Numerical method for solving system of Fredhlom integral equations using Chebyshev cardinal functions

Size: px
Start display at page:

Download "Numerical method for solving system of Fredhlom integral equations using Chebyshev cardinal functions"

Transcription

1 ) 1-13 Avilble olie t Volume 2014, Yer 2014 Article ID cte-00165, 13 Pges doi: /2014/cte Reserch Article umericl method for solvig system of Fredhlom itegrl equtios usig Chebyshev crdil fuctios Zhr Msouri 1, Seed Htmzdeh-Vrmzyr 2, Esmil Bboli 3 1) Deprtmet of Mthemtics, Khorrmbd Brch, Islmic Azd Uiversity IAU), Khorrmbd, Ir 2) Deprtmet of Electricl Egieerig, Islmshhr Brch, Islmic Azd Uiversity IAU), Tehr, Ir 3) Deprtmet of Mthemtics, Khrzmi Uiversity, Tehr, Ir Copyright 2014 c Zhr Msouri, Seed Htmzdeh-Vrmzyr d Esmil Bboli. This is ope ccess rticle distributed uder the Cretive Commos Attributio Licese, which permits urestricted use, distributio, d reproductio i y medium, provided the origil work is properly cited. Abstrct The focus of this pper is o the umericl solutio of lier systems of Fredhlom itegrl equtios of the secod kid. For this purpose, the Chebyshev crdil fuctios with Guss-Lobtto poits re used. By combitio of properties of these fuctios d the effective Cleshw-Curtis qudrture rule, pplicble umericl method for solvig the metioed systems is formulted. Some error bouds for the method re computed d its covergece rte is estimted. The method is umericlly evluted by solvig some test problems cught from the literture by which the ccurcy d computtiol efficiecy of the method will be demostrted. Keywords: Chebyshev crdil fuctios; Fredholm itegrl equtios system; umericl solutio; Cleshw-Curtis qudrture rule; Error lysis. 1 Itroductio I recet yers, the crdil fuctios hve bee fidig importt role i umericl lysis. Especilly, vluble efforts hve bee spet, by reserchers, o itroducig ovel ides for umericl solutio of vrious fuctiol equtios by usig the superior properties of these fuctios. A umericl techique is preseted i [1] for solutio of prbolic prtil differetil equtio which is derived by expdig the required pproximte solutio s the elemets of the Chebyshev crdil fuctios. [2] presets two umericl techiques for solvig Riccti differetil equtio. These methods use the cubic B-splie sclig fuctios d Chebyshev crdil fuctios. The Chebyshev crdil fuctios re lso used i [3] for solutio of fourth-order itegro-differetil equtios which re reduced to set of lgebric equtios usig the opertiol mtrix of derivtive. A review o pproximte crdil precoditioig methods for solvig prtil differetil equtios by usig rdil bsis fuctios hs bee performed i [4], i which, the uthors hve umericlly compred the relted precoditioers o some umericl exmples of Poisso s, modified Helmholtz, d Helmholtz equtios. [5] uses crdil bses for implemettio of some pseudospectrl methods, the specil cses of differetil d itegro-differetil equtios re solved by these bses. I [6], the crdil iterpoltio of fuctios o the rel lie by splies is determied by certi formul free of solvig lrge or ifiite systems. The uthors obti iterpoltio projectio of the fuctio which symptoticlly mitis the Correspodig uthor. Emil ddress: msouri@yhoo.com

2 Pge 2 of 13 optiml ccurcy of the bsic crdil iterpoltio o the rel lie. A pproch to idetify multivrible Hmmerstei systems is preseted i [7]. By usig crdil cubic splie fuctios to model the sttic olierities d with pproprite trsformtio, the olier models re prmeterized such tht the olier idetifictio problem is coverted ito lier oe. [8] proposes pseudospectrl method for geertig optiml trjectories of lier d olier costried dymic systems. The method cosists of represetig the solutio of the optiml cotrol problem by usig crdil fuctios. Further iformtio regrdig the crdil fuctios my be foud i [9 12]. A gret del of iterest hs bee focused o the solutio of lier Fredhlom itegrl equtios systems. [13] proposes the Adomi decompositio method for solvig such systems. I [14], umericl solutio of system of lier Fredholm itegrl equtios by mes of the Sic-colloctio method is cosidered d the system is replced by explicit system of lier lgebric equtios. Two other umericl techiques bsed o usig rtiolized Hr fuctios d block-pulse fuctios BPFs) re respectively preseted i [15] d [16]. A direct method to compute umericl solutios of the lier Volterr d Fredholm itegrl equtios system is proposed i [17], where by usig vector forms of trigulr fuctios TFs), solvig of itegrl equtios system reduces to solve system of lgebric equtios. This pper proposes umericl method for solvig system of Lier Fredholm itegrl equtios of the secod kid. For this purpose, the Chebyshev crdil fuctios with Guss-Lobtto poits re used s set of bsis fuctios. By combitio of properties of these fuctios d Cleshw-Curtis qudrture rule, effective umericl method will be formulted for solutio of such systems. The mi dvtges of the preseted method re eough ccurcy the umericl results will be compred with those of other methods), quick covergece, d reltively smll size of clcultios. The orgiztio of this pper is s follows. A review o the crdil fuctios d their properties is provided i sectio 2 d specific Chebyshev crdil fuctios re itroduced. Sectio 3 gives brief resume of Cleshw-Curtis qudrture rule s importt tool for implemettio of the proposed method. Sectio 4 presets the umericl method for solvig system of Lier Fredholm itegrl equtios of the secod kid which is implemeted by combitio of the properties of the Chebyshev crdil fuctios d the Cleshw-Curtis qudrture rule. A error lysis regrdig the proposed method will be doe i sectio 5 where some error bouds re obtied d covergece rte is estimted. Some exmples re cught from the literture d provided i sectio 6 to illustrte the computtiol efficiecy of the method. Commets o the results is the subject of sectio 7 where, by referrig to the obtied results i sectio 6, the method will be compred with other methods i view of ccurcy. Also, the mebsolute errors ssocited with the results obtied by the method will be give to cofirm its quick covergece. Filly, coclusios will be i sectio 8. 2 Crdil fuctios Defiitio 2.1. A crdil fuctio C j t) for specific iterpoltio fuctio d for set of iterpoltio poits t i is defied s [1 3, 8, 18, 19] C j t i ) = δ i, j, i, j = 1,2,...,, 2.1) where is the umber of the iterpoltio poits d δ i, j is Kroecker delt defied s { 1, i = j, δ i, j = 0, i j. Tht is to sy, the crdil fuctios re combitio of the uderlyig bsis trigoometric fuctios, Chebyshev polyomils, or whtever) which re chose so tht the jth fuctio is equl to oe t the jth grid poit d vishes t ll the other grid poits. I this pper specific set of crdil fuctios re cosidered bsed o the zeros of 1 t 2 )Ṫ t), where Ṫ t) = dt t) dt, such tht T t) = cos cos 1 t) ), for t [ 1,1], is the Chebyshev polyomil of degree. We choose these grid iterpoltio) poits s follows: 2.2) t j = cos jπ ), j = 0,1,...,, 2.3)

3 Pge 3 of 13 therefore t = 1 < t 1 < < t 1 < t 0 = ) Defiitio 2.2. Chebyshev crdil fuctio with Guss-Lobtto grids of order i [ 1,1] is defied s [5, 8, 18] with c 0 = c = 2, d c j = 1, for 1 j 1. C j t) = 1) j+1 1 t 2 )Ṫ t) c j 2, j = 0,1,...,, 2.5) t t j ) It is esy to show tht reltio 2.1) is vlid for the crdil fuctio defied by 2.5). Defiitio 2.3. A fuctio f t) c be pproximted i terms of crdil fuctios by the followig series of the form [5, 8, 18]: f t) f t) = f t j )C j t), 2.6) j=0 such tht f t j ) = f t j ), j = 0,1,...,, 2.7) d f t) is uique th-degree iterpoltig polyomil ssocited with the +1 Chebyshev Guss-Lobtto grids. 3 Cleshw-Curtis umericl qudrture A umericl qudrture umericl itegrtio) rule is the bsis of my umericl methods for the solutio of itegrl equtios. I this sectio brief resume of Cleshw-Curtis qudrture which is importt lter o is give. For much fuller tretmet of the subject, see for exmple [20 23]. The Guss-Chebyshev rules re of specil iterest s esy-to-use sequece of Guss rule. However, i prctice the weight fuctio ws) = 1 occurs much more commoly th Chebyshev weight fuctio ws) = 1 s 2 ) 2 1. It is lwys possible to write 1 1 f s) f s)ds = ds, 3.8) s 2 ) 1 2 where f s) = 1 s 2 ) 1 2 f s). However, if f s) is smooth er s = ±1, f s) is ot, d the direct use of Guss-Chebyshev rule o 3.8) will yield results which coverge oly slowly s the qudrture poits or odes icreses. For voidig this slow covergece, we c use very effective Cleshw-Curtis qudrture rule. Here, we preset the Cleshw-Curtis scheme s stdrd itegrtio rule s follows: where 1 1 f s)ds = w k = 4 = =0 eve =0 eve k= ) w k f cos kπ k=0 cos kπ ) kπ ) f cos ), 3.9) cos kπ ), k = 0,1,...,, 3.10) d the ottio mes the first d lst terms re to be hlved before summig. Remrk The resultig formul c be show to be exct if f s) is polyomil of degree 2 1.

4 Pge 4 of The ppret cost of implemetig this rule is high; direct sumtio of 3.10) to compute w k, k = 0,1,...,, ivolves totl of + 1) 2 multiplictios d dditios, compred with oly + 1 to ctully evlutig the sum 3.9). Equtio 3.10) for the weights w k c be viewed s the discrete cosie trsformtio of vector v with etries { 2, eve, v = ) 0, odd. The weights w k c therefore be computed usig Fst Fourier Trsform FFT) techique i O l) opertios; so the rule is resoble i cost d very stble gist roudig errors [20, 24]. 4 umericl solutio of Fredholm itegrl equtios system where Let us cosider the followig system of lier Fredholm itegrl equtios: b Us)Xs) = Fs) + Ks,t)Xt)dt, s [,b], 4.12) Us) = [ u i, j s) ], i, j = 1,2,...,, Fs) = [ f 1 s), f 2 s),..., f s) ] T, Xs) = [ x 1 s),x 2 s),...,x s) ] T, Ks,t) = [ λ i, j k i, j s,t) ], i, j = 1,2,...,, 4.13) d superscript T idictes trspositio. I 4.12), the prmeters λ i, j, the fuctios f i s), u i, j s), d k i, j s,t), for i, j = 1,2,...,, re kow, d x i s), for i = 1,2,...,, re the ukow fuctios to be determied. Also, k i, j s,t) L 2 [,b] [,b] ), d f i s),x i s),u i, j s) L 2 [,b] ), where L 2 is the spce of squre itegrble fuctios. Moreover, we ssume tht t lest oe compoet of y row of mtrix U is o-zero o [,b]. Without loss of geerlity, it is supposed tht = 1 d b = 1, sice y fiite itervl [,b] c be trsformed to itervl [ 1,1] by lier mps. For coveiece, let us cosider the ith equtio of 4.12) whom we c write s u i, j s)x j s) = f i s) + 1 λ i, j 1 k i, j s,t)x j t)dt. 4.14) Approximtig the solutio x j s) by the Chebyshev crdil fuctios from Eqs. 2.5) d 2.6) gives x j s) x j, s) = k=0 j,k C k s), 4.15) where j,k = x j t k ), d t k s, for k = 0,1,...,, re defied by 2.3). Also, subscript deotes pproximte solutio x j, s) i terms of + 1 crdil fuctios. Substitutig 4.15) ito 4.14) yields u i, j s)x j, s) 1 λ i, j 1 k i, j s,t)x j, t)dt f i s). 4.16) ow, pproximtig the itegrl opertor i 4.16) by the Cleshw-Curtis qudrture defied by 3.9) d 3.10) follows u i, j s)x j, s) λ i, j w p k i, j s,t p )x j, t p ) f i s). 4.17) p=0

5 Pge 5 of 13 From 2.7) d 4.15) we c write x j, t p ) = x j t p ) = j, p. Therefore u i, j s)x j, s) p=0 Substitutig s = t q, for q = 0,1,...,, defied by 2.3) ito 4.18) follows u i, j t q )x j, t q ) p=0 ow, cosiderig x j, t q ) = j,q d replcig sig with = sig gives [ λ i, j w p k i, j s,t p ) j, p f i s). 4.18) λ i, j w p k i, j t q,t p ) j, p f i t q ), q = 0,1,...,. 4.19) ] u i, j t q ) j,q λ i, j w p k i, j t q,t p ) j, p = f i t q ), q = 0,1,...,. 4.20) p=0 By cosiderig similr procedure for the other equtios of system 4.12) we c filly obti [ ] u i, j t q ) j,q λ i, j w p k i, j t q,t p ) j, p = f i t q ), q = 0,1,...,, i = 1,2,...,. 4.21) p=0 ow, 4.21) is system of + 1) lgebric equtios for the + 1) ukows 1,0, 1,1,..., 1,, 2,0,...,,. Hece, ccordig to 4.15), pproximte solutio X s) = [ x 1, s),x 2, s),...,x, s) ] T is obtied for Fredholm itegrl equtios system 4.12). 5 Error lysis d covergece evlutio Without loss of geerlity, system 4.12) c be cosidered s follows b Xs) = Fs) + Ks,t)Xt)dt, s [,b] = [ 1,1], 5.22) where Xs), Fs), Ks,t) re defied by 4.13). Equtio 5.22) c be rewritte i the followig form: where I is idetity opertor d opertor K is defied s Let us cosider j=0 I K )X = F, 5.23) b K X)s) = Ks, t) Xt) dt. 5.24) w j Ks,t j )Xt j ) = K X)s) E t Ks,t)Xt) ), 5.25) i which E t idictes the error fuctiol for the Cleshw-Curtis qudrture rule opertig o Ks,t)Xt), viewed s fuctio of t for fixed s [20]. From 5.22) we c defied E t Ks,t)Xt) ) s vector of the form ) E t Ks,t)Xt) = Et 1,1 Et 2,1. E,1 t k1,1 s,t)x 1 t) ) + Et 1,2 k1,2 s,t)x 2 t) ) + + Et 1, k1, s,t)x t) ) k2,1 s,t)x 1 t) ) + Et 2,2 k2,2 s,t)x 2 t) ) + + Et 2, k2, s,t)x t) ) k,1 s,t)x 1 t) ) + Et,2 k,2 s,t)x 2 t) ) + + Et, k, s,t)x t) ). 5.26)

6 Pge 6 of 13 Suppose X be the pproximte solutio of 5.22) obtied by the preseted method. It stisfies the followig equtio: X s) = Fs) + j=0 w j Ks,t j )X t j ). 5.27) If we cosider s = t i = cos iπ ), for i = 0,1,...,, the 5.27) is equivlet to lgebric system 4.21). ow, the error of the preseted method c be defied s e s) = Xs) X s), 5.28) where e s) is vector such tht its ith compoet is the error correspodig to solvig the ith itegrl equtio of system 5.22). From 5.25) we obti Subtrctig 5.29) form 5.22) gives X s) = Fs) + b e s) = E t Ks,t)X t) ) + Ks,t)X t)dt E t Ks,t)X t) ). 5.29) b Ks,t)e t)dt. 5.30) Thus, the vector of the error fuctios e s) stisfies Fredholm itegrl equtios system with the sme kerels s 5.22), but with differet drivig terms. Equtio 5.30) c lso be writte i the form This equtio hs the solutio I K )e s) = E t Ks,t)X t) ). 5.31) e s) = I K ) 1 E t Ks,t)X t) ) = I + H )E t Ks,t)X t) ), where H is the resolvet opertor see [25, 26]). Hece, tkig rbitrry orms we fid 5.32) e 1+ H ) E t Ks,t)X t) ). 5.33) However, if K < 1 we fid, o tkig orms i 5.30) d rerrgig, the simpler boud e E t Ks,t)X t) ). 5.34) 1 K ) The bouds of the error vector show tht e is directly relted to the error of the qudrture rule. The simplest d most commoly used procedure for estimtig the chieved ccurcy is to choose fmily of qudrture rules R d to compute pproximte solutio for members of this fmily with icresig, d hece decresig error, util the results pper to hve settled dow to the required ccurcy. It is usully strightforwrd to gurtee covergece; tht is, to esure tht [20] Sufficiet coditios for this re give i [20, 27]. ow, we try to compute the rte t which covergece is chieved. lim e R = ) Lemm 5.1. The error estimtes for poit qudrture rules of vrious types hve the form E t f b = f t)dt w i f t i ) C f ) p, 5.36) i=1 where C f ) is costt depedet o the fuctio f t) d the expoet p depeds either o the degree of the rule if f t) is smooth eough) or o the cotiuity properties of f t) if the degree of the rule is high eough). We refer to p s the order of covergece.

7 Pge 7 of 13 Proof. [20]. ow, cosiderig Lemm 5.1 d usig 5.33) we obti e 1+ H ) C Ks,t)X t) ) p, 5.37) where C Ks,t)X t) ) is vector of the form C 1,1 k1,1 s,t)x 1 t) ) +C 1,2 k1,2 s,t)x 2 t) ) + +C 1, k1, s,t)x t) ) C Ks,t)Xt) ) C 2,1 k2,1 s,t)x 1 t) ) +C 2,2 k2,2 s,t)x 2 t) ) + +C 2, k2, s,t)x t) ) =. C,1 k,1 s,t)x 1 t) ) +C,2 k,2 s,t)x 2 t) ) + +C, k, s,t)x t) ). 5.38) If C i, j, for i, j = 1,2,...,, is uiformly bouded i s such tht C i, j ki, j s,t)x j, t) ) Mi, j, s b. 5.39) The, tkig the mximum orm o 5.37) gives where C Ks,t)X t) ) M. e 1+ H ) M p, 5.40) The estimtes of covergece rte bove show tht the preseted error will be rpidly coverget to zero if the degree of the qudrture rule is high eough d if for every fixed s, Ks,t)Xt) is vector of smooth fuctios with respect to t. Referrig to the fct tht if F d K i 5.22) re cotiuous the so is X see [25]), we pose the followig theorem s the extesio of Theorem i [20]. Theorem 5.1. Let i 5.22) f i s) C p) [,b], for i = 1,2,...,, d k i, j s,t) C p) [,b] C p) [,b], where C p) is spce of cotiuous d differetible fuctios of order p. The, x i s) C p) [,b], for i = 1,2,...,. Proof. We hve whece x i s) = f i s) + x is) = f i s) + b λ i, j b λ i, j k i, j s,t)x j t)dt, i = 1,2,...,, 5.41) s k i, j s,t)x j t)dt, i = 1,2,...,. 5.42) But, for p 1, s k i, j s,t) is cotiuous by hypothesis, d the itegrls b s k i, j s,t)x j t)dt re cotiuous fuctios of s, for i, j = 1,2,...,. So, λ b i, j s k i, j s,t)x j t)dt is cotiuous fuctio. Therefore, if f i s), for i = 1,2,...,, re cotiuous, the ccordig to 5.42) x i s), for i = 1,2,...,, will be cotiuous. Similrly for y q p x q) i s) = f q) b i s) + q λ i, j s q k i, j s,t)x j t)dt, i = 1,2,...,, 5.43) whece, proceedig iductively, it follows tht x i s) C p) [,b], for i = 1,2,...,. 6 umericl results Some exmples re ivestigted by the proposed method i this sectio. Most of these exmples re cught from vrious refereces, such tht we re ble to compre the umericl results obtied by the proposed method with both the exct solutio d those preseted i the relted refereces. The umericl results re give for eleve poits s i itervl [,b]. These poits re set by dividig the itervl to te equl segmets ccordig to the relted literture).

8 Pge 8 of 13 Exmple 6.1. For the followig lier Fredholm itegrl equtios system [13, 14, 17]: x 1 s) = 18 s s+t 3 x1 t) + x 2 t) ) dt, x 2 s) = s s st x 1 t) + x 2 t) ) dt, 6.44) the preseted method i this pper gives the exct solutios x 1 s) = s +1 d x 2 s) = s 2 +1 for = 2. Tble 1 shows the umericl results obtied by the method d those give i [13, 17]. Tble 1: umericl results for Exmple 6.1 s Exct solutio Preseted method, Direct method [17], Decompositio method [13], = 2 m = 32 k = 11 Results for x 1 s) Results for x 2 s) Exmple 6.2. For the followig lier Fredholm itegrl equtios system [16]: x 1 s) = 11 6 s s +t)x 1t)dt 1 0 s + 2t2 )x 2 t)dt, x 2 s) = 4 5s s 1 0 st2 x 1 t)dt 1 0 s2 t x 2 t)dt, 6.45) the preseted method gives the exct solutios x 1 s) = s d x 2 s) = s 2 for = 4. Tble 2 shows the umericl results obtied by it d those give i [16].

9 Pge 9 of 13 Tble 2: umericl results for Exmple 6.2 s Exct solutio Preseted method, BPFs method [16], = 4 m = 32 Results for x 1 s) Results for x 2 s) Exmple 6.3. Cosider the followig Fredholm itegrl equtios system [14 17]: x 1 s) = 2e s + es+1 1 s es t x 1 t)dt 1 0 es+2)t x 2 t)dt, x 2 s) = e s + e s + es+1 1 s est x 1 t)dt 1 0 es+t x 2 t)dt, 6.46) with the exct solutios x 1 s) = e s d x 2 s) = e s. The umericl results re show i Tble 3.

10 Pge 10 of 13 Tble 3: umericl results for Exmple 6.3 s Exct solutio Preseted method, Preseted method, Direct method [17], Rtiolized Hr method [15], BPFs method [16], = 4 = 6 m = 32 k = 32 m = 32 Results for x 1 s) Results for x 2 s) Exmple 6.4. This exmple icludes Fredholm itegrl equtios system with vrible coefficiets with respect to s s follows: s 2 x 1 s) + s + 1)x 2 s) = y 1 s) 1 0 sis t)x 1t)dt 1 0 coss t)x 2t)dt, sx 1 s) + 1 2s 2 )x 2 s) = y 2 s) 1 0 sis +t)x 1t)dt 6.47) 1 0 coss +t)x 2t)dt, with the exct solutios x 1 s) = s d x 2 s) = 1 s 2 d suitble y 1 s) d y 2 s). Figure 1 shows the umericl results for this problem for = 6. ) Figure 1: umericl results for Exmple 6.4 obtied by the proposed method. ) Results for x 1 s). b) Results for x 2 s). b)

11 Pge 11 of 13 7 Commets o the results Four test problems were illustrted bove for evlutig the pplicbility d ccurcy of the proposed method. Exmple 6.1 hs bee solved i [13], [14], d [17], too. [13] proposes the decompositio method d [17] itroduces direct method usig the trigulr fuctios to solve the problem. Also, Sic-colloctio method is cosidered i [14] for umericl solutio of Exmple 6.1. Our method gives the exct solutio for this problem for very smll size of discretiztio = 2). The umericl results obtied by the decompositio d direct methods show i Tble 1 of this rticle d lso the error vlues give i Tble 2 of [14] cofirm the superiority of the proposed method over the three metioed methods i view of ccurcy. O the other hd, the umber of clcultios i the decompositio method is higher. For Exmple 6.2, [16] gives pproximte solutio by usig the block-pulse fuctios. The relted results for m = 32 re show i Tble 2. Our method gives the exct solutio for this exmple for = 4, whece it follows tht this method is much more ccurte th the BPFs method. [15] proposes umericl method bsed o usig rtiolized Hr fuctios for lier Fredholm itegrl equtios system. This method together with those preseted i [14, 16, 17] obti umericl solutio for Exmple6.3. The umericl results i Tble 3 of this pper d lso the error vlues give i Tble 1 of [14] still cofirm good ccurcy of the method proposed i this pper. For further evlutio of the computtiol efficiecy of the method we give the me-bsolute errors ssocited with it withi solvig two of the exmples. The me-bsolute error is clculted by cosiderig the errors t 0 poits s [,b] d by usig the followig reltio: E 0) j, = i=1 x j s i ) x j, s i ), 7.48) where E 0) j, is the me-bsolute error, d x js) d x j, s) re the jth exct d pproximte solutios, respectively. For Exmples 6.3 d 6.4, these errors for 0 = 11 poits s i = + b 10 i, i = 0,1,...,10, d = 2,4,...,12 re illustrted i Tble 4. Obviously, these results cofirm very quick covergece of the proposed method mewhile emphsis gi o its excellet ccurcy. Tble 4: Me-bsolute errors Me-bsolute errors for Exmple 3 Me-bsolute errors for Exmple 4 Results for x 1 s) Results for x 2 s) Results for x 1 s) Results for x 2 s) 2 1.4E 2 6.0E 3 4.0E 1 1.9E E 5 1.4E 5 1.0E 1 4.1E E 8 1.7E 8 5.7E 5 3.1E E E E 7 7.3E E E E E E E E E 13 8 Coclusio A effective d ccurte umericl pproch for solvig lier systems of Fredhlom itegrl equtios of the secod kid ws proposed by usig the Chebyshev crdil fuctios with Guss-Lobtto poits d lso the Cleshw- Curtis qudrture rule. Moreover, two error bouds were computed for the method i terms of the error of the Cleshw-Curtis qudrture rule d its covergece rte ws estimted. Some test problems were solved by the preseted method which showed tht it is pplicble d ccurte i solvig of the metioed systems.

12 Pge 12 of 13 Refereces [1] M. Lkesti, M. Dehgh, The use of Chebyshev crdil fuctios for the solutio of prtil differetil equtio with ukow time-depedet coefficiet subject to extr mesuremet, Jourl of Computtiol d Applied Mthemtics, ) [2] M. Lkesti, M. Dehgh, umericl solutio of Riccti equtio usig the cubic B-splie sclig fuctios d Chebyshev crdil fuctios, Computer Physics Commuictios, ) [3] M. Lkesti, M. Dehgh, umericl solutio of fourth-order itegro-differetil equtios usig Chebyshev crdil fuctios, Itertiol Jourl of Computer Mthemtics, 87 6) 2010) [4] D. Brow, L. Lig, E. Ks, J. Levesley, O pproximte crdil precoditioig methods for solvig PDEs with rdil bsis fuctios, Egieerig Alysis with Boudry Elemets, ) [5] A. Aliph, Spectrl methods usig crdil fuctios, Ph.D. Thesis i Applied Mthemtics, Amirkbir Uiversity of Techology, 2006). [6] G. Viikko, Crdil Approximtio of Fuctios by Splies o Itervl, Mthemticl Modellig d Alysis, 14 1) 2009) [7] K. H. Ch, J. Bo, W. J. White, Idetifictio of MIMO Hmmerstei systems usig crdil splie fuctios, Jourl of Process Cotrol, ) [8] G. Elgr, M. A. Kzemi, Pseudospectrl Chebyshev optiml cotrol of costried olier dymicl systems, Computtiol Optimiztio d Applictios, ) [9] J. P. Boyd, The er-equivlece of five species of spectrlly-ccurte rdil bsis fuctios RBFs): Asymptotic pproximtios to the RBF crdil fuctios o uiform, ubouded grid, Jourl of Computtiol Physics, ) [10] J. P. Boyd, L. Wg, A lytic pproximtio to the crdil fuctios of Gussi rdil bsis fuctios o ifiite lttice, Applied Mthemtics d Computtio, ) [11] G. Wu, D. Li, H. Xio, Z. Liu, The M-bd crdil orthogol sclig fuctio, Applied Mthemtics d Computtio, ) [12] G. Wu, Z. Cheg, X. Yg, The crdil orthogol sclig fuctio d smplig theorem i the wvelet subspces, Applied Mthemtics d Computtio, ) [13] E. Bboli, J. Bizr, A. R. Vhidi, The decompositio method pplied to systems of Fredholm itegrl equtios of the secod kid, Applied Mthemtics d Computtio, )

13 Pge 13 of 13 [14] J. Rshidii, M. Zrebi, Covergece of pproximte solutio of system of Fredholm itegrl equtios, Jourl of Mthemticl Alysis d Applictios, ) [15] K. Mlekejd, F. Mirzee, umericl solutio of lier Fredholm itegrl equtios system by rtiolized Hr fuctios method, Itertiol Jourl of Computer Mthemtics, 80 11) 2003) [16] K. Mlekejd, M. Shhrezee, H. Khtmi, umericl solutio of itegrl equtios system of the secod kid by Block-Pulse fuctios, Applied Mthemtics d Computtio, ) [17] E. Bboli, Z. Msouri, S. Htmzdeh-Vrmzyr, A direct method for umericlly solvig itegrl equtios system usig orthogol trigulr fuctios, Itertiol Jourl of Idustril Mthemtics, 1 2) 2009) [18] J. P. Boyd, Chebyshev d Fourier Spectrl Methods, Dover Publictios, Ic., 2000). [19] J. P. Boyd, Multipole expsios d pseudospectrl crdil fuctios: ew geerliztio of the fst Fourier trsform, Jourl of Computtiol Physics, ) [20] L. M. Delves, J. L. Mohmed, Computtiol Methods for Itegrl Equtios, Cmbridge Uiversity Press, Cmbridge, 1985). [21] P. J. Dvis, P. Rbiowitz, Methods of umericl Itegrtio, Acdemic Press, ew York, 1975). [22] A. H. Stroud, D. Secrest, Gussi Qudrture Formuls, Pretice-Hll, Eglewood Cliffs, ew Jersey, 1966). [23] C. W. Cleshw, A. R. Curtis, A method for umericl itegrtio o utomtic computer, umericl Mthemtics, ) [24] W. Getlem, Implemetig Cleshw-Curtis qudrture, I methodology d experiece, Commuictios of the ACM, ) [25] F. Smithies, Itegrl Equtios, Cmbridge Uiversity Press, Cmbridge, 1965). [26] P. K. Kythe, P. Puri, Computtiol Methods for Lier Itegrl Equtios, Birkhäuser, Bosto, 2002). [27] C. T. H. Bker, The umericl Tretmet of Itegrl Equtios, Oxford Uiversity Press, 1977).

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind Ge. Mth. Notes, Vol. 2, No. 1, Jury 211, pp. 143-148 ISSN 2219-7184; Copyright ICSRS Publictio, 211 www.i-csrs.org Avilble free olie t http://www.gem.i Vritiol Itertio Method for Solvig Volterr d Fredholm

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

Review of Sections

Review of Sections Review of Sectios.-.6 Mrch 24, 204 Abstrct This is the set of otes tht reviews the mi ides from Chpter coverig sequeces d series. The specific sectios tht we covered re s follows:.: Sequces..2: Series,

More information

Quadrature Methods for Numerical Integration

Quadrature Methods for Numerical Integration Qudrture Methods for Numericl Itegrtio Toy Sd Istitute for Cle d Secure Eergy Uiversity of Uth April 11, 2011 1 The Need for Numericl Itegrtio Nuemricl itegrtio ims t pproximtig defiite itegrls usig umericl

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

Power Series Solutions to Generalized Abel Integral Equations

Power Series Solutions to Generalized Abel Integral Equations Itertiol Jourl of Mthemtics d Computtiol Sciece Vol., No. 5, 5, pp. 5-54 http://www.isciece.org/jourl/ijmcs Power Series Solutios to Geerlized Abel Itegrl Equtios Rufi Abdulli * Deprtmet of Physics d Mthemtics,

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials Jourl of Al-Nhri Uiversity Vol.5 (), Mrch,, pp.-9 Sciece Numericl Solutio of Fuzzy Fredholm Itegrl Equtios of the Secod Kid usig Berstei Polyomils Srmd A. Altie Deprtmet of Computer Egieerig d Iformtio

More information

Some New Iterative Methods Based on Composite Trapezoidal Rule for Solving Nonlinear Equations

Some New Iterative Methods Based on Composite Trapezoidal Rule for Solving Nonlinear Equations Itertiol Jourl of Mthemtics d Sttistics Ivetio (IJMSI) E-ISSN: 31 767 P-ISSN: 31-759 Volume Issue 8 August. 01 PP-01-06 Some New Itertive Methods Bsed o Composite Trpezoidl Rule for Solvig Nolier Equtios

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

Canonical Form and Separability of PPT States on Multiple Quantum Spaces

Canonical Form and Separability of PPT States on Multiple Quantum Spaces Coicl Form d Seprbility of PPT Sttes o Multiple Qutum Spces Xio-Hog Wg d Sho-Mig Fei, 2 rxiv:qut-ph/050445v 20 Apr 2005 Deprtmet of Mthemtics, Cpitl Norml Uiversity, Beijig, Chi 2 Istitute of Applied Mthemtics,

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

Definite Integral. The Left and Right Sums

Definite Integral. The Left and Right Sums Clculus Li Vs Defiite Itegrl. The Left d Right Sums The defiite itegrl rises from the questio of fidig the re betwee give curve d x-xis o itervl. The re uder curve c be esily clculted if the curve is give

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

Double Sums of Binomial Coefficients

Double Sums of Binomial Coefficients Itertiol Mthemticl Forum, 3, 008, o. 3, 50-5 Double Sums of Biomil Coefficiets Athoy Sofo School of Computer Sciece d Mthemtics Victori Uiversity, PO Box 448 Melboure, VIC 800, Austrli thoy.sofo@vu.edu.u

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple Chpter II CALCULUS II.4 Sequeces d Series II.4 SEQUENCES AND SERIES Objectives: After the completio of this sectio the studet - should recll the defiitios of the covergece of sequece, d some limits; -

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Closed Newton-Cotes Integration

Closed Newton-Cotes Integration Closed Newto-Cotes Itegrtio Jmes Keeslig This documet will discuss Newto-Cotes Itegrtio. Other methods of umericl itegrtio will be discussed i other posts. The other methods will iclude the Trpezoidl Rule,

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

Test Info. Test may change slightly.

Test Info. Test may change slightly. 9. 9.6 Test Ifo Test my chge slightly. Short swer (0 questios 6 poits ech) o Must choose your ow test o Tests my oly be used oce o Tests/types you re resposible for: Geometric (kow sum) Telescopig (kow

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Orthogonal functions - Function Approximation

Orthogonal functions - Function Approximation Orthogol uctios - Fuctio Approimtio - he Problem - Fourier Series - Chebyshev Polyomils he Problem we re tryig to pproimte uctio by other uctio g which cosists o sum over orthogol uctios Φ weighted by

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

COMPOSITE TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL AND ITS RICHARDSON EXTRAPOLATION FORMULA

COMPOSITE TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL AND ITS RICHARDSON EXTRAPOLATION FORMULA itli jourl of pure d pplied mthemtics. 5 015 (11 18) 11 COMPOSITE TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL AND ITS RICHARDSON EXTRAPOLATION FORMULA Weijig Zho 1 College of Air Trffic Mgemet Civil

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n.

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n. Sclrs-9.0-ADV- Algebric Tricks d Where Tylor Polyomils Come From 207.04.07 A.docx Pge of Algebric tricks ivolvig x. You c use lgebric tricks to simplify workig with the Tylor polyomils of certi fuctios..

More information

Math 104: Final exam solutions

Math 104: Final exam solutions Mth 14: Fil exm solutios 1. Suppose tht (s ) is icresig sequece with coverget subsequece. Prove tht (s ) is coverget sequece. Aswer: Let the coverget subsequece be (s k ) tht coverges to limit s. The there

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem The Weierstrss Approximtio Theorem Jmes K. Peterso Deprtmet of Biologicl Scieces d Deprtmet of Mthemticl Scieces Clemso Uiversity Februry 26, 2018 Outlie The Wierstrss Approximtio Theorem MtLb Implemettio

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

2.1.1 Definition The Z-transform of a sequence x [n] is simply defined as (2.1) X re x k re x k r

2.1.1 Definition The Z-transform of a sequence x [n] is simply defined as (2.1) X re x k re x k r Z-Trsforms. INTRODUCTION TO Z-TRANSFORM The Z-trsform is coveiet d vluble tool for represetig, lyig d desigig discrete-time sigls d systems. It plys similr role i discrete-time systems to tht which Lplce

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices

A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices Mlysi Jourl of Librry & Iformtio Sciece, Vol. 9, o. 3, 04: 4-49 A geerl theory of miiml icremets for Hirsch-type idices d pplictios to the mthemticl chrcteriztio of Kosmulski-idices L. Egghe Uiversiteit

More information

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM Jourl of Applied Mthemtics d Computtiol Mechics () 57-6 SOUION O DIERENIA EQUAION OR HE EUER-ERNOUI EAM Izbel Zmorsk Istitute of Mthemtics Czestochow Uiversit of echolog Częstochow Pold izbel.zmorsk@im.pcz.pl

More information

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006 Sttistics for Ficil Egieerig Sessio : Lier Algebr Review rch 8 th, 6 Topics Itroductio to trices trix opertios Determits d Crmer s rule Eigevlues d Eigevectors Quiz The cotet of Sessio my be fmilir to

More information

Linear Programming. Preliminaries

Linear Programming. Preliminaries Lier Progrmmig Prelimiries Optimiztio ethods: 3L Objectives To itroduce lier progrmmig problems (LPP To discuss the stdrd d coicl form of LPP To discuss elemetry opertio for lier set of equtios Optimiztio

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 SUTCLIFFE S NOTES: CALCULUS SWOKOWSKI S CHAPTER Ifiite Series.5 Altertig Series d Absolute Covergece Next, let us cosider series with both positive d egtive terms. The simplest d most useful is ltertig

More information

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 3 Ver. IV (My - Jue 7), PP -8 www.iosrjourls.org Gree s Fuctio Approch to Solve Nolier Secod Order Four Poit Directiol

More information

Numerical Integration by using Straight Line Interpolation Formula

Numerical Integration by using Straight Line Interpolation Formula Glol Jourl of Pure d Applied Mthemtics. ISSN 0973-1768 Volume 13, Numer 6 (2017), pp. 2123-2132 Reserch Idi Pulictios http://www.ripulictio.com Numericl Itegrtio y usig Stright Lie Iterpoltio Formul Mhesh

More information

Chapter 2 Infinite Series Page 1 of 9

Chapter 2 Infinite Series Page 1 of 9 Chpter Ifiite eries Pge of 9 Chpter : Ifiite eries ectio A Itroductio to Ifiite eries By the ed of this sectio you will be ble to uderstd wht is met by covergece d divergece of ifiite series recogise geometric

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

INTEGRATION IN THEORY

INTEGRATION IN THEORY CHATER 5 INTEGRATION IN THEORY 5.1 AREA AROXIMATION 5.1.1 SUMMATION NOTATION Fibocci Sequece First, exmple of fmous sequece of umbers. This is commoly ttributed to the mthemtici Fibocci of is, lthough

More information

Math 2414 Activity 17 (Due with Final Exam) Determine convergence or divergence of the following alternating series: a 3 5 2n 1 2n 1

Math 2414 Activity 17 (Due with Final Exam) Determine convergence or divergence of the following alternating series: a 3 5 2n 1 2n 1 Mth 44 Activity 7 (Due with Fil Exm) Determie covergece or divergece of the followig ltertig series: l 4 5 6 4 7 8 4 {Hit: Loo t 4 } {Hit: } 5 {Hit: AST or just chec out the prtil sums} {Hit: AST or just

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 0 FURTHER CALCULUS II. Sequeces d series. Rolle s theorem d me vlue theorems 3. Tlor s d Mcluri s theorems 4. L Hopitl

More information

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Scietific Reserch of the Istitute of Mthetics d Coputer Sciece 3() 0, 5-0 APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Jolt Borows, Le Łcińs, Jowit Rychlews Istitute of Mthetics,

More information

Chapter 25 Sturm-Liouville problem (II)

Chapter 25 Sturm-Liouville problem (II) Chpter 5 Sturm-Liouville problem (II Speer: Lug-Sheg Chie Reerece: [] Veerle Ledou, Study o Specil Algorithms or solvig Sturm-Liouville d Schrodiger Equtios. [] 王信華教授, chpter 8, lecture ote o Ordiry Dieretil

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

Solution of the exam in TMA4212 Monday 23rd May 2013 Time: 9:00 13:00

Solution of the exam in TMA4212 Monday 23rd May 2013 Time: 9:00 13:00 Norwegi Uiversity of Sciece d Techology Deprtmet of Mthemticl Scieces Cotct durig the exm: Ele Celledoi, tlf. 735 93541 Pge 1 of 7 of the exm i TMA4212 Mody 23rd My 2013 Time: 9:00 13:00 Allowed ids: Approved

More information

Angle of incidence estimation for converted-waves

Angle of incidence estimation for converted-waves Agle of icidece estimtio for coverted-wves Crlos E. Nieto d Robert R. tewrt Agle of icidece estimtio ABTRACT Amplitude-versus-gle AA lysis represets li betwee te geologicl properties of roc iterfces d

More information

Notes on Dirichlet L-functions

Notes on Dirichlet L-functions Notes o Dirichlet L-fuctios Joth Siegel Mrch 29, 24 Cotets Beroulli Numbers d Beroulli Polyomils 2 L-fuctios 5 2. Chrcters............................... 5 2.2 Diriclet Series.............................

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

Vectors. Vectors in Plane ( 2

Vectors. Vectors in Plane ( 2 Vectors Vectors i Ple ( ) The ide bout vector is to represet directiol force Tht mes tht every vector should hve two compoets directio (directiol slope) d mgitude (the legth) I the ple we preset vector

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 UTCLIFFE NOTE: CALCULU WOKOWKI CHAPTER Ifiite eries Coverget or Diverget eries Cosider the sequece If we form the ifiite sum 0, 00, 000, 0 00 000, we hve wht is clled ifiite series We wt to fid the sum

More information

Riemann Integration. Chapter 1

Riemann Integration. Chapter 1 Mesure, Itegrtio & Rel Alysis. Prelimiry editio. 8 July 2018. 2018 Sheldo Axler 1 Chpter 1 Riem Itegrtio This chpter reviews Riem itegrtio. Riem itegrtio uses rectgles to pproximte res uder grphs. This

More information

Uncertainty Analysis for Uncorrelated Input Quantities and a Generalization

Uncertainty Analysis for Uncorrelated Input Quantities and a Generalization WHITE PAPER Ucertity Alysis for Ucorrelted Iput Qutities d Geerliztio Welch-Stterthwite Formul Abstrct The Guide to the Expressio of Ucertity i Mesuremet (GUM) hs bee widely dopted i the differet fields

More information

3.7 The Lebesgue integral

3.7 The Lebesgue integral 3 Mesure d Itegrtio The f is simple fuctio d positive wheever f is positive (the ltter follows from the fct tht i this cse f 1 [B,k ] = for ll k, ). Moreover, f (x) f (x). Ideed, if x, the there exists

More information

ANALYTIC WAVELETS AND MULTIRESOLUTION ANALYSIS A NOTE ON CERTAIN ORTHOGONALITY CONDITIONS

ANALYTIC WAVELETS AND MULTIRESOLUTION ANALYSIS A NOTE ON CERTAIN ORTHOGONALITY CONDITIONS Proceedigs, Fculty of Mechicl Egieerig, Sope, ol 3, No, pp 4 47 (4) CODEN: ZTFSEH 35 ISSN 35 667 eceived: September 9, 4 UDK: 57979 Accepted: November 9, 4 Short commuictio ANALYTIC WAELETS AND MULTIESOLUTION

More information

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS RGMIA Reserch Report Collectio, Vol., No., 998 http://sci.vut.edu.u/ rgmi/reports.html AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS S.S. DRAGOMIR AND I.

More information

Simplification and Strengthening of Weyl s Definition of Asymptotic Equal Distribution of Two Families of Finite Sets

Simplification and Strengthening of Weyl s Definition of Asymptotic Equal Distribution of Two Families of Finite Sets Simplifictio d Stregtheig of Weyl s Defiitio of Asymptotic Equl Distributio of Two Fmilies of Fiite Sets Willim F. Trech Triity Uiversity, S Atoio, Texs, USA; wtrech@triity.edu Milig ddress: 95 Pie Le,

More information

Prior distributions. July 29, 2002

Prior distributions. July 29, 2002 Prior distributios Aledre Tchourbov PKI 357, UNOmh, South 67th St. Omh, NE 688-694, USA Phoe: 4554-64 E-mil: tchourb@cse.ul.edu July 9, Abstrct This documet itroduces prior distributios for the purposes

More information

Probability for mathematicians INDEPENDENCE TAU

Probability for mathematicians INDEPENDENCE TAU Probbility for mthemticis INDEPENDENCE TAU 2013 21 Cotets 2 Cetrl limit theorem 21 2 Itroductio............................ 21 2b Covolutio............................ 22 2c The iitil distributio does

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

10.5 Test Info. Test may change slightly.

10.5 Test Info. Test may change slightly. 0.5 Test Ifo Test my chge slightly. Short swer (0 questios 6 poits ech) o Must choose your ow test o Tests my oly be used oce o Tests/types you re resposible for: Geometric (kow sum) Telescopig (kow sum)

More information

The Definite Integral

The Definite Integral The Defiite Itegrl A Riem sum R S (f) is pproximtio to the re uder fuctio f. The true re uder the fuctio is obtied by tkig the it of better d better pproximtios to the re uder f. Here is the forml defiitio,

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

THE SOLUTION OF THE FRACTIONAL DIFFERENTIAL EQUATION WITH THE GENERALIZED TAYLOR COLLOCATIN METHOD

THE SOLUTION OF THE FRACTIONAL DIFFERENTIAL EQUATION WITH THE GENERALIZED TAYLOR COLLOCATIN METHOD IJRRAS August THE SOLUTIO OF THE FRACTIOAL DIFFERETIAL EQUATIO WITH THE GEERALIZED TAYLOR COLLOCATI METHOD Slih Ylçıbş Ali Kourlp D. Dömez Demir 3* H. Hilmi Soru 4 34 Cell Byr Uiversity Fculty of Art &

More information

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS A GENERALIZATION OF GAU THEOREM ON QUADRATIC FORM Nicole I Brtu d Adi N Cret Deprtmet of Mth - Criov Uiversity, Romi ABTRACT A origil result cocerig the extesio of Guss s theorem from the theory of biry

More information

SOME IDENTITIES BETWEEN BASIC HYPERGEOMETRIC SERIES DERIVING FROM A NEW BAILEY-TYPE TRANSFORMATION

SOME IDENTITIES BETWEEN BASIC HYPERGEOMETRIC SERIES DERIVING FROM A NEW BAILEY-TYPE TRANSFORMATION SOME IDENTITIES BETWEEN BASIC HYPERGEOMETRIC SERIES DERIVING FROM A NEW BAILEY-TYPE TRANSFORMATION JAMES MC LAUGHLIN AND PETER ZIMMER Abstrct We prove ew Biley-type trsformtio reltig WP- Biley pirs We

More information

{ } { S n } is monotonically decreasing if Sn

{ } { S n } is monotonically decreasing if Sn Sequece A sequece is fuctio whose domi of defiitio is the set of turl umers. Or it c lso e defied s ordered set. Nottio: A ifiite sequece is deoted s { } S or { S : N } or { S, S, S,...} or simply s {

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

Numerical Integration - (4.3)

Numerical Integration - (4.3) Numericl Itegrtio - (.). Te Degree of Accurcy of Qudrture Formul: Te degree of ccurcy of qudrture formul Qf is te lrgest positive iteger suc tt x k dx Qx k, k,,,...,. Exmple fxdx 9 f f,,. Fid te degree

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Assoc. Prof. Dr. Bur Kelleci Sprig 8 OUTLINE The Z-Trsform The Regio of covergece for the Z-trsform The Iverse Z-Trsform Geometric

More information

Lesson 4 Linear Algebra

Lesson 4 Linear Algebra Lesso Lier Algebr A fmily of vectors is lierly idepedet if oe of them c be writte s lier combitio of fiitely my other vectors i the collectio. Cosider m lierly idepedet equtios i ukows:, +, +... +, +,

More information

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property Lier Time-Ivrit Bsic Properties LTI The Commuttive Property The Distributive Property The Associtive Property Ti -6.4 / Chpter Covolutio y ] x ] ] x ]* ] x ] ] y] y ( t ) + x( τ ) h( t τ ) dτ x( t) * h(

More information

Section 6.3: Geometric Sequences

Section 6.3: Geometric Sequences 40 Chpter 6 Sectio 6.: Geometric Sequeces My jobs offer ul cost-of-livig icrese to keep slries cosistet with ifltio. Suppose, for exmple, recet college grdute fids positio s sles mger erig ul slry of $6,000.

More information

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Uiv. Beogrd. Publ. Elektroteh. Fk. Ser. Mt. 8 006 4. Avilble electroiclly t http: //pefmth.etf.bg.c.yu SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Zheg Liu Usig vrit of Grüss iequlity to give ew proof

More information

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2 0 微甲 07- 班期中考解答和評分標準 5%) Fid the poits o the surfce xy z = tht re closest to the origi d lso the shortest distce betwee the surfce d the origi Solutio Cosider the Lgrge fuctio F x, y, z, λ) = x + y + z

More information

The Elementary Arithmetic Operators of Continued Fraction

The Elementary Arithmetic Operators of Continued Fraction Americ-Eursi Jourl of Scietific Reserch 0 (5: 5-63, 05 ISSN 88-6785 IDOSI Pulictios, 05 DOI: 0.589/idosi.ejsr.05.0.5.697 The Elemetry Arithmetic Opertors of Cotiued Frctio S. Mugssi d F. Mistiri Deprtmet

More information

Lecture 2: Matrix Algebra

Lecture 2: Matrix Algebra Lecture 2: Mtrix lgebr Geerl. mtrix, for our purpose, is rectgulr rry of objects or elemets. We will tke these elemets s beig rel umbers d idicte elemet by its row d colum positio. mtrix is the ordered

More information