER 5 MULTIPLE INTEGRALS 57. Here ( ) +,and ( + ) ( + ) so 6 ( + ) since isanincreasingfunction. Wehave () 4 6,sobyProperty, 6 () ( + ) () 6 6 ( + ) 6 orwecansay 844 ( + ) 964. (Wehaveroundedthelowerbounddownandtheupperbounduptopreservethe inequalities.) 58. isthetrianglewithvertices(),(),and()so () ()(). Wehave sin4 (+) forall,, andpropertygives () sin4 (+) () sin4 (+). 59. Theaveragevalueofafunction oftwovariablesdefinedonarectangle was definedinsection5.as ave ( ). Extendingthisdefinition () togeneralregions,wehave ave ( ). () Here {( ) },so () ()() and ave ( ) () Here ( ),so () and ave ( ) () cos sin cos( ) sin( ) sin ( sin) 6. Since ( ), ( ) by(8) ( ) by(7) () ( ) ()by(). 6. ( ) ( ) + ( ) ( ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

23 SECTION 5. DOUBLE INTEGRALS OVER GENERAL REGIONS 5 6. Firstwecanwrite (+) +. But ( ) is anoddfunctionwithrespectto [thatis, ( ) ( )]and is symmetricwithrespectto. Consequently,thevolumeabove andbelowthe graphof isthesameasthevolumebelow andabovethegraphof,so. Also, () () 9since isahalf diskofradius. Thus (+) Thegraphof ( ) isthetophalfofthesphere + +,centeredattheoriginwithradius,and isthediskinthe -planealsocenteredattheoriginwithradius. Thus representsthe volumeofahalfballofradius whichis Wecanwrite (+) +. representsthevolumeofthesolidlyingunderthe plane andabovetherectangle. Thissolidregionisatriangularcylinderwithlength andwhosecross-sectionisa trianglewithwidth andheight. (Seethefirstfigure.) Thusitsvolumeis. Similarly, representsthevolumeofatriangularcylinderwithlength, triangularcross-sectionwithwidth andheight,andvolume. (Seethesecondfigure.) Thus (+) Inthefirstquadrant, and arepositiveandtheboundaryof is +. But is symmetricwithrespecttobothaxesbecauseoftheabsolutevalues,sotheregionof integration is the square shown at the left. To evaluate the double integral, we first write (+ sin ) + sin. Now ( ) isoddwithrespectto [thatis, ( ) ( )] and issymmetricwithrespectto,so. Similarly, ( ) sin isoddwithrespectto [since ( ) ( )]and issymmetricwithrespectto, so sin. isasquarewithsidelength,so () 4,and (+ sin ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

24 54 CHAPTER 5 MULTIPLE INTEGRALS Now isoddwithrespect to and isoddwithrespectto,andtheregionofintegrationissymmetricwithrespecttoboth and, so. representsthevolumeofthesolidregionunderthe graphof andabovetherectangle,namelyahalfcircular cylinderwithradius andlength(seethefigure)whosevolumeis (). Thus To find the equations of the boundary curves, we require that the -valuesofthetwosurfacesbethesame. InMaple,weusethecommand solve(4-xˆ-yˆ-x-y,y); and in Mathematica, we use Solve[4-xˆ-yˆ-x-y,y]. We find that the curves have equations ± Tofindthetwopointsofintersection ofthesecurves,weusethecastosolve+4 4,findingthat ± 4. So,usingtheCAStoevaluatetheintegral,thevolumeofintersectionis (+ 4) + ( 4) [(4 ) ( )] Double Integrals in Polar Coordinates. Theregion ismoreeasilydescribedbypolarcoordinates: ( ) 4, Thus ( ) 4 (cos sin ).. Theregion ismoreeasilydescribedbyrectangularcoordinates: ( ),. Thus ( ) ( ).. Theregion ismoreeasilydescribedbyrectangularcoordinates: ( ), +. Thus ( ) (+) ( ). 4. Theregion ismoreeasilydescribedbypolarcoordinates: ( ) 6,. Thus ( ) 6 (cos sin ).. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

25 5. Theintegral 4 4 representstheareaoftheregion {( ), 4 4},thetopquarterportionofa ring(annulus) SECTION 5.4 DOUBLE INTEGRALS IN POLAR COORDINATES 55 (4 ) 4 6. Theintegral sin representstheareaoftheregion {( ) sin, }. Since sin sin + +( ), istheportioninthesecondquadrantofadiskof radiuswithcenter(). sin sin sin ( cos) sin + 7. Thehalfdisk canbedescribedinpolarcoordinatesas {( ) 5, }. Then 5 (cos ) (sin ) cos sin 5 4 cos ( ) Theregion is ofadisk,asshowninthefigure,andcanbedescribedby {( ), 4 }. Thus 8 9. ( ) (cos sin ) 4 (cos sin ) 4. sin +cos 4 (+ ) sin( + ) sin( ) sin( ) + cos( ) (cos9 cos) (cos cos9) 4 (sin ) ( cos) ( ) ( ) sin sin c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

26 56 CHAPTER 5 MULTIPLE INTEGRALS. ( 4 ) ( 4 ). cos + cos cos. Forthesecondintegral,integratebypartswith, cos. Then cos + [sin +cos ] (sin+cos ).. istheregionshowninthefigure,andcanbedescribed 4. by {( ) 4 }. Thus arctan() 4 arctan(tan ) since tan. Also,arctan(tan ) for 4,sotheintegralbecomes Oneloopisgivenbytheregion + 4, ( ) + cos cos {( ) 6 6, cos},sotheareais 6 cos 6 cos cos sin6 6 cos (8cos ) (8cos4 ) 8 8 cos sin + (+sin cos ) cos6 6. Bysymmetry,theareaoftheregionis4timestheareaoftheregion inthefirstquadrantenclosedbythecardiod cos (seethefigure). Here {( ) cos },sothetotalareais 4() 4 4 cos 4 cos ( cos ) cos + (+cos) sin sin ( cos +cos ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

27 SECTION 5.4 DOUBLE INTEGRALS IN POLAR COORDINATES Inpolarcoordinatesthecircle( ) + + is cos cos, andthecircle + is. Thecurvesintersectinthefirstquadrantwhen cos cos,sotheportionoftheregioninthefirstquadrantisgivenby {( ) cos }. Bysymmetry,thetotalarea istwicetheareaof : () cos cos 4cos 4 (+cos) (+cos) [+sin] + 8. TheregionliesbetweenthetwopolarcurvesinquadrantsIandIV,butin quadrantsiiandiiitheregionisenclosedbythecardiod. Inthefirst quadrant,+cos cos whencos,sothearea oftheregioninsidethecardiodandoutsidethecircleis +cos cos (+cos 8cos ) +cos cos +sin sin 4 + Theareaoftheregioninthesecondquadrantis +sin sin + 4 +cos +cos (+cos +cos ) +sin + + sin Bysymmetry,thetotalareais ( + ) Theparaboloid 8 intersectsthe -planeinthecircle + 9,so () c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

28 58 CHAPTER 5 MULTIPLE INTEGRALS. Thehyperboloidoftwosheets + intersectstheplane when +4 or +.Sothe solidregionliesabovethesurface + + andbelowtheplane for +,anditsvolumeis (+ ) 4. Thesphere + + 6intersectsthe -planeinthecircle + 6,so By symmetry, 6 [bysymmetry] 4 (6 ) ()( ) ( ) () (6 ) 4. Theparaboloid + + intersectstheplane 7when7 + + or + andwearerestricted tothefirstoctant,so (+ ) Thecone + intersectsthesphere + + when or +. So + + ( ) 6. Thetwoparaboloidsintersectwhen + 4 or +. So + [(4 ) ( + )] (4 4 ) 4 4( ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

29 SECTION 5.4 DOUBLE INTEGRALS IN POLAR COORDINATES Thegivensolidistheregioninsidethecylinder + 4betweenthesurfaces and So ( 6 ) (6 ) 8. (a) Heretheregioninthe -planeistheannularregion + andthedesiredvolumeistwicethatabovethe -plane. Hence 4 + ( ) 4 ( ) (b) Across-sectionalcutisshowninthefigure. So + or 4. Thusthevolumeintermsof is sin( + ) sin sin [] cos (cos9 ) ( cos9). (cos ) (sin ) 4 cos sin cos sin 4 cos 5 5 cos cos (cos + sin ) 4 (cos +sin ) [sin cos ] 4 + c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

30 54 CHAPTER 5 MULTIPLE INTEGRALS. cos cos 8 cos 8 8 ( sin )cos sin sin 6 9. {( ), }, so ( + ) ( ) 4 4. Usingacalculator,weestimate {( ), },so + + (cos )(sin ) + sin cos + sin Thesurfaceofthewaterinthepoolisacirculardisk withradiusft. Ifweplace oncoordinateaxeswiththeoriginat thecenterof anddefine ( )tobethedepthofthewaterat( ),thenthevolumeofwaterinthepoolisthevolumeof thesolidthatliesabove ( ) + 4 andbelowthegraphof ( ). Wecanassociatenorthwiththe positive -direction,sowearegiventhatthedepthisconstantinthe -directionandthedepthincreaseslinearlyinthe -directionfrom ( ) to () 7. Thetraceinthe -planeisalinesegmentfrom( )to(7). Theslopeofthislineis 7,soanequationofthelineis 7 ( ) + 9. Since ( )is () independentof, ( ) + 9. Thusthevolumeisgivenby ( ),whichismostconvenientlyevaluated 8 usingpolarcoordinates. Then {( ), }andsubstituting cos, sin theintegral becomes sin sin sin +9 Thusthepoolcontains8 5655ft ofwater. cos (a) If,thetotalamountofwatersuppliedeachhourtotheregionwithin feetofthesprinkleris [ ++] ( )ft (b) Theaverageamountofwaterperhourpersquarefootsuppliedtotheregionwithin feetofthesprinkleris areaofregion ft (perhourpersquarefoot). Seethedefinitionoftheaveragevalueofa function on page [ET 979]. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

31 SECTION 5.4 DOUBLE INTEGRALS IN POLAR COORDINATES AsinExercise5..59, ave ( ). Here {( ) }, () so () ( )and ave () + ( ) ( ) ( ) ( ) ()( ) ( ) (+)( ) + 8. Thedistancefromapoint( )totheoriginis ( ) +,sotheaveragedistancefrompointsin totheoriginis ave + () [] cos sin sin cos sin 4 4 cos sin (a) ( + ) foreach. Then lim since as. Hence ( + ). (b) ( + ) foreach. Then,from(a), R ( + ),so lim ( + ) lim Toevaluate lim,weareusingthefactthattheseintegralsarebounded. Thisistruesince on[], whileon( ), andon( ),. Hence + + ( +). (c) Since and canbereplacedby, impliesthat ±. But forall,so. (d) Letting,,sothat or. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

32 54 CHAPTER 5 MULTIPLE INTEGRALS 4. (a) Weintegratebypartswith and. Then and,so lim lim + lim + + [byl Hospital srule] 4 [since isanevenfunction] 4 [byexercise4(c)] (b) Let. Then lim lim 4 [bypart(a)]. 5.5 Applications of Double Integrals. ( ) 5 5 (+4) (+5 4 8) 5 (6+4) C. ( ) + [] C. ( ) 4 4 [] 4 ()() 4, 4 ( ) (4)(), ( ) [] 4 4 () Hence 4,( ) ( ) (+ + ) (+ + ), ( ) (+ + ) (6+ + ),and ( ) (+ + ) (6+ + ). Hence, ( ) (6+ + ) (+ + ) (6+ + ) 4(+ + ) (6+ + ) 4(+ + ) (6+ + ) (+ + ). c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

33 SECTION 5.5 APPLICATIONS OF DOUBLE INTEGRALS (+) + + ( ) , 8 ( + ) , 8 (+ ) Hence 6,( ) Here {( ) 6 }. 6 (6 ) 6 4 4, 4 6 (6 ) , (6 ) Hence 4,( ) ( ) ( + 4 ) , 5 ( ) ( + 5 ) , ( ) ( ) Hence 8 5,( ) Theboundarycurvesintersectwhen +,. Thushere ( ) ( + ) , ( + 4 ) , ( ) ( ) Hence 9 4,( ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

34 544 CHAPTER 5 MULTIPLE INTEGRALS 9. Notethatsin() for. sin() sin () sin(), 4 4 sin() sin () sin() cos() sin() integrate by parts with sin () sin() sin () Hence 4,( ) 8 4 [substitute cos()] cos () sin() cos() cos () (9) sin()]. ( ) 7 7, 4 ( 5 ) ( ) ( 7 ) 9 9 9, ( 4 ) ( 9 ) Hence 4,( ) ( ) sin, sin sin cos, sin cos sin cos cos, sin sin +sin Hence( ) ( ) ( + ),, 8 4 cos cos sin, c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

35 4 sin sin cos Hence( ) SECTION 5.5 APPLICATIONS OF DOUBLE INTEGRALS 545. ( ) +, ( ) () 7, ( ) (cos )() cos sin 4 () [thisistobeexpectedastheregionanddensity function are symmetric about the y-axis] Hence( ) ( ) (sin )() sin cos 4 (+) Now ( ) +,so ( ) () ()(), ( ) (cos )() sin (), ( ) (sin )() Hence( ). cos (+). cos sin 5. Placingthevertexoppositethehypotenuseat(), ( ) ( + ). Then + + ( ) 4 4 ( ) By symmetry, ( + ) ( ) + ( ) ( )5 5 5 Hence( ) 5 5. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

36 546 CHAPTER 5 MULTIPLE INTEGRALS 6. ( ) sin cos 56 6 Bysymmetryof and (),,and [(sin ) ] 56 sin sin (4sin sin ) cos + 4 cos 56 6 Hence( ) ( ). 7. ( ) ( ) 4 4 ( ) , ( ) ( ) , and ( ) 8. ( sin )( ) sin ( sin), ( cos )( ) 6 cos (+sin), and AsinExercise5,weplacethevertexoppositethehypotenuseat()andtheequalsidesalongthepositiveaxes. ( + ) ( + 4 ) ( ) + 5 ( ) ( ) , ( + ) ( 4 + ) ( )+ ( ) and ,. Ifwefindthemomentsofinertiaaboutthe -and -axes,wecandetermineinwhichdirectionrotationwillbemoredifficult. (SeetheexplanationfollowingExample4.) Themomentofinertiaaboutthe -axisisgivenby ( ) (+) (+) 8 (+) () 587 c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

37 SECTION 5.5 APPLICATIONS OF DOUBLE INTEGRALS 547 Similarly,themomentofinertiaaboutthe -axisisgivenby ( ) (+) (+) ( + ) Since,moreforceisrequiredtorotatethefanbladeaboutthe -axis.. ( ), ( ) [], and (areaofrectangle)sincethelaminaishomogeneous. Hence and.. Hereweassume, butnotethatwearriveatthesameresultsif or. Wehave ( ),so 4 4 ( 4 ), 4 ( ) 4 4, and. Hence 6 and Inpolarcoordinates,theregionis ( ),so (sin ) sin sin , (cos ) cos + sin , and () 4 sincethelaminaishomogeneous. Hence sin sin cos, sin sin ( cos )sin cos + cos 4, 9 c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

38 548 CHAPTER 5 MULTIPLE INTEGRALS sin sin cos +sin +cos [by integrating by parts twice] ( 4). Then,so 9 and 4 4,so. 5. Therightloopofthecurveisgivenby {( ) cos, 4 4}. UsingaCAS,we find ( ) ( + ) 4 cos Then ( ) ( ) ( ) 95. The moments of inertia are cos cos (cos ) (sin ) cos cos 4 cos sin,so ( ) 4 cos (sin ) 4 cos 5 sin , ( ) 4 cos (cos ) 4 cos 5 cos ,and UsingaCAS,wefind ( ) 8 ( ). Then ( ) ( ) ( ) (5 6 ) ( ) 79 8( ) 79( ) 768( ). (56 ) and 79( ),so 768( ) Themomentsofinertiaare ( ) 4 6 ( ), ( ) 4 8 ( ), and + 6 ( ). 7. (a) ( )isajointdensityfunction,soweknow R ( ). Since ( ) outsidethe rectangle[] [],wecansay Then. R ( ) ( ) (+) + 4 and c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

39 (b) ( ) ( ) + SECTION 5.5 APPLICATIONS OF DOUBLE INTEGRALS 549 (+) or (c) ( + ) (( ) )where isthetriangularregionshownin the figure. Thus ( + ) ( ) (+) (a) ( ),so isajointdensityfunctionif ( ). Here, ( ) outsidethesquare[] [], R so ( ) 4 R. Thus, ( )isajointdensityfunction. (b) (i) Norestrictionisplacedon,so ( ) (ii) ( ) 4 6 (c) Theexpectedvalueof isgivenby R ( ) Theexpectedvalueof is R ( ) (4) (4) (a) ( ),so isajointdensityfunctionif ( ). Here, ( ) outsidethefirstquadrant,so R ( ) R (5+) 5 5 lim 5 lim lim 5 lim 5 lim ( 5 ) lim 5( ) () ()( ) (5)( ) Thus ( )isajointdensityfunction. (b) (i) Norestrictionisplacedon,so ( ) ( ) (5+) 5 lim lim 5 lim 5 lim 5 lim () ()( ) (5)( ) 887 ( 5 ) lim 5( ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

40 55 CHAPTER 5 MULTIPLE INTEGRALS (ii) ( 4) (c) Theexpectedvalueof isgivenby 4 ( ) 4 (5+) () ()( ) (5)( 8 ) 5 4 ( )( 8 ) ( ) (5+) R 5 lim 5 lim Toevaluatethefirstintegral,weintegratebypartswith and 5 (orwecanuseformula96 inthetableofintegrals): (+) 5. Thus lim (+) 5 lim 5 lim () (+) 5 lim(5) () lim + 5 (5)() [byl Hospital srule] Theexpectedvalueof isgivenby ( ) (5+) R 5 lim 5 lim Toevaluatethesecondintegral,weintegratebypartswith and (oragainwecanuseformula96in thetableofintegrals)whichgives (+5). Then lim 5 lim 5(+5) lim ( 5 ) lim 5 (+5) 5 +5 ()() (5) lim 5 5 [by l Hospital s Rule]. (a) The lifetime of each bulb has exponential density function () if if If and arethelifetimesoftheindividualbulbs,then and areindependent,sothejointdensityfunctionisthe product of the individual density functions: ( ) 6 (+) if, otherwise c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

41 SECTION 5.5 APPLICATIONS OF DOUBLE INTEGRALS 55 Theprobabilitythatbothofthebulbsfailwithinhoursis ( ) ( ) 6 (+) (b) Nowweareaskedfortheprobabilitythatthecombinedlifetimesofboth bulbsishoursorless. Thuswewanttofind ( + ),or equivalently (( ) )where isthetriangularregionshowninthe figure. Then ( + ) ( ) 6 6 (+) (+) (a) Therandomvariables and arenormallydistributedwith 45,, 5,and. Theindividualdensityfunctionsfor and,then,are () () 5 5 (45) and (). Since and areindependent,thejointdensityfunctionistheproduct ( ) () () Then (4 5, 5) (45) () (45) 5() 5 ( ) (45) 5(). UsingaCASorcalculatortoevaluatetheintegral,weget (4 5, 5) 5. (b) (4( 45) +( ) ) (45) 5(),where istheregionenclosedbytheellipse 4( 45) +( ). Solvingfor gives ± 4( 45),theupperandlowerhalvesofthe ellipse,andthesetwohalvesmeetwhere [sincetheellipseiscenteredat(45)] 4( 45) 45±. Thus 45+ 5() (45) (45) (45) 5(). 4(45) UsingaCASorcalculatortoevaluatetheintegral,weget (4( 45) +( ) ) 6. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

42 55 CHAPTER 5 MULTIPLE INTEGRALS. Because and areindependent,thejointdensityfunctionforxavier sandyolanda sarrivaltimesistheproductofthe individual density functions: ( ) () () SinceXavierwon twaitforyolanda,theywon tmeetunless. Additionally,Yolandawillwaituptohalfanhourbutnolonger,sothey won tmeetunless. Thustheprobabilitythattheymeetis (( ) )where istheparallelogramshowninthefigure. The integralissimplertoevaluateifweconsider asatypeiiregion,so 5 if, otherwise (( ) ) ( ) ( (+) + ) ( ) Byintegrationby parts (orformula 96 in the Table of Integrals), this is ( 5 ) (+) ( 5 )( ). Thusthereisonlyabouta%chancetheywillmeet. Such is student life!. (a) If ( )istheprobabilitythatanindividualat willbeinfectedbyanindividualat,and isthenumberof infectedindividualsinanelementofarea,then ( ) isthenumberofinfectionsthatshouldresultfrom exposureoftheindividualat toinfectedpeopleintheelementofarea.integrationover givesthenumberof infectionsofthepersonat duetoalltheinfectedpeoplein. Inrectangularcoordinates(withtheoriginatthecity s center),theexposureofapersonat is ( ) (b) If (),then [ ( )] 6 9 ( ) +( ) For attheedgeofthecity,itisconvenienttouseapolarcoordinatesystemcenteredat. Thenthepolarequationfor thecircularboundaryofthecitybecomes cos insteadof,andthedistancefrom toapoint inthecity c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

43 SECTION 5.6 SURFACE AREA 55 isagain (seethefigure). So cos cos 6 + cos cos 4 cos sin cos + sin sin + 4 sin Thereforetheriskofinfectionismuchlowerattheedgeofthecitythaninthemiddle,soitisbettertoliveattheedge. 5.6 Surface Area. Here ( ) ++4and istherectangle[5] [4],sobyFormulatheareaofthesurfaceis () [ ( )] +[ ( )] () 6(5)() 5 6. ( ) 5and isthedisk + 9,sobyFormula () () +(5) + () ( ) 9. ( ) 6 whichintersectsthe -planeintheline+ 6,so isthetriangularregiongivenby ( ). Thus () () +() () ( ) ++ with,. ThusbyFormula, () +() +(4) (+6 ) 4 (6 ) , (9 ) 4 4 () +[(9 ) ] sin + 9 sin 4 sin 6. ( ) 4 and istheprojectionoftheparaboloid 4 ontothe -plane,thatis, ( ) + 4. So, () () +() + (4 +) 4( + ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

44 554 CHAPTER 5 MULTIPLE INTEGRALS 7. ( ) with + 4. Then () (+4 ) ( ) ( + )and {( ) }. Then, and () +( ) + ++ (++) (+) (+) 4 5 ( ) 4 5 (5 7 +) 9. ( ) with +,so, () (+)5 5 (+)5 + ( +). Giventhesphere + + 4,when,weget + so ( ) + and ( ) 4. Thus () [()(4 ) ] +[()(4 ) ] (4 ) +4 4 (+4) 4., ( ), ( ), () + + cos + cos cos cos cos sin sin ( ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

45 SECTION 5.6 SURFACE AREA 555. Tofindtheregion : + implies + 4 or. Thus or aretheplaneswherethe surfacesintersect. But implies + +( ) 4,so intersectstheupperhemisphere. Thus ( ) 4 or + 4. Therefore istheregioninsidethecircle + +( ) 4,that is, ( ) +. () [()(4 ) ] +[()(4 ) ] (+4) 4. ( ),,. Then () + 4 ( ) +( ) + Converting to polar coordinates we have (4 ) ( + ) ( + ) +. () usingacalculator. 4. ( ) cos( + ), sin( + ), sin( + ). () + 4 sin ( + )+4 sin ( + )+ Converting to polar coordinates gives + 4( + )sin ( + )+. () 4 sin ( )+ 4 sin ( )+ 4 sin ( )+ 47 usingacalculator. 5. (a) Themidpointsofthefoursquaresare 4 4, 4 4, 4 4,and 4 4. Here ( ) +,sothemidpointrule gives () [( )] +[ ( )] + () +() (b) ACASestimatestheintegraltobe () This agrees with the Midpoint estimate only in the first decimal place () +() c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

46 556 CHAPTER 5 MULTIPLE INTEGRALS 6. (a) With wehavefoursquareswithmidpoints,,,and. Since + +,the Midpoint Rule gives () (+) +(+) (b) Using a CAS, we have () +( +) +(+) aboutofthemidpointruleestimate ,so () + UsingaCAS,wehave 4 or ln ( ) +++ +,. Weusea CAS to calculate the integral () + + (+) andfindthat () +sinh or () +ln ( +) +(+) Thisiswithin +4+(+8) ln ln ( ) +,. WeuseaCAS(withprecisionreducedtofivesignificantdigits,tospeed up the calculation) to estimate the integral () ,andfindthat ().. Let ( ) + +. Then +, + (+ ) + (+ ). WeuseaCAS toestimate ( ) In ordertographonlythepartofthesurfaceabovethesquare,weuse ( ) asthe -rangeinourplotcommand. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

47 SECTION 5.7 TRIPLE INTEGRALS 557. Here ( ) + +, ( ), ( ), so () ().. Let betheupperhemisphere. Then ( ),so () [( ) ] +[( ) ] lim + lim lim lim ()(). Thusthesurfaceareaoftheentiresphereis4.. Ifweprojectthesurfaceontothe -plane,thenthesurfacelies above thedisk + 5inthe -plane. Wehave ( ) + and,adaptingformula,theareaofthesurfaceis () + 5 [ ( )] +[ ( )] + Convertingtopolarcoordinates cos, sin wehave () (4 +) (4 +) 6 4. Firstwefindtheareaofthefaceofthesurfacethatintersectsthepositive -axis. AsinExercise,wecanprojecttheface ontothe -plane,sothesurfacelies above thedisk +. Then ( ) andtheareais () [( )] +[ ( )] [bythesymmetryofthesurface] This integral is improper (when ), so () lim 4 lim 4 lim 4 Since the complete surface consists of four congruent faces, the total surface area is 4(4) 6. lim Triple Integrals c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

48 558 CHAPTER 5 MULTIPLE INTEGRALS. There are six different possible orders of integration. (+ ) (+ ) (+ ) (+ ) (+ ) (+ ) (+ ) + (+9) (+ ) + (+9) +9 (6+8) +8 (+ ) (+ ) (+ ) (6 +8) +8 (+ ) ( ) ( ) ( ) ln ln (+) + ln ( ) + (ln ln) ln + + ln( +) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

49 SECTION 5.7 TRIPLE INTEGRALS cos(+ + ) sin(++ ) [sin(+) sin(+)] cos(+)+cos(+) cos +cos+ cos cos 6 sin+ sin sin 6 sin cos ( cos ) 9.. sin ( sin ) cos ( ) + ( ) [integrate by parts] 4 4 tan () tan () 4 4 (4 ) Here {( ) },so sin sin cos tan [cos( )+] sin( ) cos( )+ [integrate by parts] +. Here {( ) ++},so sin sin (++) + + ( ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

50 56 CHAPTER 5 MULTIPLE INTEGRALS 4. isthesolidabovetheregionshowninthe -planeandbelowtheplane +. Thus, + (+) ( + ) + ( ) Here {( ) },so ( ) ( ) ( ) ( ) ( ) 6. Here {( ) },so ( ) ( + ) Theprojectionof onthe -planeisthedisk +. Usingpolar coordinates cos and sin,weget (4 +4 ) 8 ( 4 ) 8 ( 5 ) 8() (9 ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

51 SECTION 5.7 TRIPLE INTEGRALS Theplane+ + 4intersectsthe -planewhen ,so {( ), 4, 4 }and (4 ) 4 4 4(4 ) (4 ) (4 ) ( 8+8) Theparaboloidsintersectwhen ,thustheintersectionisthecircle + 4, 4. Theprojectionof ontothe -planeisthedisk + 4,so ( ) Let ( ) + 4. Thenusingpolarcoordinates cos and sin,wehave 8 + (8 ) (8 ) 4 4 (6 8) 6 (8 ). Theplane + intersectsthe -planeintheline,so ( ),, and ( ) Here ( ) 4 + 4,so sin 4 (4 +) 4 4 using trigonometric substitution or FormulaintheTableofIntegrals sin () sin () [continued] c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

52 56 CHAPTER 5 MULTIPLE INTEGRALS Alternatively, use polar coordinates to evaluate the double integral: 4 (5 ) 4 (5 sin ) 5 sin 8 sin + 8 cos. (a) Thewedgecanbedescribedastheregion ( ) +,, ( ),, Sotheintegralexpressingthevolumeofthewedgeis. (b) ACASgives. 4 (OruseFormulasand87fromtheTableofIntegrals.) 4. (a) Divide into8cubesofsize 8. With ( ) + +,themidpointrulegives (b) UsingaCASwehave + + estimateinpart(a)byabout.5%. 8[()+()+()+()+() ()+()+()] Thisdiffersfromthe 5. Here ( ) cos()and 8,sotheMidpointRulegives ( ) cos +cos +cos +cos 9 +cos +cos 9 +cos 9 7 +cos c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

53 SECTION 5.7 TRIPLE INTEGRALS Here ( ) and,sothemidpointrulegives ( ) {( ),, }, the solid bounded by the three coordinate planes and the planes,. 8. ( ) 4 thesolidboundedbythethreecoordinateplanes,theplane, andthecylindricalsurface If,, aretheprojectionsof onthe -, -,and -planes,then ( ), 4 ( ) 4, 4 4 ( ) 4, 4 4 ( ), 4 4 ( ) +4 4 [continued] c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

54 564 CHAPTER 5 MULTIPLE INTEGRALS Therefore Then ( ), 4, 4 4 ( ) 4, 4 4, 4 4 ( ), 4 4, ( ) 4, 4 4, ( ), 4 4, 4 4 ( ), , 4 4 ( ) ( ) ( ) ( ) ( ) ( ) ( ). If,, aretheprojectionsof onthe -, -,and -planes,then {( ), } ( ) + 9 {( ), } c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

55 SECTION 5.7 TRIPLE INTEGRALS 565 Therefore ( ),, 9 9 ( ), 9 9, ( ), 9 9, ( ),, 9 9 and ( ) 9 ( ) 9 9 ( ) 9 9 ( ) ( ) ( ) ( ). If,,and aretheprojectionsof onthe -, -,and -planes,then ( ) 4 ( ) 4 ( ) 4, ( ) 4,and ( ) ( ) 4 4 [continued] c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

56 566 CHAPTER 5 MULTIPLE INTEGRALS Therefore ( ), 4, ( ) 4,, ( ) 4,, ( ), 4, ( ),, 4 ( ), 4 4, 4 Then ( ) 4 ( ) 4 ( ) 4 ( ) 4 4 ( ) 4 4 ( ) 4 ( ). If,,and aretheprojectionsof onthe -, -,and -planes,then {( ), } {( ), }, ( ), {( ), },and ( ), {( ), } Therefore ( ),, (+ ) ( ),, (+ ) ( ),, + {( ),, + } ( ),, + {( ),, + } c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

57 SECTION 5.7 TRIPLE INTEGRALS 567 Then ( ) (+) ( ) (+) ( ) + ( ) ( ) + ( ) ( ) + +. The diagrams show the projections of onthe -, -,and -planes. Therefore ( ) ( ) () ( ) ( ) ( ) ( ) 4. Theprojectionsof ontothe -and -planesareasinthe firsttwodiagramsandso ( ) ( ) ( ) ( ) Nowthesurface intersectstheplane inacurvewhoseprojectioninthe -planeis ( ) or. Sowemustsplituptheprojectionof onthe -planeintotworegionsasinthethirddiagram. For( ) in, andfor( )in,,andsothegivenintegralisalsoequalto ( ) + ( ) ( ) + ( ) 5. ( ) ( ) where {( ),, }. [continued] c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

58 568 CHAPTER 5 MULTIPLE INTEGRALS If,,and aretheprojectionsof onthe -, -and -planesthen {( ), } {( ), }, {( ), } {( ), },and {( ), } {( ), }. Thuswealsohave {( ),, } {( ),, } {( ),, } {( ),, } {( ),, }. Then ( ) ( ) ( ) ( ) ( ) ( ) 6. ( ) ( ) where {( ),, }. Noticethat isboundedbelowbytwodifferentsurfaces,sowemustsplittheprojectionof ontothe -planeintotwo regionsasintheseconddiagram. If,,and aretheprojectionsof onthe -, -and -planesthen Thuswealsohave {( ), } {( ), } {( ), } {( ), }, {( ), } {( ), },and {( ), } {( ), }. {( ),, } {( ),, } {( ),, } {( ),, } {( ),, } {( ),, } {( ),, }. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

59 SECTION 5.7 TRIPLE INTEGRALS 569 Then ( ) ( ) + ( ) ( ) + ( ) ( ) ( ) ( ) 7. Theregion isthesolidboundedbyacircularcylinderofradiuswithaxisthe -axisfor. Wecanwrite (4+5 ) 4 + 5,but ( ) 5 isanoddfunctionwith respectto. Since issymmetricalaboutthe -plane,wehave 5. Thus (4+5 ) 4 4 () 4 () (4) Wecanwrite ( +sin +) + sin +. But isanoddfunctionwithrespect to andtheregion issymmetricaboutthe -plane,so. Similarly, sin isanodd functionwithrespectto and issymmetricaboutthe -plane,so sin. Thus ( +sin +) 4 () () ( ) ++ ( ) (++) ( ) ( ) + + ( ) (++) (++) (++) ( ) Thusthemassis 79 andthecenterofmassis( ) ( ) 4 ( 4 ) 6, 5 4 ( ) ( ) [continued] c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

60 57 CHAPTER 5 MULTIPLE INTEGRALS 4 4( ) 4( ) ( ) ( 5 ) [theintegrandisodd] 4 (4 4 ) ( ) ( ) Thus,( ) ( + + ) ( + ) ( + ) bysymmetryof and ( ) Hence( ) ( ) ( ) 6 ( ) ( ) 4 ( ) ( ) 6 4 ( )4 4 ( )4 ( ) ( ) 5 ( )5 6 ( ) ( ) + ( )4 4 Hence( ) ( )5 ( + ) Bysymmetry, 5. ( ) ( + ) ( + ) + + ( + ) Bysymmetry, ( + )and ( + ) ( )4 ( )4 + 4 ( ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

61 45. ( + ) ( ) + ( + ) ( + ) + ( ) () ( + )( ) + ( + ) + ( + ) + ( ) + 4 () (a) (b) ( )where + SECTION 5.7 TRIPLE INTEGRALS 57 +, +,and +. (c) ( + ) + ( + ) 48. (a) (b) ( )where (c) 49. (a) , + +, + + ( + )(++ + ) (b) ( ) (c) (+++ ) + 4 (+++ ) (+++ ) (+++ ) ( + )(+++ ) (a) 9 ( + ) 56 5 c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

62 57 CHAPTER 5 MULTIPLE INTEGRALS (b) ( ) where 9 ( + ) 75, 9 ( + ) , 9 ( + ) (c) 9 ( + ), (a) ( )isajointdensityfunction,soweknow R ( ). Herewehave R ( ) Thenwemusthave8 8. (b) ( ) 8 ( ) ( ) (c) ( + + ) (( ) )where isthesolidregioninthefirstoctantboundedbythecoordinateplanes andtheplane ++. Theplane ++ meetsthe -planeintheline +,sowehave ( + + ) ( ) ( ) [( + )+( ) + ] ( + ) +( ) ( ) (a) ( )isajointdensityfunction,soweknow R ( ). Herewehave R ( ) ( ) 5 lim 5 lim lim lim 5 lim Sowemusthave. 5 lim (5++) lim ( 5 ) lim 5( ) lim ( ) ()( ) (5)( ) ()( ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

63 SECTION 5.7 TRIPLE INTEGRALS 57 (b) Wehavenorestrictionon,so ( ) ( ) (5++) (c) ( ) lim [by part(a)] ( 5 )(5 5 )() ( 5 )( ) 7 ( ) 5 5. () ave 54. () 5 5 ( 5 )( )( ) ( ) ( ) ( ) Then ave ( + ) 4 4 (5++). + ) ( ( ) ( + ) ( ) ( ) () (a) Thetripleintegralwillattainitsmaximumwhentheintegrand ispositiveintheregion andnegative everywhereelse. Forif containssomeregion wheretheintegrandisnegative,theintegralcouldbeincreasedby excluding from,andif failstocontainsomepart oftheregionwheretheintegrandispositive,theintegralcould beincreasedbyincluding in. Sowerequirethat + +. Thisdescribestheregionboundedbythe ellipsoid + +. (b) Themaximumvalueof ( ) occurswhen isthesolidregionboundedbytheellipsoid + +. Theprojectionof onthe -planeistheplanarregionboundedbytheellipse +,so ( ) ( ) ( ) ( ) ( ) and usingacas. ( ( ) ( ) ) ( ) ( ) ( ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

64 574 CHAPTER 5 MULTIPLE INTEGRALS DISCOVERY PROJECT Volumes of Hyperspheres Inthisprojectweuse todenotethe -dimensionalvolumeofan -dimensionalhypersphere.. Theinteriorofthecircleisthesetofpoints ( ),. So, substituting sin andthenusingformula64toevaluatetheintegral,weget sin (cos ) cos + sin 4. The region of integration is ( ). Substituting sin andusingformula64tointegratecos,weget sin cos 4 ( ) cos 4. Herewesubstitute sin and,later, sin. Because cos seemstooccurfrequentlyin thesecalculations,itisusefultofindageneralformulaforthatintegral. FromExercises49and5inSection7., wehave sin 5 ( ) 4 6 and andfromthesymmetryofthesineandcosinefunctions,wecanconcludethat cos cos + sin sin + 5 ( ) 4 6 sin (+) (+) () () Thus 4 ( ) cos ( ) 4 ( ) cos 4 4 cos c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

65 4. Byusingthesubstitutions Problem,wecanwrite SECTION 5.8 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES 575 +cos andthenapplyingformulasandfrom cos cos cos cos ( ) ( ( ) ( ) ) ) ( ( ) even odd Bycancelingwithineachsetofbrackets,wefindthat 4 6 () 4 6! 5 7 ()() 5 7 ( )! ()! even odd 5.8 Triple Integrals in Cylindrical Coordinates. (a) FromEquations, cos 4cos 4, sin 4sin 4,,sothepointis inrectangularcoordinates. (b) cos, sin, and,sothepointis( )inrectangularcoordinates.. (a) cos 4 sin 4,,and, sothepointis()inrectangularcoordinates. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

66 576 CHAPTER 5 MULTIPLE INTEGRALS (b) cos cos, sin sin,and, sothepointis(cossin)inrectangularcoordinates.. (a) FromEquationswehave () + so ;tan andthepoint()isinthesecond quadrantofthe -plane,so 4 +;. Thus,onesetofcylindricalcoordinatesis 4. (b) () +( ) 6so 4;tan andthepoint isinthesecondquadrantofthe -plane,so +;. Thus,onesetofcylindricalcoordinatesis (a) + 6so 4;tan andthepoint isinthefirstquadrantofthe -plane,so 6 +;. Thus,onesetofcylindricalcoordinatesis 4 6. (b) 4 +() 5so 5;tan 4 andthepoint(4 )isinthefourthquadrantofthe -plane, so tan ;. Thus,onesetofcylindricalcoordinates is 5tan 4 + (5564). 5. Since 4 but and mayvary,thesurfaceisaverticalhalf-planeincludingthe -axisandintersectingthe -planeinthe half-line,. 6. Since 5, + 5andthesurfaceisacircularcylinderwithradius5andaxisthe -axis ( + )or4,sothesurfaceisacircularparaboloidwithvertex(4),axisthe -axis,and opening downward. 8. Since + and +,wehave( + )+ or + +,anellipsoidcenteredatthe originwithintercepts ±, ±, ±. 9. (a) Substituting + and cos,theequation + + becomes cos + or +cos. (b) Substituting cos and sin, theequation becomes (cos ) (sin ) (cos sin )or cos.. (a) Substituting cos and sin,theequation+ + 6becomescos +sin + 6or 6 (cos +sin ). (b) Theequation + canbewrittenas ( + )+ whichbecomes + or + in cylindrical coordinates. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

67 SECTION 5.8 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES 577. and describeasolidcircularcylinderwith radius,axisthe -axis,andheight,but restricts thesolidtothefirstandfourthquadrantsofthe -plane,sowehave a half-cylinder.. + isaconethatopensupward. Thus istheregionabovethis coneandbeneaththehorizontalplane. restrictsthesolidtothatpartof this region in the first octant.. Wecanpositionthecylindricalshellverticallysothatitsaxiscoincideswiththe -axisanditsbaseliesinthe -plane. Ifwe usecentimetersastheunitofmeasurement,thencylindricalcoordinatesconvenientlydescribetheshellas6 7,,. 4. Incylindricalcoordinates,theequationsare and 5. The curveofintersectionis 5 or 5. Sowegraphthesurfaces incylindricalcoordinates,with 5. InMaple,wecanusethe coordscylindrical option in a regular plotd command. In Mathematica, we can use RevolutionPlotD or ParametricPlotD. 5. The region of integration is given in cylindrical coordinates by ( ),,. This representsthesolidregionabovequadrantsiandivofthe -planeenclosed bythecircularcylinder,boundedabovebythecircularparaboloid ( + ),andboundedbelowbythe -plane( ). (4 ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

68 578 CHAPTER 5 MULTIPLE INTEGRALS 6. The region of integration is given in cylindrical coordinates by {( ),, }. Thisrepresentsthe solidregionenclosedbythecircularcylinder,boundedabovebythe cone,andboundedbelowbythe -plane Incylindricalcoordinates, isgivenby{( ) 4 5 4}. So () 64 5 (9) Theparaboloid + intersectstheplane 4inthecircle + 4or 4,soin cylindricalcoordinates, isgivenby ( ) 4. Thus 4 () Theparaboloid 4 4 intersectsthe -planeinthecircle + 4or 4,soin cylindricalcoordinates, isgivenby ( ) 4. Thus (++ ) 4 (cos + sin + ) (cos +sin ) + 4 (4 4 )(cos +sin )+ (4 ) (cos +sin ) (4 ) 64 5 (cos +sin ) (sin cos ) ( )+ 64 ( ) Incylindricalcoordinates isboundedbytheplanes, cos + sin +5andthecylinders and,so isgivenby{( ) cos + sin +5}. Thus cos +sin +5 (cos ) ( cos )(cos + sin +5) 4 4 (cos +cos sin )+ 5 cos ( cos )[ ] (cos +cos sin )+ 5 (7 8)cos 65 4 cos +sin +5 ( (cos +cos sin )+5 cos ) (+cos)+cos sin + 95 cos sin sin + 95 sin 65 4 c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

69 SECTION 5.8 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES 579. Incylindricalcoordinates, isboundedbythecylinder,theplane,andthecone. So {( ) }and cos cos 4 cos 5 5 cos 5 cos 5 (+cos) 5 + sin 5. Incylindricalcoordinates isthesolidregionwithinthecylinder boundedaboveandbelowbythesphere + 4, so ( ) 4 4. Thusthevolumeis (4 ) 4 (8 ) 4. Incylindricalcoordinates, isboundedbelowbythecone andabovebythesphere + or. The coneandthesphereintersectwhen,so ( ) andthevolumeis [] ( ) (+ ) 4 4. Incylindricalcoordinates, isboundedbelowbytheparaboloid andabovebythesphere + or. Theparaboloidandthesphereintersectwhen + 4 ( +)( ),so ( ) andthevolumeis [] ( ) 4 4 ( + 4 ) (a) Theparaboloidsintersectwhen ,sotheregionofintegration is ( ) + 9. Then, in cylindrical coordinates, ( ) 6,, and c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

70 58 CHAPTER 5 MULTIPLE INTEGRALS (b) Forconstantdensity, 6 frompart(a). Sincetheregionishomogeneousandsymmetric, and 6 () 6 ( ) ((6 ) 4 ) () (4) 4 Thus( ) 4 6 (5). 6. (a) cos (b) cos cos cos ( ) ( cos ) ( sin ) ( sin ) sin ( cos ) 4 cos + cos ( 4) ToplotthecylinderandthesphereonthesamescreeninMaple,wecanusethesequenceofcommands sphere:plotd(,theta..*pi,phi..pi,coordsspherical): cylinder:plotd(cos(theta),theta-pi/..pi/,z-..,coordscylindrical): with(plots): displayd({sphere,cylinder}); In Mathematica, we can use spheresphericalplotd[,{phi,,pi},{theta,,pi}] cylinderparametricplotd[{(cos[theta])ˆ,cos[theta]*sin[theta],z}, Show[sphere,cylinder] {theta,-pi/,pi/},{z,-,}] 7. Theparaboloid 4 +4 intersectstheplane when 4 +4 or + 4. So,incylindrical coordinates, ( ) 4. Thus 4 4 ( 4 ) 6 8 c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

71 SECTION 5.8 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES 58 Sincetheregionishomogeneousandsymmetric, and Hence( ) Sincedensityisproportionaltothedistancefromthe -axis,wecansay ( ) +. Then 8 ( ) sin () Theregionofintegrationistheregionabovethecone +,or,andbelowtheplane. Also,wehave with 4 4 whichdescribesacircleofradiusinthe -planecenteredat(). Thus, (cos ) (cos ) 4 4 cos [sin ] (cos ) (cos ) Theregionofintegrationistheregionabovetheplane andbelowtheparaboloid 9. Also,wehave with 9 whichdescribestheupperhalfofacircleofradiusinthe -planecenteredat(). Thus, (a) Themountaincomprisesasolidconicalregion. Theworkdoneinliftingasmallvolumeofmaterial withdensity ()toaheight ()abovesealevelis ()(). Summingoverthewholemountainweget ()(). (b) Here isasolidrightcircularconewithradius 6,ft,height,4ft, anddensity () lbft atallpoints in. Weusecylindricalcoordinates: 4 () () (6,) (,4) 9 ft-lb + 4 c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

72 58 CHAPTER 5 MULTIPLE INTEGRALS DISCOVERY PROJECT The Intersection of Three Cylinders. Thethreecylindersintheillustrationinthetextcanbe visualizedasrepresentingthesurfaces +, +,and +. Thenwesketchthesolid of intersection with the coordinate axes and equations indicated. Tobemoreprecise,westartbyfindingthe boundingcurvesofthesolid(showninthefirstgraph below)enclosedbythetwocylinders + and + : ± ± arethesymmetric equations,andthesecanbeexpressedparametricallyas, ± ±,. Nowthecylinder + intersectsthesecurvesattheeightpoints ± ± ±. The resulting solid has twelve curved faces boundedby edges whicharearcsofcircles,asshowninthethirddiagram. Eachcylinderdefinesfourofthetwelvefaces.. To find the volume, we split the solid into sixteen congruent pieces,oneofwhichliesinthepartofthefirstoctantwith 4. (Naturally,weusecylindricalcoordinates!) This piece is described by ( ) 4,, andso,substituting cos,thevolumeoftheentire solid is cos c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

73 DISCOVERY PROJECT THE INTERSECTION OF THREE CYLINDERS 58. Tographtheedgesofthesolid,weuseparametrized curvessimilartothosefoundinproblemforthe intersection of two cylinders. We must restrict the parameter intervals so that each arc extends exactly to the desired vertex. One possible set of parametric equations(with all sign choices allowed) is, ±, ±, ; ±, ±,, ; ±,, ±,. 4. Letthethreecylindersbe +, +,and +. If,thenthefourfacesdefinedbythecylinder + inproblemcollapseintoasingleface,asinthefirst graph. If,theneachpairofverticallyopposedfaces,definedbyoneoftheothertwocylinders,collapseintoa singleface,asinthesecondgraph. If,thentheverticalcylinderenclosesthesolidofintersectionoftheothertwo cylinderscompletely,sothesolidofintersectioncoincideswiththesolidofintersectionofthetwocylinders + and +,asillustratedinproblem. Ifweweretovary or insteadof,wewouldgetsolidswiththesameshape,butdifferentlyoriented. 95,, 5. If,thesolidlookssimilartothefirstgraphinProblem4. AsinProblem,wesplitthesolidintosixteencongruent pieces,oneofwhichcanbedescribedasthesolidabovethepolarregion ( ), 4 inthe -plane andbelowthesurface cos. Thus,thetotalvolumeis 6 4 cos. If and,wehaveasolidsimilarto the second graph in Problem 4. Its intersection withthe -planeisgraphedattheright. Againwe split the solid into sixteen congruent pieces, one of whichisthesolidabovetheregionshowninthe secondfigureandbelowthesurface cos. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

74 584 CHAPTER 5 MULTIPLE INTEGRALS Wesplittheregionofintegrationwheretheoutsideboundarychangesfromtheverticalline tothecircle + or. isarighttriangle,socos. Thus,theboundarybetween and is cos in polarcoordinates,or inrectangularcoordinates. Usingrectangularcoordinatesfortheregion andpolar coordinatesfor,wefindthetotalvolumeofthesolidtobe cos () cos If,thecylinder + completelyenclosestheintersectionoftheothertwocylinders,sothesolidof intersectionofthethreecylinderscoincideswiththeintersectionof + and + asillustratedin Exercise Itsvolumeis Triple Integrals in Spherical Coordinates. (a) FromEquations, sin cos 6sin 6 cos 6, sin sin 6sin 6 sin 6,and cos 6cos 6,sothepointis 6 rectangular coordinates. in (b) sin cos 4, sin sin,and 4 cos 4,sothepointis in rectangular coordinates.. (a) sin cos, sin sin, cos sothepointis()inrectangularcoordinates. (b) 4sin cos 4 4sin sin 4 4 6, 4 6, 4cos 4 sothepointis 6 6 inrectangular coordinates. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

75 SECTION 5.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES 585. (a) FromEquationsand, + + +() +,cos,and cos sin sin() [since ]. Thussphericalcoordinatesare. (b) ++,cos 4,and cos sin are 4. 4 sin(4) 4 [since ]. Thussphericalcoordinates 4. (a) ,cos. Thussphericalcoordinatesare. 6,andcos 6 sin sin(6) (b) ++ 4,cos 4 6 [since ]. Thussphericalcoordinatesare,andcos 6 sin sin(6) 5. Since,thesurfaceisthetophalfoftherightcircularconewithvertexattheoriginandaxisthepositive -axis. 6. Since, + + 9andthesurfaceisaspherewithcentertheoriginandradius. 7. sin sin sin sin ( ) + 4. Therefore,thesurfaceisasphereofradius centeredat. 8. sin sin +cos 9 (sin sin ) +(cos ) Thusthesurfaceisacircular cylinderofradiuswithaxisthe -axis. 9. (a) sin cos, sin sin,and cos,sotheequation + becomes (cos ) (sin cos ) +(sin sin ) or cos sin. If 6,thisbecomescos sin. ( corresponds to the origin which is included in the surface.) There are many equivalent equations in spherical coordinates, suchastan,cos,cos,oreven,. 4 4 (b) + 9 (sin cos ) +(cos ) 9 sin cos + cos 9or sin cos +cos 9.. (a) + + ( + + ) (sin cos ) or sin cos. (b) ++ sin cos +sin sin +cos or (sin cos +sin sin +cos ). c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

76 586 CHAPTER 5 MULTIPLE INTEGRALS. 4representsthesolidregionbetweenandincludingthespheresof radiiand4,centeredattheorigin. restrictsthesolidtothat portiononorabovethecone,and furtherrestrictsthe solidtothatportiononortotherightofthe -plane.. representsthesolidregionbetweenandincludingthespheresof radiiand,centeredattheorigin. restrictsthesolidtothat portiononorabovethe -plane,and furtherrestrictsthesolid tothatportiononorbehindthe -plane.. representsthesolidsphereofradiuscenteredattheorigin. 4 restrictsthesolidtothatportiononorbelowthecone representsthesolidsphereofradiuscenteredattheorigin. Notice that + (sin cos ) +(sin sin ) sin. Then csc sin sin +,so csc restricts the solid to that portion on or inside the circular cylinder becausethesolidliesabovethecone. Squaringbothsidesofthisinequalitygives cos cos. Theconeopensupwardsothattheinequalityis cos,orequivalently 4. Insphericalcoordinatesthesphere + + is cos cos. cos becausethesolidliesbelowthesphere. Thesolidcanthereforebedescribedastheregionin sphericalcoordinatessatisfying cos, 4. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

77 SECTION 5.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES (a) Thehollowballisasphericalshellwithouterradius5cmandinnerradius4.5cm. Ifwecentertheballattheoriginof the coordinate system and use centimeters as the unit of measurement, then spherical coordinates conveniently describe the hollowballas45 5,,. (b) Ifwepositiontheballasinpart(a),onepossibilityistotakethehalfoftheballthatisabovethe -planewhichis describedby45 5,,. 7. The region of integration is given in spherical coordinates by {( ) 6}. Thisrepresentsthesolid regioninthefirstoctantboundedabovebythesphere andbelowbythecone 6. 6 sin 6 sin cos 6 8. The region of integration is given in spherical coordinates by (9) 9 4 {( ) }. Thisrepresentsthesolid regionbetweenthespheres and andbelowthe -plane. 9. Thesolid ismostconvenientlydescribedifweusecylindrical coordinates: ( ). Then ( ) (cos sin ).. Thesolid is most convenientlydescribedifwe usespherical coordinates: ( ). Then sin sin cos () 7 ( ) (sin cos sin sin cos ) sin. 4. Insphericalcoordinates, isrepresentedby{( ) 5 }. Thus ( + + ) 5 ( ) sin sin 5 cos,5 7 4, ()() 78, c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

78 588 CHAPTER 5 MULTIPLE INTEGRALS. Insphericalcoordinates, isrepresentedby ( ) (9 ). Thus 9 ( sin cos + sin sin ) sin (9 sin ) sin 5 5 sin sin 8sin 4 5 sin 8sin 4 ( 5 cos )sin 8cos cos cos Insphericalcoordinates, isrepresentedby{( ) }and + sin cos + sin sin sin cos +sin sin. Thus ( + ) ( sin ) sin sin 4 ( cos ) sin 5 cos + 5 cos () (4 ) 5 + () Insphericalcoordinates, isrepresentedby{( ) }. Thus (sin sin ) sin sin sin 4 ( cos ) sin ( cos) cos + cos + sin 5 (4) Insphericalcoordinates, isrepresentedby ( ) + +. Thus (sin cos ) sin sin cos ( cos) cos integratebypartswith, sin [sin ] 4 ( ) (sin cos )(sin sin )(cos ) sin sin cos sin cos sin4 sin c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

79 SECTION 5.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES Thesolidregionisgivenby ( ) 6 anditsvolumeis 6 [cos ] 6 [] 8. Ifwecentertheballattheorigin,thentheballisgivenby sin sin 6 + () {( ) }andthedistancefromanypoint( )intheballtothe center()is + +. Thustheaveragedistanceis () 4 sin 4 sin cos ()() (a) Since 4cos implies 4cos,theequationisthatofasphereofradiuswithcenterat(). Thus 4cos sin 4cos 6 cos (b) Bythesymmetryoftheproblem. Then Hence( ) (). sin 64 cos sin 4cos cos sin cos sin 64cos cos6. Insphericalcoordinates,thesphere + + 4isequivalentto andthecone + isrepresented by. Thus,thesolidisgivenby 4 ( ) 4 and 4 sin sin 4 cos 4 () 8 8. (a) Bythesymmetryoftheregion, and. Assumingconstantdensity, 8 (fromexample4). Then 4 cos (cos ) sin 4 sin cos 4 sin cos cos 4 4 cos 5 sin Thusthecentroidis( ) 6 cos6 4 4 () cos c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

80 59 CHAPTER 5 MULTIPLE INTEGRALS (b) AsinExercise, + sin and ( + ) 4 cos ( sin ) sin 4 sin 4 sin cos () 6 6 cos6 + 8 cos cos 5 cos 5 cos sin (a) Placingthecenterofthebaseat(), ( ) + + isthedensityfunction. So sin sin cos 4 4 ()() (b) Bythesymmetryoftheproblem. Then 4 sin cos sin cos sin 5 () Hence( ) 5. (c) ( sin )( sin ) sin cos + cos 6 () (a) Thedensityfunctionis ( ),aconstant,andbythesymmetryoftheproblem. Then sin cos 4 sin cos 8 4. Butthemassis (volumeof thehemisphere),sothecentroidis 8. (b) Placethecenterofthebaseat();thedensityfunctionis ( ). Bysymmetry,themomentsofinertiaabout anytwosuchdiameterswillbeequal,sowejustneedtofind : 5 5 ( sin ) (sin sin +cos ) (sin sin +sin cos ) 5 5 sin cos + cos + cos 5 5 sin sin ( )+ ( ) Placethecenterofthebaseat(),thenthedensityis ( ), aconstant. Then (cos ) sin cos sin cos By the symmetry of the problem, and 4 cos sin 5 5 cos sin 5 5 cos 5 5. Hence( ) 8 5. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

81 SECTION 5.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES Inspherical coordinates + becomes cos sin or 4. Then 4 sin 4 sin 4 Hence( ) sin cos cos , 4 andbysymmetry Placethecenterofthesphereat(),letthediameterofintersectionbealongthe -axis,oneoftheplanesbethe -plane andtheotherbetheplanewhoseanglewiththe -planeis. Theninsphericalcoordinatesthevolumeisgivenby 6 6 sin 6 sin () Incylindricalcoordinatestheparaboloidisgivenby andtheplaneby sin andtheyintersectinthecircle sin. Then sin sin 5 [usingacas] (a) Theregionenclosedbythetorusis{( ),, sin },soitsvolumeis sin sin sin4 sin+ sin (b) InMaple,wecanplotthetorususingthecommand plotd(sin(phi),theta..*pi, phi..pi,coordsspherical);. In Mathematica, use SphericalPlotD[Sin[phi], {phi,,pi},{theta,,pi}]. 9. Theregion ofintegrationistheregionabovethecone + andbelowthesphere + + inthefirst octant. Because isinthefirstoctantwehave. Theconehasequation 4 (asinexample4),so 4, and. Sotheintegralbecomes 4 (sin cos )(sin sin ) sin 4 sin sin cos 4 cos cos cos sin sin Theregionofintegrationisthesolidsphere + +,so,,and. Also + + ( + + ) cos,sotheintegralbecomes cos sin sin cos 5 sin Theregionofintegrationisthesolidsphere + +( ) 4orequivalently sin +(cos ) 4cos cos,so,,and c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

82 59 CHAPTER 5 MULTIPLE INTEGRALS 4cos. Also( + + ) ( ),sotheintegralbecomes 4cos sin sin 6 4cos 6 6 (496) cos 6 sin () 496 sin 496cos 6 7 cos7 4. Thesolidregionbetweenthegroundandanaltitudeof5km(5m)isgivenby ( ) Thenthemassoftheatmosphereinthis region is (699 97) sin 67 6 sin [cos ] ()() (675 6 ) (67 6 ) kg (675 6 ) 4 (67 6 ) 4 4. Incylindricalcoordinates,theequationofthecylinderis,. Thehemisphereistheupperpartofthesphereradius,center(),equation +( ),. InMaple,wecanusethecoordscylindricaloption in a regular plotd command. In Mathematica, we can use ParametricPlotD. 44. We begin by finding the positions of Los Angeles and Montréal in spherical coordinates, using the method described in the exercise: Montréal 96mi Los Angeles 96mi NowwechangetheabovetoCartesiancoordinatesusing cos sin, sin sin and cos togettwo positionvectorsoflength96mi(sincebothcitiesmustlieonthesurfaceoftheearth). Inparticular: Montréal:h i LosAngeles:h i To find the angle between these twovectors we use the dot product: h i h i (96) cos cos 86 6rad. Thegreatcircledistancebetweenthecitiesis 96(6) 464mi. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

83 SECTION 5.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES If isthesolidenclosedbythesurface + sin6 sin5,itcanbedescribedinsphericalcoordinatesas 5 ( ) + 5 sin6sin5. Itsvolumeisgivenby () +(sin6sin5)5 sin 6 99 [usingacas]. 46. The given integral is equal to lim sin lim sin. Nowuse integrationbypartswith, toget lim () lim (Notethat as byl Hospital srule.) 47. (a) Fromthediagram, cot to, to sin (oruse cot ). Thus sin cot sin cot sin ( ) cot sin sin cot lim cos +sin cos ( cos ) (b) Thewedgeinquestionistheshadedarearotatedfrom to. Letting volumeoftheregionboundedbythesphereofradius andtheconewithangle ( to ) andletting bethevolumeofthewedge,wehave ( ) ( ) ( ) ( cos ) ( cos ) ( cos )+ ( cos ) ( ) ( cos ) ( cos ) ( ) (cos cos ) Or: Showthat sin cot sin cot. (c) BytheMeanValueTheoremwith () thereexistssome with suchthat ( ) ( ) ( )( )or. Similarlythereexists with suchthat cos cos sin. Substitutingintotheresultfrom(b)gives ( )( )(sin ) sin. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

84 594 CHAPTER 5 MULTIPLE INTEGRALS APPLIED PROJECT Roller Derby. + (+ ),so Theverticalcomponentofthespeedis sin,so sin + + sin.. Solvingtheseparabledifferentialequation,weget + sin But when,so andwehave + (+ ) sin sin. (sin )+. + (sin ). Solvingfor when gives + 4. Assumethatthelengthofeachcylinderis. Thenthedensityofthesolidcylinderis moment of inertia(using cylindrical coordinates) is andso. ( + ),andfromformulas5.7.6,its 4 4 Forthehollowcylinder,weconsideritsentiremasstolieadistance fromtheaxisofrotation,so + isa constant. Weexpressthedensityintermsofmassperunitareaas,andthenthemomentofinertiaiscalculatedasa doubleintegral: ( + ),so. 5. Thevolumeofsuchaballis 4 ( ) 4 ( ),andsoitsdensityis 4 ( ). UsingFormula5.9.,weget ( + ) 4 ( ) 4 ( ) 4 ( ) ( sin )( sin ) (+sin )cos 5 5 [from the Table of Integrals] 4 ( ) ( 5 ) 5 ( ) ( 5 ) 5( ) Therefore ( 5 ). Since representstheinnerradius, correspondstoasolidball,and correspondsto 5( ) a hollow ball. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

85 SECTION 5. CHANGE OF VARIABLES IN MULTIPLE INTEGRALS Forasolidball,,so ( 5 ) lim 5( ). Forahollowball,,so 5 ( 5 ) lim 5( ) 5 lim [by l Hospital s Rule] Note: Wecouldinsteadhavecalculated ( )( ) lim 5 5( )(++ ) 5. Thustheobjectsfinishinthefollowingorder: solidball 5,solidcylinder,hollowball,hollow cylinder( ). 5. Change of Variables in Multiple Integrals. 5, +. ( ) TheJacobianis ( ) 5 5() ()() 6..,. ( ) ( ). sin, cos. ( ) ( ) sin cos cos sin sin cos sin cos or cos 4. +,. ( ) ( ) ,,. ( ) ( ) , +, +. ( ) ( ) + ( )+(4 ) +8 c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

86 596 CHAPTER 5 MULTIPLE INTEGRALS 7. Thetransformationmapstheboundaryof totheboundaryoftheimage,sowefirstlookatside inthe -plane. is describedby,,so + and. Eliminating,wehave, 6. is thelinesegment,,so 6+and. Then 6+( ) 5, 6. isthelinesegment,,so +6and,giving + +, 6. Finally, 4 isthesegment,,so and, 6. Theimageof set istheregion showninthe -plane,aparallelogramboundedbythesefoursegments. 8. isthelinesegment,,so and (+ ). Since,theimageistheline segment,. isthesegment,,so and (+ ) +. Thustheimageis theportionoftheparabola + for. isthesegment,,so and. Theimage isthesegment,. 4 isdescribedby,,so and (+ ). The imageisthelinesegment,. Thus,theimageof istheregion boundedbytheparabola +,the -axis,andthelines,. 9. isthelinesegment,,so and. Since,theimageistheportionofthe parabola,. isthesegment,,thus and,so. Theimageis thelinesegment,. isthesegment,,so and. The imageisthesegment,. Thus,theimageof istheregion inthefirstquadrantboundedbytheparabola,the -axis,andtheline. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

87 SECTION 5. CHANGE OF VARIABLES IN MULTIPLE INTEGRALS 597. Substituting, into + gives +,sotheimageof + isthe ellipticalregion +.. isaparallelogramenclosedbytheparallellines, +andtheparallellines,. The firstpairofequationscanbewrittenas,. Ifwelet thentheselinesaremappedtothe verticallines, inthe -plane. Similarly,thesecondpairofequationscanbewrittenas +, +, andsetting + mapstheselinestothehorizontallines, inthe -plane. Boundarycurvesaremappedto boundarycurvesunderatransformation,soheretheequations, +defineatransformation that maps inthe -planetothesquare enclosedbythelines,,, inthe -plane. Tofindthe transformation thatmaps to wesolve, +for, : Subtractingthefirstequationfromthesecond gives ( )andaddingtwicethesecondequationtothefirstgives + (+). Thusonepossibletransformation (therearemany)isgivenby ( ), (+).. Theboundariesoftheparallelogram arethelines 4 or4, or4, or +, +5or +. Setting 4 and +definesatransformation thatmaps inthe -planetothesquare enclosedbythelines,,, inthe -plane. Solving 4, + for and gives 5 ( ), + (+). Thusonepossible 5 transformation isgivenby ( ), (+). 5 c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

88 598 CHAPTER 5 MULTIPLE INTEGRALS. isaportionofanannularregion(seethefigure)thatiseasilydescribedinpolarcoordinatesas ( ). Ifweconvertedadoubleintegralover topolarcoordinatestheresultingregion ofintegrationisarectangle(inthe -plane),sowecancreateatransformation herebyletting playtheroleof and the roleof. Thus isdefinedby cos, sin and mapstherectangle ( ) inthe -planeto inthe -plane. 4. Theboundariesoftheregion arethecurves or, 4or 4, or, 4or 4. Setting and definesatransformation thatmaps inthe -planetothesquare enclosedby thelines, 4,, 4inthe -plane. Solving, for and gives [since,,, areallpositive],. Thusonepossibletransformation isgivenby,. 5. ( ) ( ) and (+) (+) 5. Tofindtheregion inthe -planethat correspondsto wefirstfindthecorrespondingboundaryunderthegiventransformation. Thelinethrough()and()is whichistheimageof + (+) ;thelinethrough()and()is + whichisthe imageof(+)+(+) + ;thelinethrough()and()is whichistheimageof + (+). Thus isthetriangle, inthe -planeand ( ) ( 5) ( ) 5 6 ( ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

89 6. SECTION 5. CHANGE OF VARIABLES IN MULTIPLE INTEGRALS 599 ( ) ( ) , (+)+8 ( ) 5. isaparallelogramboundedbythe lines 4, 4,+,+ 8. Since and +, istheimageoftherectangle enclosedbythelines 4, 4,,and 8. Thus ( ) ( ) ( ) ( ) (4+8) ( 5) (96 4) , 4 andtheplanarellipse9 +4 6istheimageofthedisk +. Thus + (4 )(6) sin (4 cos ) 4 cos 4 4 4() 4 6 4, + + andtheplanarellipse + istheimageofthedisk +. Thus ( ) ( ) ( + ) + ( + 4 ) 8 4,, istheimageoftheparabola, istheimageoftheparabola,andthehyperbolas, aretheimagesofthelines and respectively. Thus. Here ( ), so ( ) ln ln ln 4ln ln. and isthe imageofthesquarewithvertices(),(),(),and(). So 4. (a) ( ) ( ) andsince,, thesolidenclosedbytheellipsoidistheimageofthe ball + +. So ()(volumeoftheball) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

90 6 CHAPTER 5 MULTIPLE INTEGRALS (b) Ifweapproximatethesurfaceoftheearthbytheellipsoid ,thenwecanestimate thevolumeoftheearthbyfindingthevolumeofthesolid enclosedbytheellipsoid. Frompart(a),thisis 4 (678)(678)(656) 8 km. (c) Themomentofintertiaaboutthe -axisis + ( ),where isthesolidenclosedby + +. Asinpart(a),weusethetransformation,,,so ( ) ( ) and ( + )() ( sin cos + sin sin ) sin ( sin cos ) sin + ( sin sin ) sin sin cos 4 + sin sin 4 cos cos + sin cos cos sin () () istheregionenclosedbythecurves,, 4,and 4,soifwelet and 4 then istheimageoftherectangleenclosedbythelines, ( )and, ( ). Now () ( ) and ( 5 5 ) 5 5, so ( ) ( ) Thustheareaof,andtheworkdoneby the engine, is 5 5 () 5 ln 5()(ln ln ) 5()ln.. Letting and,wehave ( )and ( ) ( ). Then 5 5 ( ) and istheimageoftherectangleenclosedbythelines, 4,,and 8. Thus Letting +and,wehave (+)and ( ) ( ). Then ( ) theimageoftherectangleenclosedbythelines,,,and. Thus ln ln8. (+) ( ) 6 4 (6 7) and is c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

91 CHAPTER 5 REVIEW 6 5. Letting, +,wehave (+), ( ) ( ). Then ( ) and isthe imageofthetrapezoidalregionwithvertices(),(),(),and(). Thus cos + cos sin sin() sin 6. Letting,,wehave9 +4 +,,and ( ). Then ( ) and istheimageofthe 6 quarter-disk givenby +,,. Thus sin(9 +4 ) 6 sin( + ) 6 sin( ) cos ( cos) 4 7. Let +and +. Then + (+)and ( ). ( ) ( ). Now + +,and + +. istheimageofthesquare regionwithvertices(),( ),( ),and(). So Let + and,then,, vertices(),()and(). Thus ( ) and istheimageunder ofthetriangularregionwith ( ) (+) () () () () asdesired. 5 Review. (a) AdoubleRiemannsumof is,where istheareaofeachsubrectangleand isa samplepointineachsubrectangle. If ( ),thissumrepresentsanapproximationtothevolumeofthesolidthatlies abovetherectangle andbelowthegraphof. (b) ( ) lim (c) If ( ), ( ) representsthevolumeofthesolidthatliesabovetherectangle andbelowthesurface ( ). If takesonbothpositiveandnegativevalues, ( ) isthedifferenceofthevolumeabove but belowthesurface ( )andthevolumebelow butabovethesurface ( ). (d) Weusuallyevaluate ( ) asaniteratedintegralaccordingtofubini stheorem(seetheorem5..4). c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

92 6 CHAPTER 5 MULTIPLE INTEGRALS (e) TheMidpointRuleforDoubleIntegralssaysthatweapproximatethedoubleintegral ( ) bythedouble Riemannsum wherethesamplepoints arethecentersofthesubrectangles. (f) ave ( ) where ()istheareaof. (). (a) See() and() and the accompanying discussion in Section 5.. (b) See() and the accompanying discussion in Section 5.. (c) See(5) and the preceding discussion in Section 5.. (d) See(6) () in Section 5... Wemaywanttochangefromrectangulartopolarcoordinatesinadoubleintegraliftheregion ofintegrationismoreeasily describedinpolarcoordinates. Toaccomplishthis,weuse ( ) (cos sin ) where is givenby,. 4. (a) ( ) (b) ( ), ( ) (c) Thecenterofmassis( )where and. (d) ( ), ( ), ( + )( ) 5. (a) ( ) (b) ( ) and R ( ). ( ) (c) Theexpectedvalueof is R ( ) ;theexpectedvalueof is R ( ). 6. () [ ( )] +[ ( )] + 7. (a) ( ) lim (b) Weusuallyevaluate ( ) asaniteratedintegralaccordingtofubini stheoremfortripleintegrals (see Theorem 5.7.4). (c) See the paragraph following Example (d) See(5) and(6) and the accompanying discussion in Section 5.7. (e) See() and the accompanying discussion in Section 5.7. (f) See()andtheprecedingdiscussioninSection5.7. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

93 CHAPTER 5 REVIEW 6 8. (a) ( ) (b) ( ), ( ), ( ). (c) Thecenterofmassis( )where,,and. (d) ( + )( ), ( + )( ), ( + )( ). 9. (a) See Formula and the accompanying discussion. (b) See Formula 5.9. and the accompanying discussion. (c) Wemaywanttochangefromrectangulartocylindricalorsphericalcoordinatesinatripleintegraliftheregion of integration is more easily described in cylindrical or spherical coordinates or if the triple integral is easier to evaluate using cylindrical or spherical coordinates.. (a) ( ) ( ) (b) See(9) and the accompanying discussion in Section 5.. (c) See() and the accompanying discussion in Section 5... This is true by Fubini s Theorem.. False. + describestheregionofintegrationasatypeiregion. Toreversetheorderofintegration,we mustconsidertheregionasatypeiiregion: +.. True by Equation sin Therefore the statement is true. sin (),since sin isanoddfunction. 5. True. ByEquation5..5wecanwrite () () () (). But () thisbecomes () () (). 6. Thisstatementistruebecauseinthegivenregion, + sin( ) (+)(),so 4 7. True: + sin( ) 4 () () 9. 4 thevolumeunderthesurface + + 4andabovethe -plane thevolumeofthesphere () 6 () so c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

94 64 CHAPTER 5 MULTIPLE INTEGRALS 8. True. Themomentofinertiaaboutthe -axisofasolid withconstantdensity is ( + )( ) ( ). 9. Thevolumeenclosedbythecone + andtheplane is,incylindricalcoordinates, 6,sotheassertionisfalse.. Asshowninthecontourmap,wedivide into9equallysizedsubsquares,eachwitharea. Thenweapproximate ( ) byariemannsumwith andthesamplepointstheupperrightcornersofeachsquare,so ( ) ( ) [()+()+()+()+() + ()+()+()+()] Using the contour lines to estimate the function values, we have ( ) [ ] 64. AsinExercise,wehave and. Usingthecontourmaptoestimatethevalueof atthecenterofeach. 4. subsquare, we have ( ) [(55)+(55)+(55)+(55)+(55) + (55)+(55)+(55)+(55)] [ ] 44 (+ ) + (+4 ) ( ) cos( ) cos( ) cos( ) sin( ) sin ( 4 ) integrate by parts inthefirstterm 7. sin (sin ) sin ( ) sin sin cos c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

95 CHAPTER 5 REVIEW ( ) Theregion ismoreeasilydescribedbypolarcoordinates: {( ) 4, }. Thus ( ) 4 (cos sin ).. Theregion isatypeiiregionthatcanbedescribedastheregionenclosedbythelines 4, 4+, andthe -axis. Sousingrectangularcoordinates,wecansay {( ) 4 4 4} and ( ) ( ).. Theregionwhoseareaisgivenby sin is ( ) sin,whichistheregioncontainedinthe loopinthefirstquadrantofthefour-leavedrose sin.. Thesolidis ( ) whichistheregioninthefirstoctantonorbetweenthetwo spheres and.. cos( ) cos( ) cos( ) cos( ) sin( ) sin 4. ( ) ( ) ((+) 4 ) ( ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

96 66 CHAPTER 5 MULTIPLE INTEGRALS ln(+ ) 4 ln tan ln(+ ) tan ln tan ln 4 ln (8 ) (8 ) ( ) (cos ) cos sin ( ) ( ) ( + ) (+) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

97 CHAPTER 5 REVIEW ( ) ( ) ( ) ( ) ( ) ( cos )( sin )( ) ( ) 4 sin ( 5 7 ) ( cos4) sin ( ) ( )( ) ( + ) sin cos + cos 64 5 (sin ) ( +4 ) ( cos )( sin ) cos sin 6 4 cos ( +84) (4 ) (+) ( ) (). sin ( sin ) 6 8 sin 6] + c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

98 68 CHAPTER 5 MULTIPLE INTEGRALS. Usingthewedgeabovetheplane andbelowtheplane andnotingthatwehavethesamevolumefor as for (souse ),wehave 9 ( 9 ) Theparaboloidandthehalf-coneintersectwhen + +,thatiswhen + or. So ( ) 4 () (a) ( ) 4 4 (b) ( ) ( ), ( 4 ). Hence( ) (c) ( 5 ), ( ) ( 4 ) 4, 4 + 8, 4,and (a) 4 where is constant, + cos cos,and sin [bysymmetry ]. Hencethecentroidis( ) 4 4. (b) 4 cos sin sin , 5 cos sin 8 sin , and 5 cos sin 4 sin Hence( ) (a) Theequationoftheconewiththesuggestedorientationis( ) +,. Then isthe volumeofonefrustumofacone;bysymmetry ;and + () + Hencethecentroidis( ) 4. (b) ()() ()() ( + ) ( 4 ) ( ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

99 CHAPTER 5 REVIEW Let ( ) + 4. ( ) +,so ( ) ( + ), ( ) ( + ),and + () () + 9. Let representthegiventriangle;then canbedescribedastheareaenclosedbythe -and -axesandtheline, orequivalently {( ), }. Wewanttofindthesurfaceareaofthepartofthegraphof + thatliesover,sousingequation5.6.wehave () + + +() +() ( ) UsingFormulaintheTableofIntegralswith,,and,wehave ln Ifwesubstitute +4 inthesecondintegral,then 8 and UsingFormula5.6.with sin, 4 6 (+4 ). Thus () +4 +ln (+4 ) 6+ln (6) ln + ln ln + + cos,weget sin + cos ( + ) 9 9 ( + ) 9 (cos )( ) cos 4 sin (4) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

100 6 CHAPTER 5 MULTIPLE INTEGRALS 4. Theregionofintegrationisthesolidhemisphere + + 4, sin (sin sin ) sin sin sin (+sin )cos Fromthegraph,itappearsthat at 7andat,with on(7). Sothedesiredintegralis 7 [( 7 ) ] Letthetetrahedronbecalled. Thefrontfaceof isgivenbytheplane + +,or, whichintersectsthe -planeintheline. Sothetotalmassis ( ) ( + + ) 7 5. Thecenterofmassis ( ) ( ) ( ) ( ) (a) ( )isajointdensityfunction,soweknowthat R ( ). Since ( ) outsidetherectangle [] [],wecansay R ( ) Then5 5. ( ) (+) + (+) + 5 (b) ( ) 5 ( ) ( ) (c) ( + ) (( ) )where isthetriangularregionshownin the figure. Thus ( + ) ( ) 5 (+) ( )+ ( ) ( ) 45 c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

101 CHAPTER 5 REVIEW Each lamp has exponential density function if () 8 8 if If,,and arethelifetimesoftheindividualbulbs,then,,and areindependent,sothejointdensityfunctionisthe product of the individual density functions: ( ) 8 (++)8 if,, otherwise Theprobabilitythatallthreebulbsfailwithinatotalofhoursis ( + + ),orequivalently (( ) )where isthesolidregioninthefirstoctantboundedbythecoordinateplanesandtheplane ++. Theplane ++ meetsthe -planeintheline +,sowehave ( + + ) ( ) (++)8 8 8 (++)8 8 [ 54 (+)8 ] (+)8 8 8 [ 54 (8 ) 8 8 ] 8 54 (8 ) (8) (8) ( ) ( ) 48. ( ) ( ) where ( ),,. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

102 6 CHAPTER 5 MULTIPLE INTEGRALS If,, and aretheprojections of onthe -, -, and -planes, then ( ), {( ) 8, }, {( ) 4, } ( ),, {( ) 8, 4}. Therefore we have ( ) ( ) Since and +, (+)and ( ). ( ) Thus ( ) and ( ) ( ) ( ) ( ) + ( ) ( ) 4 4 ln. 5. ( ) ( ) 8,so 8 4( ) 8( ) +4 ( ) 4 8 ( )4 + ( ) 4 4( ) ( )4 ( ) 4 ( ) 5 ( 5 )5 + ( ) Let and + so ( ) ( )and ( ) (+ ). ( ) ( ). istheimageunderthistransformationofthesquare withvertices( ) (),(),(),and(). So Thisresultcouldhavebeenanticipatedbysymmetry,sincetheintegrandisanoddfunctionof and issymmetricabout the -axis. 5. BytheExtremeValueTheorem(4.7.8), hasanabsoluteminimumvalue andanabsolutemaximumvalue in. Then byproperty5.., () ( ) (). Dividingthroughbythepositivenumber (),weget ( ). Thissaysthattheaveragevalueof over liesbetween and. But iscontinuous () on andtakesonthevalues and,andsobytheintermediatevaluetheoremmusttakeonallvaluesbetween and. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

103 Specifically,thereexistsapoint( )in suchthat ( ) () ( ) ( ) (). CHAPTER 5 REVIEW 6 ( ) orequivalently 5. Foreach suchthat lieswithinthedomain, ( ),andbythemeanvaluetheoremfordoubleintegralsthere exists( )in suchthat ( ) ( ). But lim ) ( ), +( so lim ( ) lim ( ) ( )bythecontinuityof (a) ( + ) ( ) ( ) if 6 ln() if (b) Theintegralinpart(a)hasalimitas + forallvaluesof suchthat. (c) ( + + ) ( ) sin sin 4 4 ( ) if 6 4ln() if (d) As +,theaboveintegralhasalimit,providedthat. c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

104

105 PROBLEMS PLUS. Let 5,where {( ) }. [+] 5 [+] 5 [+]],since [+] constant +for( ). Therefore [+] 5 (+)[( )] ( )+4( )+5( )+6( 4 )+7( 5 ) +4 +5() Let {( ), }. For,max if,. ave andmax if. Thereforewedivide intotworegions:,where {( ), }and {( ), }. Nowmax for ( ),andmax for( ) max{ } max{ } max{ } + () + cos( ) max{ } + cos( ) cos( ) [changingtheorderofintegration] cos( ) sin sin 4. Let a r, b r, c r,wherea h i,b h i,c h i. Underthischangeofvariables, correspondstotherectangularbox,,. So,byFormula5.., (a r)(b r)(c r) ( ) ( ). But ( ) ( ) a b c (a r)(b r)(c r) a b c a b c () 8 a b c c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. 65

106 66 CHAPTER 5 PROBLEMS PLUS 5. Since,exceptat(),theformulaforthesumofageometricseriesgives (),so 6. Let () + + () (+) and +. Weknowtheregionofintegrationinthe -plane,sotofinditsimageinthe -planeweget and intermsof and,andthenusethemethodsofsection5.. + similarly + +,so +,and. isgivenby,,sofromtheequationsderivedabove,theimageof is :,,,thatis,,.similarly,theimageof is :,,the imageof is :,,andtheimageof 4 is 4:,. ( ) TheJacobianofthetransformationis ( ). Fromthediagram, weseethatwemustevaluatetwointegrals: oneovertheregion ( ), and the other over ( ), +. So 4 + (+) ( ) + + arctan arctan arctan (+) ( ) + arctan + Nowlet sin,so cos andthelimitschangetoand 6 (inthefirstintegral)and 6 and (inthe c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

107 CHAPTER 5 PROBLEMS PLUS 67 second integral). Continuing: 6 4 sin sin arctan cos sin sin + 6 sin arctan cos sin 6 cos sin cos ( sin ) 4 arctan + arctan cos cos 6 cos cos 6 sin 4 arctan(tan ) + arctan cos But(following the hint) Continuing: sin cos 4 6 cos sin sin sin cos sin sin cos 6 arctan(tan ) tan 6 [half-angleformulas] arctan tan (a) Since exceptat(),theformulaforthesumofageometricseriesgives (),so () (+) () + + (b) Since,exceptat(),theformulaforthesumofageometricseriesgives + (),so + () () () (+) + () () + () + Toevaluatethissum,wefirstwriteoutafewterms: Noticethat BytheAlternatingSeriesEstimationTheoremfromSection.5,wehave 6 7. Thiserrorofwillnotaffecttheseconddecimalplace,sowehave 9. + c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

108 68 CHAPTER 5 PROBLEMS PLUS 8. arctan arctan arctan lim arctan + 9. (a) cos, sin,. Then + + cos + + +sin cos + sin + cos sin Similarly sin + cos and ln ln cos + sin and + + sin + cos sin cos cos sin. So cos + sin + cos cos sin + + sin + cos sin cos + + (b) sin cos, sin sin, cos. Then + + sin cos cos sin + sin cos + sin sin + cos,and + + sin sin + cos sin sin cos + sin cos cos + sin cos sin + sin cos + sin sin + cos Similarly cos cos + cos sin sin,and + sin c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

109 cos sin cos sin cos cos CHAPTER 5 PROBLEMS PLUS 69 sin cos sin + cos cos + cos sin And sin sin + sin cos,while Therefore + + sin sin cos sin sin cos sin cos sin + sin sin cot sin + sin cos sin cos sin sin (sin cos )+(cos cos )+sin + (sin sin )+(cos sin )+cos + cos +sin + sin cos +cos cos sin cos cos sin + sin sin +cos sin sin sin sin sin Butsin cos +cos cos sin cos cos (sin +cos ) cos andsimilarlythecoefficientof is.alsosin cos +cos cos +sin cos (sin +cos )+sin,andsimilarlythe coefficientof is. SoLaplace sequationinsphericalcoordinatesisasstated.. (a) Considerapolardivisionofthedisk,similartothatinFigure5.4.4,where,,andwherethepolarsubrectangle,aswellas,, and arethesameasinthat figure. Thus. Themassof is,anditsdistancefrom is ( ) +. Accordingto Newton slawofgravitation,theforceofattractionexperiencedby duetothispolarsubrectangleisinthedirection from towards andhasmagnitude. Thesymmetryofthelaminawithrespecttothe -and -axesandthe positionof aresuchthatallhorizontalcomponentsofthegravitationalforcecancel,sothatthetotalforceissimplyin the -direction. Thus,weneedonlybeconcernedwiththecomponentsofthisverticalforce;thatis, where istheanglebetweentheorigin, andthemass. Thussin andthepreviousresultbecomes sin, c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

110 6 CHAPTER 5 PROBLEMS PLUS. ThetotalattractiveforceisjusttheRiemannsum ( ) ( ) + which becomes ( + as and. Therefore, ) ( + ) (b) Thisisjusttheresultofpart(a)inthelimitas. Inthiscase. + +,andweareleftwith +. () (),where {( ),, }. Ifwelet betheprojectionof onthe -planethen {( ), }. Andweseefromthediagram that {( ),, }. So () () () ( ) () + () + () + () ( ) (). + + Riemannsumofthefunction ( ) canbeconsideredadouble ++ wherethesquareregion {( ), }is dividedintosubrectanglesbydividingtheinterval[]onthe -axisinto subintervals,eachofwidth,and[]onthe -axisisdividedinto subintervals,eachofwidth. Thentheareaofeachsubrectangleis,andifwetakethe upperrightcornersofthesubrectanglesassamplepoints,wehave( ). Finally,notethat as,so lim + + lim + + lim ( ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

111 ButbyDefinition5..5thisisequalto ( ),so lim + + ( ) (++) CHAPTER 5 PROBLEMS PLUS (+) (+) 4 ( +) 4 ( 4 +) Thevolumeis where isthesolidregiongiven. FromExercise5..(a),thetransformation,, mapstheunitball + + tothesolidellipsoid + + ( ) with ( ). Thesametransformationmapsthe plane ++ to + +. Thustheregion in -space correspondstotheregion in -spaceconsistingofthesmallerpieceofthe unitballcutoffbytheplane ++,a capofasphere (seethefigure). Wewillneedtocomputethevolumeof,butfirstconsiderthegeneralcase whereahorizontalplaneslicestheupperportionofasphereofradius toproduce acapofheight. Weusesphericalcoordinates. Fromthefigure,alinethroughthe originatangle fromthe -axisintersectstheplanewhencos ( ) ( )cos,andthelinepassesthroughtheouterrimofthecapwhen cos ( ) cos (( )). Thusthecap isdescribedby ( ) ( )cos cos (( )) anditsvolumeis cos (()) cos (()) cos (()) ()cos sin sin ()cos sin ( ) cos sin cos ( ) cos cos (()) ( ) + + ( ) ( ) ( )() ( ) c c Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, licated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpar to a publicly accessible in whole in part.

16.2 Line Integrals. location should be approximately 0 01 V(2 1) = 0 01 h4 3i = h i, so the particle should be approximately at the

16.2 Line Integrals. location should be approximately 0 01 V(2 1) = 0 01 h4 3i = h i, so the particle should be approximately at the SECTION 6. LINE INTEGRALS 35 9. ( ) = + ( ) =i +j. Thus, each vector ( ) has the same direction and twice the length of the position vector of the point ( ), so the vectors all point directly away from

More information

NOT FOR SALE 6 APPLICATIONS OF INTEGRATION. 6.1 Areas Between Curves. Cengage Learning. All Rights Reserved. ( ) = 4 ln 1 = 45.

NOT FOR SALE 6 APPLICATIONS OF INTEGRATION. 6.1 Areas Between Curves. Cengage Learning. All Rights Reserved. ( ) = 4 ln 1 = 45. 6 APPLICATIONS OF INTEGRATION 6. Areas Between Curves... 4. 8 ( ) 8 8 4 4 ln ( ln 8) 4 ln 45 4 ln 8 ( ) ( ) ( ) + + + + + ( ) ( 4) ( +6) + ( 8 + 7) 9 5. ( ) + ( +) ( + ) + 4 6. ( sin ) +cos 8 8 + 7. The

More information

( 4. AP Exam Practice Questions for Chapter 7. AP Exam Practice Questions for Chapter 7 1 = = x dx. 1 3x So, the answer is A.

( 4. AP Exam Practice Questions for Chapter 7. AP Exam Practice Questions for Chapter 7 1 = = x dx. 1 3x So, the answer is A. AP Eam Practice Questions for Chapter 7 AP Eam Practice Questions for Chapter 7. e e So, the answer is A. e e ( ) A e e d e e e e. 7 + + (, ) + (, ) (, ) 7 + + + 7 + 7 + ( ) ( ),, A d + + + + + + + d +

More information

2 +1 2(1) (2) (3) = ( +1)! 2! 1 3! 1 4! 1 5! 1 1 6! = 2 = 6 2 =3.

2 +1 2(1) (2) (3) = ( +1)! 2! 1 3! 1 4! 1 5! 1 1 6! = 2 = 6 2 =3. INFINITE SEQUENCES AND SERIES Sequences (a) A sequence is an ordered list of numbers It can also be defined as a function whose domain is the set of positive integers (b) The terms approach 8 as becomes

More information

NOT FOR SALE 5 INTEGRALS. 5.1 Areas and Distances. Cengage Learning. All Rights Reserved. =5. = 10 0 =2 5

NOT FOR SALE 5 INTEGRALS. 5.1 Areas and Distances. Cengage Learning. All Rights Reserved. =5. = 10 0 =2 5 5 INTEGRALS 5. Areas and Distances. (a) Since is decreasing, we can obtain a lower estimate by using right endpoints. We are instructed to use five rectangles, so =5. 5 = 5 ( ) = = = = 5 = ( ) +( ) +(

More information

2 cos sin 2 2. cos sin 2 cos 1 sin 2. .But = ( ),and = + = ( ) ( ) ( ) 2. [by the equality of mixed partials] = ± ( ) ( ).

2 cos sin 2 2. cos sin 2 cos 1 sin 2. .But = ( ),and = + = ( ) ( ) ( ) 2. [by the equality of mixed partials] = ± ( ) ( ). 36 CHAPTER 6 VECTOR CALCULUS ( ) ( ) ( ) ( ) 3 6 ( ) 4 ( 3. Thus, as in the example, ) and F r F r. We parametrize as r() cos sin,. Then (cos )(sin ) sin cos F r F r cos sin sin cos cos sin cos 3 cos sin

More information

y x arctan x arctan x x dx 2 ln by first expressing the integral as an iterated integral. f t dt dz dy 1 2 y x x t 2 f t dt F 2 Gm d 1 d 1 sr 2 d 2

y x arctan x arctan x x dx 2 ln by first expressing the integral as an iterated integral. f t dt dz dy 1 2 y x x t 2 f t dt F 2 Gm d 1 d 1 sr 2 d 2 CHALLENGE PROBLEMS CHALLENGE PROBLEMS: CHAPTER A Click here for answers. S Click here for solutions.. If denotes the greatest integer in, evaluate the integral where R, y 3, y 5.. Evaluate the integral

More information

Calculus 1 - Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus 1 - Lab ) lim. 2.

Calculus 1 - Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus 1 - Lab ) lim. 2. ) Solve the following inequalities.) ++.) 4 >.) Calculus - Lab { + > + 5 + < +. ) Graph the functions f() =, g() = + +, h() = cos( ), r() = +. ) Find the domain of the following functions.) f() = +.) f()

More information

CHAPTER 2 Limits and Their Properties

CHAPTER 2 Limits and Their Properties CHAPTER Limits and Their Properties Section. A Preview of Calculus...5 Section. Finding Limits Graphically and Numerically...5 Section. Section. Evaluating Limits Analytically...5 Continuity and One-Sided

More information

15.5. Applications of Double Integrals. Density and Mass. Density and Mass. Density and Mass. Density and Mass. Multiple Integrals

15.5. Applications of Double Integrals. Density and Mass. Density and Mass. Density and Mass. Density and Mass. Multiple Integrals 15 Multiple Integrals 15.5 Applications of Double Integrals Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. We were able to use single integrals to compute

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS

5.3 SOLVING TRIGONOMETRIC EQUATIONS 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information

Math 122 Fall Unit Test 1 Review Problems Set A

Math 122 Fall Unit Test 1 Review Problems Set A Math Fall 8 Unit Test Review Problems Set A We have chosen these problems because we think that they are representative of many of the mathematical concepts that we have studied. There is no guarantee

More information

Calculus-Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus-Lab ) lim. 2.7) lim. 2.

Calculus-Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus-Lab ) lim. 2.7) lim. 2. ) Solve the following inequalities.) ++.) 4 > 3.3) Calculus-Lab { + > + 5 + < 3 +. ) Graph the functions f() = 3, g() = + +, h() = 3 cos( ), r() = 3 +. 3) Find the domain of the following functions 3.)

More information

So, t = 1 is a point of inflection of s(). Use s () t to find the velocity at t = Because 0, use 144.

So, t = 1 is a point of inflection of s(). Use s () t to find the velocity at t = Because 0, use 144. AP Eam Practice Questions for Chapter AP Eam Practice Questions for Chapter f 4 + 6 7 9 f + 7 0 + 6 0 ( + )( ) 0,. The critical numbers of f( ) are and.. Evaluate each point. A: d d C: d d B: D: d d d

More information

1 Exam 1 Spring 2007.

1 Exam 1 Spring 2007. Exam Spring 2007.. An object is moving along a line. At each time t, its velocity v(t is given by v(t = t 2 2 t 3. Find the total distance traveled by the object from time t = to time t = 5. 2. Use the

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of Exercise A, Question The curve C, with equation y = x ln x, x > 0, has a stationary point P. Find, in terms of e, the coordinates of P. (7) y = x ln x, x > 0 Differentiate as a product: = x + x

More information

AP Exam Practice Questions for Chapter 3

AP Exam Practice Questions for Chapter 3 AP Eam Practice Questions for Chapter AP Eam Practice Questions for Chapter f + 6 7 9 f + 7 0 + 6 0 ( + )( ) 0,. The critical numbers of f are and. So, the answer is B.. Evaluate each statement. I: Because

More information

FUNCTIONS AND MODELS

FUNCTIONS AND MODELS 1 FUNCTIONS AND MODELS FUNCTIONS AND MODELS 1.6 Inverse Functions and Logarithms In this section, we will learn about: Inverse functions and logarithms. INVERSE FUNCTIONS The table gives data from an experiment

More information

INSTRUCTOR USE ONLY 3 DIFFERENTIATION RULES. 3.1 Derivatives of Polynomials and Exponential Functions. Cengage Learning. All Rights Reserved.

INSTRUCTOR USE ONLY 3 DIFFERENTIATION RULES. 3.1 Derivatives of Polynomials and Exponential Functions. Cengage Learning. All Rights Reserved. 3 DIFFERENTIATION RULES 3. Derivatives of Polynomials and Exponential Functions. (a) is the number such that lim. 0 (b) 000 0000 000 0000 7 0998 0993 09937 09933 000 0000 000 0000 8 09 096 030 097 From

More information

du u C sec( u) tan u du secu C e du e C a u a a Trigonometric Functions: Basic Integration du ln u u Helpful to Know:

du u C sec( u) tan u du secu C e du e C a u a a Trigonometric Functions: Basic Integration du ln u u Helpful to Know: Integration Techniques for AB Eam Solutions We have intentionally included more material than can be covered in most Student Study Sessions to account for groups that are able to answer the questions at

More information

MTH 252 Lab Supplement

MTH 252 Lab Supplement Fall 7 Pilot MTH 5 Lab Supplement Supplemental Material by Austina Fong Contents Antiderivatives... Trigonometric Substitution... Approimate Integrals Technology Lab (Optional)... 4 Error Bound Formulas...

More information

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14 14 Multiple Integration 14.1 Iterated Integrals and Area in the Plane Objectives Evaluate an iterated integral. Use an iterated integral to find the area of a plane region. Copyright Cengage Learning.

More information

AP Exam Practice Questions for Chapter 4

AP Exam Practice Questions for Chapter 4 AP Exam Practice Questions for Chapter AP Exam Practice Questions for Chapter f x = x +. f x = f x dx = x + dx. The equation of the line is ( ) ( ) ( ) ( ) Use f ( ) = to find C. ( ) ( ) C f( x) = x +

More information

cos t 2 sin 2t (vi) y = cosh t sinh t (vii) y sin x 2 = x sin y 2 (viii) xy = cot(xy) (ix) 1 + x = sin(xy 2 ) (v) g(t) =

cos t 2 sin 2t (vi) y = cosh t sinh t (vii) y sin x 2 = x sin y 2 (viii) xy = cot(xy) (ix) 1 + x = sin(xy 2 ) (v) g(t) = MATH1003 REVISION 1. Differentiate the following functions, simplifying your answers when appropriate: (i) f(x) = (x 3 2) tan x (ii) y = (3x 5 1) 6 (iii) y 2 = x 2 3 (iv) y = ln(ln(7 + x)) e 5x3 (v) g(t)

More information

c n (x a) n c 0 c 1 (x a) c 2 (x a) 2...

c n (x a) n c 0 c 1 (x a) c 2 (x a) 2... 3 CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS 6. REVIEW OF POWER SERIES REVIEW MATERIAL Infinite series of constants, p-series, harmonic series, alternating harmonic series, geometric series, tests

More information

AP Exam Practice Questions for Chapter 6

AP Exam Practice Questions for Chapter 6 AP Eam Practice Questions for Chapter 6 AP Eam Practice Questions for Chapter 6. To find which graph is a slope field for, 5 evaluate the derivative at selected points. At ( 0, ),.. 3., 0,. 5 At ( ) At

More information

AP Exam Practice Questions for Chapter 5

AP Exam Practice Questions for Chapter 5 AP Eam Practice Questions for Chapter 5 AP Eam Practice Questions for Chapter 5 d. To find which graph is a slope field for, 5 evaluate the derivative at selected points. d At ( 0, ),. d At (, 0 ),. 5

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 3 Differentiation Rules 3.1 The Derivative of Polynomial and Exponential Functions In this section we learn how to differentiate constant functions, power functions, polynomials, and exponential functions.

More information

37. f(t) sin 2t cos 2t 38. f(t) cos 2 t. 39. f(t) sin(4t 5) 40.

37. f(t) sin 2t cos 2t 38. f(t) cos 2 t. 39. f(t) sin(4t 5) 40. 28 CHAPTER 7 THE LAPLACE TRANSFORM EXERCISES 7 In Problems 8 use Definition 7 to find {f(t)} 2 3 4 5 6 7 8 9 f (t),, f (t) 4,, f (t) t,, f (t) 2t,, f (t) sin t,, f (t), cos t, t t t 2 t 2 t t t t t t t

More information

MATH 1242 FINAL EXAM Spring,

MATH 1242 FINAL EXAM Spring, MATH 242 FINAL EXAM Spring, 200 Part I (MULTIPLE CHOICE, NO CALCULATORS).. Find 2 4x3 dx. (a) 28 (b) 5 (c) 0 (d) 36 (e) 7 2. Find 2 cos t dt. (a) 2 sin t + C (b) 2 sin t + C (c) 2 cos t + C (d) 2 cos t

More information

MA 114 Worksheet #01: Integration by parts

MA 114 Worksheet #01: Integration by parts Fall 8 MA 4 Worksheet Thursday, 3 August 8 MA 4 Worksheet #: Integration by parts. For each of the following integrals, determine if it is best evaluated by integration by parts or by substitution. If

More information

Questions. x 2 e x dx. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the functions g(x) = x cost2 dt.

Questions. x 2 e x dx. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the functions g(x) = x cost2 dt. Questions. Evaluate the Riemann sum for f() =,, with four subintervals, taking the sample points to be right endpoints. Eplain, with the aid of a diagram, what the Riemann sum represents.. If f() = ln,

More information

CHAPTER 12 Turbomachinery

CHAPTER 12 Turbomachinery CAER urbomachinery Chapter / urbomachinery 800 / 0 8 8 rad /s, u r 8 8 0 0 m /s, u r 8 8 0 0 8 m /s, rbv, but V u since, n n 0 0 0 0 0 0 m / s V V 0 0 m /s, rb 0 0 0 Vn u 0 8 6 77 m /s, tan tan 0 n t V

More information

Questions. x 2 e x dx. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the functions g(x) = x cost2 dt.

Questions. x 2 e x dx. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the functions g(x) = x cost2 dt. Questions. Evaluate the Riemann sum for f() =,, with four subintervals, taking the sample points to be right endpoints. Eplain, with the aid of a diagram, what the Riemann sum represents.. If f() = ln,

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

does not exist. Examples: { }, {sin } 11, It appears that the sequence is approaching 1 2.

does not exist. Examples: { }, {sin } 11, It appears that the sequence is approaching 1 2. 8 INFINITE SEQUENCES AND SERIES 8. Sequences. (a) A sequence is an ordered list of numbers. It can also be dened as a function whose domain is the set of positive integers. (b) The terms approach 8 as

More information

A2 MATHEMATICS HOMEWORK C3

A2 MATHEMATICS HOMEWORK C3 Name Teacher A2 MATHEMATICS HOMEWORK C3 Mathematics Department September 2014 Version 1.1 Contents Contents... 2 Introduction... 3 HW1 Algebraic Fractions... 4 HW2 Mappings and Functions... 6 HW3 The Modulus

More information

Homework Problem Answers

Homework Problem Answers Homework Problem Answers Integration by Parts. (x + ln(x + x. 5x tan 9x 5 ln sec 9x 9 8 (. 55 π π + 6 ln 4. 9 ln 9 (ln 6 8 8 5. (6 + 56 0/ 6. 6 x sin x +6cos x. ( + x e x 8. 4/e 9. 5 x [sin(ln x cos(ln

More information

du u C sec( u) tan u du secu C e du e C a u a a Basic Integration Trigonometric Functions: du ln u u Helpful to Know: Inverse Trigonometric

du u C sec( u) tan u du secu C e du e C a u a a Basic Integration Trigonometric Functions: du ln u u Helpful to Know: Inverse Trigonometric Student Study Session Eam Solutions We have intentionally included more material than can e covered in most Student Study Sessions to account for groups that are ale to answer the questions at a faster

More information

Module 14 : Double Integrals, Applilcations to Areas and Volumes Change of variables

Module 14 : Double Integrals, Applilcations to Areas and Volumes Change of variables Module 14 : Double Integrals, Applilcations to Areas and Volumes Change of variables Lecture 41 : Triple integrals [Section 41.1] Objectives In this section you will learn the following : The concept of

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES The functions that we have met so far can be described by expressing one variable explicitly in terms of another variable. y For example,, or y = x sin x,

More information

Summer Review for Students Entering AP Calculus AB

Summer Review for Students Entering AP Calculus AB Summer Review for Students Entering AP Calculus AB Class: Date: AP Calculus AB Summer Packet Please show all work in the spaces provided The answers are provided at the end of the packet Algebraic Manipulation

More information

AP Calculus Summer Packet

AP Calculus Summer Packet AP Calculus Summer Packet Writing The Equation Of A Line Example: Find the equation of a line that passes through ( 1, 2) and (5, 7). ü Things to remember: Slope formula, point-slope form, slopeintercept

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.4 Basic Trigonometric Equations Copyright Cengage Learning. All rights reserved. Objectives Basic Trigonometric Equations Solving

More information

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2 Math 8, Exam, Study Guide Problem Solution. Use the trapezoid rule with n to estimate the arc-length of the curve y sin x between x and x π. Solution: The arclength is: L b a π π + ( ) dy + (cos x) + cos

More information

BEKG 2452 NUMERICAL METHODS Solution of Nonlinear Equations

BEKG 2452 NUMERICAL METHODS Solution of Nonlinear Equations BEKG 2452 NUMERICAL METHODS Solution of Nonlinear Equations Ser Lee Loh a, Wei Sen Loi a a Fakulti Kejuruteraan Elektrik Universiti Teknikal Malaysia Melaka Lesson Outcome Upon completion of this lesson,

More information

AP Calculus BC Summer Assignment Mrs. Comeau

AP Calculus BC Summer Assignment Mrs. Comeau AP Calculus BC Summer Assignment 2015-2016 Mrs. Comeau Please complete this assignment DUE: the first day of class, SEPTEMBER 2nd. Email me if you have questions, or need help over the summer. I would

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

CALCULUS Exercise Set 2 Integration

CALCULUS Exercise Set 2 Integration CALCULUS Exercise Set Integration 1 Basic Indefinite Integrals 1. R = C. R x n = xn+1 n+1 + C n 6= 1 3. R 1 =ln x + C x 4. R sin x= cos x + C 5. R cos x=sinx + C 6. cos x =tanx + C 7. sin x = cot x + C

More information

Calculus II Study Guide Fall 2015 Instructor: Barry McQuarrie Page 1 of 8

Calculus II Study Guide Fall 2015 Instructor: Barry McQuarrie Page 1 of 8 Calculus II Study Guide Fall 205 Instructor: Barry McQuarrie Page of 8 You should be expanding this study guide as you see fit with details and worked examples. With this extra layer of detail you will

More information

Further Pure Mathematics 3 GCE Further Mathematics GCE Pure Mathematics and Further Mathematics (Additional) A2 optional unit

Further Pure Mathematics 3 GCE Further Mathematics GCE Pure Mathematics and Further Mathematics (Additional) A2 optional unit Unit FP3 Further Pure Mathematics 3 GCE Further Mathematics GCE Pure Mathematics and Further Mathematics (Additional) A optional unit FP3.1 Unit description Further matrix algebra; vectors, hyperbolic

More information

Brief answers to assigned even numbered problems that were not to be turned in

Brief answers to assigned even numbered problems that were not to be turned in Brief answers to assigned even numbered problems that were not to be turned in Section 2.2 2. At point (x 0, x 2 0) on the curve the slope is 2x 0. The point-slope equation of the tangent line to the curve

More information

Calculus I Practice Final Exam B

Calculus I Practice Final Exam B Calculus I Practice Final Exam B This practice exam emphasizes conceptual connections and understanding to a greater degree than the exams that are usually administered in introductory single-variable

More information

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 4.5 and 5.1-5.5 * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems from the textbook

More information

Practice problems from old exams for math 132 William H. Meeks III

Practice problems from old exams for math 132 William H. Meeks III Practice problems from old exams for math 32 William H. Meeks III Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These practice tests are

More information

C3 Revision Questions. (using questions from January 2006, January 2007, January 2008 and January 2009)

C3 Revision Questions. (using questions from January 2006, January 2007, January 2008 and January 2009) C3 Revision Questions (using questions from January 2006, January 2007, January 2008 and January 2009) 1 2 1. f(x) = 1 3 x 2 + 3, x 2. 2 ( x 2) (a) 2 x x 1 Show that f(x) =, x 2. 2 ( x 2) (4) (b) Show

More information

(x/2) 2 +1 Add them together and throw in a constant c.

(x/2) 2 +1 Add them together and throw in a constant c. Calculus, 5/6, Solutions Solutions Chapter Solutions to Eercises... (a) 6 + + c (b) 5 + c (c) This integral can be evaluated using the substitution u +. Alternatively, we can first use polynomial division

More information

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved.

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved. 11.10 Taylor and Maclaurin Series Copyright Cengage Learning. All rights reserved. We start by supposing that f is any function that can be represented by a power series f(x)= c 0 +c 1 (x a)+c 2 (x a)

More information

Math 113 (Calculus 2) Exam 4

Math 113 (Calculus 2) Exam 4 Math 3 (Calculus ) Exam 4 November 0 November, 009 Sections 0, 3 7 Name Student ID Section Instructor In some cases a series may be seen to converge or diverge for more than one reason. For such problems

More information

SUBJECT: ADDITIONAL MATHEMATICS CURRICULUM OUTLINE LEVEL: 3 TOPIC OBJECTIVES ASSIGNMENTS / ASSESSMENT WEB-BASED RESOURCES. Online worksheet.

SUBJECT: ADDITIONAL MATHEMATICS CURRICULUM OUTLINE LEVEL: 3 TOPIC OBJECTIVES ASSIGNMENTS / ASSESSMENT WEB-BASED RESOURCES. Online worksheet. TERM 1 Simultaneous Online worksheet. Week 1 Equations in two Solve two simultaneous equations where unknowns at least one is a linear equation, by http://www.tutorvista.com/mat substitution. Understand

More information

1. (25 points) Consider the region bounded by the curves x 2 = y 3 and y = 1. (a) Sketch both curves and shade in the region. x 2 = y 3.

1. (25 points) Consider the region bounded by the curves x 2 = y 3 and y = 1. (a) Sketch both curves and shade in the region. x 2 = y 3. Test Solutions. (5 points) Consider the region bounded by the curves x = y 3 and y =. (a) Sketch both curves and shade in the region. x = y 3 y = (b) Find the area of the region above. Solution: Observing

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2)

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2) . f() = 4 cosec 4 +, where is in radians. (a) Show that there is a root α of f () = 0 in the interval [.,.3]. Show that the equation f() = 0 can be written in the form = + sin 4 Use the iterative formula

More information

MATH 101 Midterm Examination Spring 2009

MATH 101 Midterm Examination Spring 2009 MATH Midterm Eamination Spring 9 Date: May 5, 9 Time: 7 minutes Surname: (Please, print!) Given name(s): Signature: Instructions. This is a closed book eam: No books, no notes, no calculators are allowed!.

More information

Massey Hill Classical High School

Massey Hill Classical High School Massey Hill Classical High School AB Calculus AP Prerequisite Packet To: From: AP Calculus AB Students and Parents Carolyn Davis, AP Calculus Instructor The AP Course: AP Calculus AB is a college level

More information

Calculus I Practice Final Exam A

Calculus I Practice Final Exam A Calculus I Practice Final Exam A This practice exam emphasizes conceptual connections and understanding to a greater degree than the exams that are usually administered in introductory single-variable

More information

Lesson Objectives: we will learn:

Lesson Objectives: we will learn: Lesson Objectives: Setting the Stage: Lesson 66 Improper Integrals HL Math - Santowski we will learn: How to solve definite integrals where the interval is infinite and where the function has an infinite

More information

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane.

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane. Math 54 - Vector Calculus Notes 3. - 3. Double Integrals Consider f(x, y) = 8 x y. Let s estimate the volume under this surface over the rectangle R = [, 4] [, ] in the xy-plane. Here is a particular estimate:

More information

MATH1120 Calculus II Solution to Supplementary Exercises on Improper Integrals Alex Fok November 2, 2013

MATH1120 Calculus II Solution to Supplementary Exercises on Improper Integrals Alex Fok November 2, 2013 () Solution : MATH Calculus II Solution to Supplementary Eercises on Improper Integrals Ale Fok November, 3 b ( + )( + tan ) ( + )( + tan ) +tan b du u ln + tan b ( = ln + π ) (Let u = + tan. Then du =

More information

Full file at

Full file at ull file at https://fratstock.eu Unit 2 Problem Solutions Unit 2 Solutions 2.1 See LD p. 693 for solution. 2.2 (a) In both cases, if = 0, the transmission is 0, and if = 1, the transmission is 1. 2.2 (b)

More information

Trigonometric substitutions (8.3).

Trigonometric substitutions (8.3). Review for Eam 2. 5 or 6 problems. No multiple choice questions. No notes, no books, no calculators. Problems similar to homeworks. Eam covers: 7.4, 7.6, 7.7, 8-IT, 8., 8.2. Solving differential equations

More information

The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. sin

The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. sin Math : Practice Final Answer Key Name: The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. Problem : Consider the definite integral I = 5 sin ( ) d.

More information

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved.

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved. 3 Exponential and Logarithmic Functions Copyright Cengage Learning. All rights reserved. 3.2 Logarithmic Functions and Their Graphs Copyright Cengage Learning. All rights reserved. What You Should Learn

More information

Chapter 7: Techniques of Integration

Chapter 7: Techniques of Integration Chapter 7: Techniques of Integration MATH 206-01: Calculus II Department of Mathematics University of Louisville last corrected September 14, 2013 1 / 43 Chapter 7: Techniques of Integration 7.1. Integration

More information

Test one Review Cal 2

Test one Review Cal 2 Name: Class: Date: ID: A Test one Review Cal 2 Short Answer. Write the following expression as a logarithm of a single quantity. lnx 2ln x 2 ˆ 6 2. Write the following expression as a logarithm of a single

More information

Math 121: Calculus 1 - Fall 2012/2013 Review of Precalculus Concepts

Math 121: Calculus 1 - Fall 2012/2013 Review of Precalculus Concepts Introduction Math 11: Calculus 1 - Fall 01/01 Review of Precalculus Concepts Welcome to Math 11 - Calculus 1, Fall 01/01! This problems in this packet are designed to help you review the topics from Algebra

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.1 Trigonometric Identities Copyright Cengage Learning. All rights reserved. Objectives Simplifying Trigonometric Expressions Proving

More information

Advanced Mathematics Support Programme Edexcel Year 2 Core Pure Suggested Scheme of Work ( )

Advanced Mathematics Support Programme Edexcel Year 2 Core Pure Suggested Scheme of Work ( ) Edexcel Year 2 Core Pure Suggested Scheme of Work (2018-2019) This template shows how Integral Resources and AMSP FM videos can be used to support Further Mathematics students and teachers. This template

More information

1 Sets of real numbers

1 Sets of real numbers 1 Sets of real numbers Outline Sets of numbers, operations, functions Sets of natural, integer, rational and real numbers Operations with real numbers and their properties Representations of real numbers

More information

1) Find the equations of lines (in point-slope form) passing through (-1,4) having the given characteristics:

1) Find the equations of lines (in point-slope form) passing through (-1,4) having the given characteristics: AP Calculus AB Summer Worksheet Name 10 This worksheet is due at the beginning of class on the first day of school. It will be graded on accuracy. You must show all work to earn credit. You may work together

More information

Revision Checklist. Unit FP3: Further Pure Mathematics 3. Assessment information

Revision Checklist. Unit FP3: Further Pure Mathematics 3. Assessment information Revision Checklist Unit FP3: Further Pure Mathematics 3 Unit description Further matrix algebra; vectors, hyperbolic functions; differentiation; integration, further coordinate systems Assessment information

More information

Section 3.5 Geometric and Scientific Applications

Section 3.5 Geometric and Scientific Applications Section. Geometric and Scientific Applications 6 Section. Geometric and Scientific Applications.. I Prt I I 49.9 8700.08.Note: 8 monts. years Te interest is $49.9. I Prt 4 40 4 900r 4 r 900 0.06 r r Te

More information

f(r) = (r 1/2 r 1/2 ) 3 u = (ln t) ln t ln u = (ln t)(ln (ln t)) t(ln t) g (t) = t

f(r) = (r 1/2 r 1/2 ) 3 u = (ln t) ln t ln u = (ln t)(ln (ln t)) t(ln t) g (t) = t Math 4, Autumn 006 Final Exam Solutions Page of 9. [ points total] Calculate the derivatives of the following functions. You need not simplfy your answers. (a) [4 points] y = 5x 7 sin(3x) + e + ln x. y

More information

DEPARTMENT OF MATHEMATICS

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS A2 level Mathematics Core 3 course workbook 2015-2016 Name: Welcome to Core 3 (C3) Mathematics. We hope that you will use this workbook to give you an organised set of notes for

More information

Integration Techniques for the BC exam

Integration Techniques for the BC exam Integration Techniques for the B eam For the B eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation

More information

11.5. The Chain Rule. Introduction. Prerequisites. Learning Outcomes

11.5. The Chain Rule. Introduction. Prerequisites. Learning Outcomes The Chain Rule 11.5 Introduction In this Section we will see how to obtain the derivative of a composite function (often referred to as a function of a function ). To do this we use the chain rule. This

More information

Exam Review 2 nd Semester 6-1 Operations on Functions

Exam Review 2 nd Semester 6-1 Operations on Functions NAME DATE PERIOD Exam Review 2 nd Semester 6-1 Operations on Functions Find (f + g)(x), (f g)(x), (f g)(x), and (x) for each f(x) and g(x). 1. f(x) = 8x 3; g(x) = 4x + 5 2. f(x) = + x 6; g(x) = x 2 If

More information

*n23494b0220* C3 past-paper questions on trigonometry. 1. (a) Given that sin 2 θ + cos 2 θ 1, show that 1 + tan 2 θ sec 2 θ. (2)

*n23494b0220* C3 past-paper questions on trigonometry. 1. (a) Given that sin 2 θ + cos 2 θ 1, show that 1 + tan 2 θ sec 2 θ. (2) C3 past-paper questions on trigonometry physicsandmathstutor.com June 005 1. (a) Given that sin θ + cos θ 1, show that 1 + tan θ sec θ. (b) Solve, for 0 θ < 360, the equation tan θ + secθ = 1, giving your

More information

AP CALCULUS. DUE THE FIRST DAY OF SCHOOL! This work will count as part of your first quarter grade.

AP CALCULUS. DUE THE FIRST DAY OF SCHOOL! This work will count as part of your first quarter grade. Celina High School Math Department Summer Review Packet AP CALCULUS DUE THE FIRST DAY OF SCHOOL! This work will count as part of your first quarter grade. The problems in this packet are designed to help

More information

Announcements. Topics: Homework: - sections 2.2, 2.3, 4.1, and 4.2 * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections 2.2, 2.3, 4.1, and 4.2 * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 2.2, 2.3, 4.1, and 4.2 * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems from the

More information

Section 3.5: Implicit Differentiation

Section 3.5: Implicit Differentiation Section 3.5: Implicit Differentiation In the previous sections, we considered the problem of finding the slopes of the tangent line to a given function y = f(x). The idea of a tangent line however is not

More information

Integration Techniques for the BC exam

Integration Techniques for the BC exam Integration Techniques for the B eam For the B eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation

More information

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y. 90 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Test Form A Chapter 5 Name Class Date Section. Find the derivative: f ln. 6. Differentiate: y. ln y y y y. Find dy d if ey y. y

More information

TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved.

TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved. 12 TRIGONOMETRIC FUNCTIONS Copyright Cengage Learning. All rights reserved. 12.2 The Trigonometric Functions Copyright Cengage Learning. All rights reserved. The Trigonometric Functions and Their Graphs

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson JUST THE MATHS UNIT NUMBER.5 DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) by A.J.Hobson.5. Maclaurin s series.5. Standard series.5.3 Taylor s series.5.4 Exercises.5.5 Answers to exercises

More information

Math 121: Calculus 1 - Winter 2012/2013 Review of Precalculus Concepts

Math 121: Calculus 1 - Winter 2012/2013 Review of Precalculus Concepts Introduction Math 11: Calculus 1 - Winter 01/01 Review of Precalculus Concepts Welcome to Math 11 - Calculus 1, Winter 01/01! This problems in this packet are designed to help you review the topics from

More information

Vectors, dot product, and cross product

Vectors, dot product, and cross product MTH 201 Multivariable calculus and differential equations Practice problems Vectors, dot product, and cross product 1. Find the component form and length of vector P Q with the following initial point

More information