ON A SIMPLE SYSTEM OF CHARGED PARTICLES IN MILNE'S KINEMATICAL THEORY

Size: px
Start display at page:

Download "ON A SIMPLE SYSTEM OF CHARGED PARTICLES IN MILNE'S KINEMATICAL THEORY"

Transcription

1 ON A SIMPLE SYSTEM OF CHARGED PARTICLES IN MILNE'S KINEMATICAL THEORY BY D. N. MOGHE (Research Scholar, Bombay Uni,~er.dty) Received March 9, 1939 (Communicatcd by Dr. G. S. Mahajnni) 7. Introduction IN a recent paper Milne 1 has defined mass, energy, force, work, etc., according to bis kinematical theory. Ir the system of particles in his kinematical theory ate supposed to be charged particles then some interesting results ate obtained, it being assumed that the charge associated with the particles is the same for each particle. The value of the charge is e. The results obtained give ah interpretation of the principal equations of the electro-magnetic field in terms of the kinematical theory of relativity. Let us suppose that Mis the momentum of any particle belonging to the kinematical system under consideration ; then where p = mu, etc., and V = (u, v, w). M = (p, q, r), (1) Therefore, d (mu) = ex (2) dt is an equation of motion of any charged particle of the system. If, as a general case, these particles are supposed to collide with each other, then the loss of momentum due to the collision is proportional to the velocity of the particles and the equation (2) can be written in the general forro, viz., d Cm-)=~X-,,, (3) dt In Part I of this paper we shm1 obtain the principal equations of electro-magnetism taking (2) as the equation of motion of any charged particle of the system ; and in Part II these very equations will be deduced, taking into account the collisions of these charged particles. Milne defines force by the relation d (V ~), (4)* 31

2 32 D, N. Moghe where F is the Newtonian measure of force, mis the Newtonian measure P of the mass of an individual partiele, and V-- 7 is the velocity of the P constrained particle relative to its surroundings. -/ may be regarded as the eosmic velocity. 2. Part I : Non-colliding Particles In the Maxwell-Lorentz theory of eleetro-magnetism, the electric force (X, Y, Z) and the magnetic force (a, /~, ~) are determined by the equations, viz., and ~x ~t' etc. (5) ~H ~G etc., (6) = ~y ~z' where (--F, -G, --I-I, ~91 is the electro-magnetic four rector denoting the electro-magnetic potential. Ir should be pointed out here that the electro-magnetie equations used in this paper ate expressed in terms of Heaviside-Lorentz units. If, during the motion, the mass m of each partiele remains constant, then (2) can be written as du m 2~ = ex. (7) As the particles ate moving under the influenee of the substratum, the x x-component of the veloeity of an individual particle will be u -- ] instead of u. Therefore, we have from (4) and (7) Fa-m 2/} ~( u-- ~) =ex (8) of, in vectorial form (8) can be expressed as F-m~ ~( V-- ~) ---- e (X, Y, Z) (9) where V = (u, v, w) and P = (x, y; z). electric force we have e div (X, Y, Z) =m~91 ~ +~ + bz Taking the divergence of the Milne's equations for the motion of a system of particles in free space ate given by the single vector relation, viz., dv (P -- Vt) Y =.X G (91 (llp

3 Simple Syslem of Charged Particles in Milne's Kiuematical Theory 33 in the usual notation. For the fundamental system of particles G (r + 1--~0, X-->t ~, Y--~I, and Z-.t so that (11) becomes dv P -- Vt d t--r---. (12) If we regard the system of charged particles as the fundamental system then (10) reduces to m mv (13) e div (X, Y, Z) = 7 div V = div -}-. Accordingly, we have mv ep = div --U' (14) where p is the density of electric charge. From (13) follows mv e(x,y,z) =-~. (15) II the influence of the substratum is negligible the average acceleration V g of an individual particle is 7" The relation (15) can now be expressed as where m' m g (x, v, z) = ~'g, (16) The Maxwellian equations of the electro-magnetic field are: da bz by dt -- ay ~z' etc., (17) and dx ~r ~fl d-[ + ~~" = ~y ~z' etc., (18) where (ax, ay, a.) is the density of the electric current ; and as the current produced in the case under consideration is due only to charged particles in motion, we have From the equations (17) and (15) we deduce (ex, ay, a,) =p (u, v, w) ----pv. (19) db mv -- d-7 = curl -~, (20) where B = (a, ti, ~). Also from equations (18), (15) and (19) we get the following relation to determine the magnetic vector B, viz., A3 mp curl B =pv -- ep (21) p

4 34 D. N Moghe The usual equation of continuity, viz., takes the forro ~ +~ ~P = o (22) m~ (d~vv-~) 247 =o (%), If p is not a function of position, gradp =0; relation then p is given by the p- 1 et ~ = 2--m + A, (24) where Ais a constant of integration. Ir follows from (24) that p decreases with time and that p--~0 as t--+~. Also when t-~ 0, p--+p0, Po being the initial density of charge the constant of integration Ais, therefore, equal to p0-1 The mechanical stress (P, Q, R) in space due to the electro-magnetic field is given by P = px q- yay --/]%, etc. (25) Using (15) we obtain The rateat which work is done by the mechanical force is dw _ pmv 2 ( mv~ (27) d--t =- Xax + x[a r -l- Z~: et -- pv. -~ j and the Poynting flux ~ = (rrx, ~r, %), where 7rx = fiz- yy, etc., is expressed as [B.V]. (28) rr=}7 Ir should be remembered that we ate using the acceleration formula for the fundamental system as given by (12) for which d F-m ~ (V Pi) ---~ O. (29) This simple value of the aeceleration den0ting a limiting state-of the substratum is to be used only after the necessary operations have been performed. For instance, dv P -- Vt e(x,u =0 for di -- F- ' (30) therefore, ep = 0 But the correet result is given by (14). (al)

5 Simple System of Charged Particles in Milne's Kinematical Theory Part II: Colliding Partieles Itis quite probable that the charged particles belonging to the kinematical system under consideration may have frequent collisions with each other. Let us assume, therefore, that the mass of each individual particle remains constant during the motion before and after the collisions. Hence, the equation corresponding to (7) can be written as du m -)~ = ex --/zu, (32) so that the equations of motion for this case can be expressed by a single rector relation, viz., m--~ ~V(v -- ~)=~(~~~/-~(v ~) ~~~/ The divergence of the electric force would give the density of the electrie charge as div [(m +.t) V] 3~. ep (34) [. t J t ' but the of continuity (22) determines p more directly through a differential equation of the first order ir we put grad p = 0 (i.e., pis a function of t only), viz., dp- I 3mp- I et (35) dt + t (m + tlt) = m + t~t which integrates into p-1 =(t +q [ A+-74em log (m +t~t)]+me/3t, z+ 4- e t [1 + 7m/t m~/t,~t 2 + 4m3/l~3t3]. (36) t* A being a constant of integration, p-+0 when t-+ oo. From equations (17) and (18) we obtain the following formulm to determine the magnetic force B, viz., db (mv ~ y_a) P ---~ =curl --~ +,V 1 = V -- 7' (37) and mp curl B =pv -- et 3. (38) The mechan cal stress brought {nto play by this system of charged particles in motion is given by (P,Q,R) =p (mv ~ +-~- ~V~ + [B.V]) (39)

6 - - c- 36 D.N. Moghe and the work performed thereby is -~dw =PL[mV~et +-e91 (Z -- ty) J per unir time. (40) ~ Lastly, the flow of energy per unir area of the Poynting flux ~r can be expressed as ~r = m +e~./zt [B.V] --e91161 [B. PI. (41) REFERENCE.~ 1 Milne, E. A., " On the Foundat, ions of Dynamics," Proe. Roy. Soc., 154 A, z Asa general case, let us take the force as given by F = --MV(~ -- 1)/Z+u189 ~/y d [Mg Y89 X/Z] where M = m~89 g = -- (P -- VZ/Y)/X, then the equation of mo~ion for the system of charged particies (which cannot be called a simple system) is givcn after considerable reduction by e(x,y,z) = --.~I(O + 1)[g +V (~-- 1)/Z]. The fundamental system being given by G + 1 ~ 0, we have e ~ 0. This gives F ~ 0 for G + I - 0 which leads to relations of the forro gimen by (4:) and (12). a Here X = i~ pg. ~, Y = 1 -- V ~, ~ andz =t-- P ~ V are nob to be confused with the cnmponents of electric force denoted by ~he same letters. 4 Here F is the eleetric force (X, Y, Z). a Here as in referente (3) Y a nd Z ate not to be confused with the component.s of electric force.

On Fluid Maxwell Equations

On Fluid Maxwell Equations On Fluid Maxwell Equations Tsutomu Kambe, (Former Professor, Physics), University of Tokyo, Abstract Fluid mechanics is a field theory of Newtonian mechanics of Galilean symmetry, concerned with fluid

More information

Electromagnetic energy and momentum

Electromagnetic energy and momentum Electromagnetic energy and momentum Conservation of energy: the Poynting vector In previous chapters of Jackson we have seen that the energy density of the electric eq. 4.89 in Jackson and magnetic eq.

More information

Chapter 1. Vector Algebra and Vector Space

Chapter 1. Vector Algebra and Vector Space 1. Vector Algebra 1.1. Scalars and vectors Chapter 1. Vector Algebra and Vector Space The simplest kind of physical quantity is one that can be completely specified by its magnitude, a single number, together

More information

In this section, mathematical description of the motion of fluid elements moving in a flow field is

In this section, mathematical description of the motion of fluid elements moving in a flow field is Jun. 05, 015 Chapter 6. Differential Analysis of Fluid Flow 6.1 Fluid Element Kinematics In this section, mathematical description of the motion of fluid elements moving in a flow field is given. A small

More information

f. D that is, F dr = c c = [2"' (-a sin t)( -a sin t) + (a cos t)(a cost) dt = f2"' dt = 2

f. D that is, F dr = c c = [2' (-a sin t)( -a sin t) + (a cos t)(a cost) dt = f2' dt = 2 SECTION 16.4 GREEN'S THEOREM 1089 X with center the origin and radius a, where a is chosen to be small enough that C' lies inside C. (See Figure 11.) Let be the region bounded by C and C'. Then its positively

More information

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr. 1. Let F(x, y) xyi+(y 3x)j, and let be the curve r(t) ti+(3t t 2 )j for t 2. ompute F dr. Solution. F dr b a 2 2 F(r(t)) r (t) dt t(3t t 2 ), 3t t 2 3t 1, 3 2t dt t 3 dt 1 2 4 t4 4. 2. Evaluate the line

More information

Mathematical Notes for E&M Gradient, Divergence, and Curl

Mathematical Notes for E&M Gradient, Divergence, and Curl Mathematical Notes for E&M Gradient, Divergence, and Curl In these notes I explain the differential operators gradient, divergence, and curl (also known as rotor), the relations between them, the integral

More information

Chapter 8. Conservation Laws. 8.3 Magnetic Forces Do No Work

Chapter 8. Conservation Laws. 8.3 Magnetic Forces Do No Work Chapter 8. Conservation Laws 8.3 Magnetic Forces Do No Work 8.2 Momentum of EM fields 8.2.1 Newton's Third Law in Electrodynamics Consider two charges, q 1 and q 2, moving with speeds v 1 and v 2 magnetic

More information

Divergence Theorem December 2013

Divergence Theorem December 2013 Divergence Theorem 17.3 11 December 2013 Fundamental Theorem, Four Ways. b F (x) dx = F (b) F (a) a [a, b] F (x) on boundary of If C path from P to Q, ( φ) ds = φ(q) φ(p) C φ on boundary of C Green s Theorem:

More information

examples of equations: what and why intrinsic view, physical origin, probability, geometry

examples of equations: what and why intrinsic view, physical origin, probability, geometry Lecture 1 Introduction examples of equations: what and why intrinsic view, physical origin, probability, geometry Intrinsic/abstract F ( x, Du, D u, D 3 u, = 0 Recall algebraic equations such as linear

More information

Divergence Theorem Fundamental Theorem, Four Ways. 3D Fundamental Theorem. Divergence Theorem

Divergence Theorem Fundamental Theorem, Four Ways. 3D Fundamental Theorem. Divergence Theorem Divergence Theorem 17.3 11 December 213 Fundamental Theorem, Four Ways. b F (x) dx = F (b) F (a) a [a, b] F (x) on boundary of If C path from P to Q, ( φ) ds = φ(q) φ(p) C φ on boundary of C Green s Theorem:

More information

Created by T. Madas VECTOR OPERATORS. Created by T. Madas

Created by T. Madas VECTOR OPERATORS. Created by T. Madas VECTOR OPERATORS GRADIENT gradϕ ϕ Question 1 A surface S is given by the Cartesian equation x 2 2 + y = 25. a) Draw a sketch of S, and describe it geometrically. b) Determine an equation of the tangent

More information

MAT 211 Final Exam. Spring Jennings. Show your work!

MAT 211 Final Exam. Spring Jennings. Show your work! MAT 211 Final Exam. pring 215. Jennings. how your work! Hessian D = f xx f yy (f xy ) 2 (for optimization). Polar coordinates x = r cos(θ), y = r sin(θ), da = r dr dθ. ylindrical coordinates x = r cos(θ),

More information

Chapter 6: Momentum Analysis

Chapter 6: Momentum Analysis 6-1 Introduction 6-2Newton s Law and Conservation of Momentum 6-3 Choosing a Control Volume 6-4 Forces Acting on a Control Volume 6-5Linear Momentum Equation 6-6 Angular Momentum 6-7 The Second Law of

More information

Exercises in field theory

Exercises in field theory Exercises in field theory Wolfgang Kastaun April 30, 2008 Faraday s law for a moving circuit Faradays law: S E d l = k d B d a dt S If St) is moving with constant velocity v, it can be written as St) E

More information

Notes 3 Review of Vector Calculus

Notes 3 Review of Vector Calculus ECE 3317 Applied Electromagnetic Waves Prof. David R. Jackson Fall 2018 A ˆ Notes 3 Review of Vector Calculus y ya ˆ y x xa V = x y ˆ x Adapted from notes by Prof. Stuart A. Long 1 Overview Here we present

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

EKC314: TRANSPORT PHENOMENA Core Course for B.Eng.(Chemical Engineering) Semester II (2008/2009)

EKC314: TRANSPORT PHENOMENA Core Course for B.Eng.(Chemical Engineering) Semester II (2008/2009) EKC314: TRANSPORT PHENOMENA Core Course for B.Eng.(Chemical Engineering) Semester II (2008/2009) Dr. Mohamad Hekarl Uzir-chhekarl@eng.usm.my School of Chemical Engineering Engineering Campus, Universiti

More information

Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow

Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow Anderson: Chapter 2 pp. 41-54 1 Equation of State: Section 1 Review p = R g T " > R g = R u M w - R u = 8314.4126

More information

Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay

Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay Module - 4 Time Varying Field Lecture - 30 Maxwell s Equations In the last lecture we had introduced

More information

Narayana IIT Academy

Narayana IIT Academy IDIA Sec: Sr. IIT_IZ Jee-Advanced Date: 8-1-18 Time: : PM to 5: PM 11_P Model Max.Marks: 4 KEY SEET CEMISTRY 1 B C B 4 B 5 B 6 B 7 B 8 B 9 ABCD 1 ABCD 11 A 1 ABCD 1 1 14 15 16 4 17 6 18 19 A-PQRS B-PQRST

More information

Physics 2D Lecture Slides Jan 15. Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Jan 15. Vivek Sharma UCSD Physics Physics D Lecture Slides Jan 15 Vivek Sharma UCSD Physics Relativistic Momentum and Revised Newton s Laws and the Special theory of relativity: Example : p= mu Need to generalize the laws of Mechanics

More information

Intermission Page 343, Griffith

Intermission Page 343, Griffith Intermission Page 343, Griffith Chapter 8. Conservation Laws (Page 346, Griffith) Lecture : Electromagnetic Power Flow Flow of Electromagnetic Power Electromagnetic waves transport throughout space the

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Momentum and Energy Conservation Albert Einstein 879-955 Review: Transforming Velocity Remember: u = dx dt x = γ ν (x + vt ) t = γ ν ( v c 2 x + t ) From this

More information

Hamiltonian Mechanics

Hamiltonian Mechanics Alain J. Brizard Saint Michael's College Hamiltonian Mechanics 1 Hamiltonian The k second-order Euler-Lagrange equations on con guration space q =(q 1 ; :::; q k ) d @ _q j = @q j ; (1) can be written

More information

Chapter 6: Vector Analysis

Chapter 6: Vector Analysis Chapter 6: Vector Analysis We use derivatives and various products of vectors in all areas of physics. For example, Newton s 2nd law is F = m d2 r. In electricity dt 2 and magnetism, we need surface and

More information

Plasmas as fluids. S.M.Lea. January 2007

Plasmas as fluids. S.M.Lea. January 2007 Plasmas as fluids S.M.Lea January 2007 So far we have considered a plasma as a set of non intereacting particles, each following its own path in the electric and magnetic fields. Now we want to consider

More information

Lesson 7. Luis Anchordoqui. Physics 168. Tuesday, October 10, 17

Lesson 7. Luis Anchordoqui. Physics 168. Tuesday, October 10, 17 Lesson 7 Physics 168 1 Eruption of a large volcano on Jupiter s moon When volcano erupts speed of effluence exceeds escape speed of Io and so a stream of particles is projected into space Material in stream

More information

This document consists of 14 printed pages.

This document consists of 14 printed pages. Cambridge International Examinations Cambridge International Advanced Level FURTHER MATHEMATICS 9231/23 Paper 2 MARK SCHEME Maximum Mark: 100 Published This mark scheme is published as an aid to teachers

More information

FARADAY S LAW. dw F dr qe dr. EMF E d. EMF v B d. dt dt

FARADAY S LAW. dw F dr qe dr. EMF E d. EMF v B d. dt dt FARADAY S LAW It is observed experimentally that if the magnetic flux through a circuit is changed a voltage is produced around the circuit in such a direction as to oppose the change. The magnetic flux

More information

Electrodynamics of Radiation Processes

Electrodynamics of Radiation Processes Electrodynamics of Radiation Processes 7. Emission from relativistic particles (contd) & Bremsstrahlung http://www.astro.rug.nl/~etolstoy/radproc/ Chapter 4: Rybicki&Lightman Sections 4.8, 4.9 Chapter

More information

Module 2: Special Theory of Relativity - Basics

Module 2: Special Theory of Relativity - Basics Lecture 01 PH101: Physics 1 Module 2: Special Theory of Relativity - Basics Girish Setlur & Poulose Poulose gsetlur@iitg.ac.in Department of Physics, IIT Guwahati poulose@iitg.ac.in ( 22 October 2018 )

More information

AE/ME 339. Computational Fluid Dynamics (CFD) K. M. Isaac. Momentum equation. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

AE/ME 339. Computational Fluid Dynamics (CFD) K. M. Isaac. Momentum equation. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept. AE/ME 339 Computational Fluid Dynamics (CFD) 9//005 Topic7_NS_ F0 1 Momentum equation 9//005 Topic7_NS_ F0 1 Consider the moving fluid element model shown in Figure.b Basis is Newton s nd Law which says

More information

Physics 2210 Fall smartphysics 10 Center-of-Mass 11 Conservation of Momentum 10/21/2015

Physics 2210 Fall smartphysics 10 Center-of-Mass 11 Conservation of Momentum 10/21/2015 Physics 2210 Fall 2015 smartphysics 10 Center-of-Mass 11 Conservation of Momentum 10/21/2015 Collective Motion and Center-of-Mass Take a group of particles, each with mass m i, position r i and velocity

More information

Basic hydrodynamics. David Gurarie. 1 Newtonian fluids: Euler and Navier-Stokes equations

Basic hydrodynamics. David Gurarie. 1 Newtonian fluids: Euler and Navier-Stokes equations Basic hydrodynamics David Gurarie 1 Newtonian fluids: Euler and Navier-Stokes equations The basic hydrodynamic equations in the Eulerian form consist of conservation of mass, momentum and energy. We denote

More information

Maxwell s Equations in Differential Form, and Uniform Plane Waves in Free Space

Maxwell s Equations in Differential Form, and Uniform Plane Waves in Free Space C H A P T E R 3 Maxwell s Equations in Differential Form, and Uniform Plane Waves in Free Space In Chapter 2, we introduced Maxwell s equations in integral form. We learned that the quantities involved

More information

Dynamical Systems. Mechanical Systems

Dynamical Systems. Mechanical Systems EE/ME/AE324: Dynamical Systems Chapter 2: Modeling Translational Mechanical Systems Common Variables Used Assumes 1 DoF per mass, i.e., all motion scalar Displacement: x ()[ t [m] Velocity: dx() t vt ()

More information

Math 308, Sections 301, 302, Summer 2008 Review before Test I 06/09/2008

Math 308, Sections 301, 302, Summer 2008 Review before Test I 06/09/2008 Math 308, Sections 301, 302, Summer 2008 Review before Test I 06/09/2008 Chapter 1. Introduction Section 1.1 Background Definition Equation that contains some derivatives of an unknown function is called

More information

Time-Varying Systems; Maxwell s Equations

Time-Varying Systems; Maxwell s Equations Time-Varying Systems; Maxwell s Equations 1. Faraday s law in differential form 2. Scalar and vector potentials; the Lorenz condition 3. Ampere s law with displacement current 4. Maxwell s equations 5.

More information

Radiation Integrals and Auxiliary Potential Functions

Radiation Integrals and Auxiliary Potential Functions Radiation Integrals and Auxiliary Potential Functions Ranga Rodrigo June 23, 2010 Lecture notes are fully based on Balanis [?]. Some diagrams and text are directly from the books. Contents 1 The Vector

More information

f b a 2 Bay - az V /m. Section 4.2- Coulomb's Law and Field Intensity

f b a 2 Bay - az V /m. Section 4.2- Coulomb's Law and Field Intensity 166 CHAPTER 4 ELECTROSTATIC Fl ELDS 4.7 Suppose a uniform electric field exists in the room in which you are working, such that the lines of force are horizontal and at right angles to one wall. As you

More information

Cambridge Assessment International Education Cambridge International Advanced Level. Published

Cambridge Assessment International Education Cambridge International Advanced Level. Published Cambridge Assessment International Education Cambridge International Advanced Level FURTHER MATHEMATICS 9231/23 Paper 2 MARK SCHEME Maximum Mark: 100 Published This mark scheme is published as an aid to

More information

Multivariable Calculus

Multivariable Calculus Multivariable Calculus In thermodynamics, we will frequently deal with functions of more than one variable e.g., P PT, V, n, U UT, V, n, U UT, P, n U = energy n = # moles etensive variable: depends on

More information

Study Guide for Exam #2

Study Guide for Exam #2 Physical Mechanics METR103 November, 000 Study Guide for Exam # The information even below is meant to serve as a guide to help you to prepare for the second hour exam. The absence of a topic or point

More information

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1 AE/ME 339 Professor of Aerospace Engineering 12/21/01 topic7_ns_equations 1 Continuity equation Governing equation summary Non-conservation form D Dt. V 0.(2.29) Conservation form ( V ) 0...(2.33) t 12/21/01

More information

Intermission on Page 343

Intermission on Page 343 Intermission on Page 343 Together with the force law, All of our cards are now on the table, and in a sense my job is done. In the first seven chapters we assembled electrodynamics piece by piece, and

More information

Unit-1 Electrostatics-1

Unit-1 Electrostatics-1 1. Describe about Co-ordinate Systems. Co-ordinate Systems Unit-1 Electrostatics-1 In order to describe the spatial variations of the quantities, we require using appropriate coordinate system. A point

More information

Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture 18 Basic Laws of Electromagnetics We saw in the earlier lecture

More information

Module 2: Governing Equations and Hypersonic Relations

Module 2: Governing Equations and Hypersonic Relations Module 2: Governing Equations and Hypersonic Relations Lecture -2: Mass Conservation Equation 2.1 The Differential Equation for mass conservation: Let consider an infinitely small elemental control volume

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Engineering Physics 1 Dr. B. K. Patra Department of Physics Indian Institute of Technology-Roorkee

Engineering Physics 1 Dr. B. K. Patra Department of Physics Indian Institute of Technology-Roorkee Engineering Physics 1 Dr. B. K. Patra Department of Physics Indian Institute of Technology-Roorkee Module-05 Lecture-04 Maxwellian Distribution Law of Velocity Part 02 So, we have already told to experiment

More information

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt Jim Lambers MAT 28 ummer emester 212-1 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain

More information

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University TAADI Electromagnetic Theory

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University TAADI Electromagnetic Theory TAAD1 Electromagnetic Theory G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University 8-31-12 Classical Electrodynamics A main physics discovery of the last half of the 2 th

More information

Lecture 16 March 29, 2010

Lecture 16 March 29, 2010 Lecture 16 March 29, 2010 We know Maxwell s equations the Lorentz force. Why more theory? Newton = = Hamiltonian = Quantum Mechanics Elegance! Beauty! Gauge Fields = Non-Abelian Gauge Theory = Stard Model

More information

Electromagnetism and Maxwell s Equations

Electromagnetism and Maxwell s Equations Chapter 4. Electromagnetism and Maxwell s Equations Notes: Most of the material presented in this chapter is taken from Jackson Chap. 6. 4.1 Maxwell s Displacement Current Of the four equations derived

More information

Vector Analysis. Electromagnetic Theory PHYS 401. Fall 2017

Vector Analysis. Electromagnetic Theory PHYS 401. Fall 2017 Vector Analysis Electromagnetic Theory PHYS 401 Fall 2017 1 Vector Analysis Vector analysis is a mathematical formalism with which EM concepts are most conveniently expressed and best comprehended. Many

More information

George Mason University. Physics 540 Spring Notes on Relativistic Kinematics. 1 Introduction 2

George Mason University. Physics 540 Spring Notes on Relativistic Kinematics. 1 Introduction 2 George Mason University Physics 540 Spring 2011 Contents Notes on Relativistic Kinematics 1 Introduction 2 2 Lorentz Transformations 2 2.1 Position-time 4-vector............................. 3 2.2 Velocity

More information

PROBLEM SET. Heliophysics Summer School. July, 2013

PROBLEM SET. Heliophysics Summer School. July, 2013 PROBLEM SET Heliophysics Summer School July, 2013 Problem Set for Shocks and Particle Acceleration There is probably only time to attempt one or two of these questions. In the tutorial session discussion

More information

G G. G. x = u cos v, y = f(u), z = u sin v. H. x = u + v, y = v, z = u v. 1 + g 2 x + g 2 y du dv

G G. G. x = u cos v, y = f(u), z = u sin v. H. x = u + v, y = v, z = u v. 1 + g 2 x + g 2 y du dv 1. Matching. Fill in the appropriate letter. 1. ds for a surface z = g(x, y) A. r u r v du dv 2. ds for a surface r(u, v) B. r u r v du dv 3. ds for any surface C. G x G z, G y G z, 1 4. Unit normal N

More information

ENGI Gradient, Divergence, Curl Page 5.01

ENGI Gradient, Divergence, Curl Page 5.01 ENGI 940 5.0 - Gradient, Divergence, Curl Page 5.0 5. e Gradient Operator A brief review is provided ere for te gradient operator in bot Cartesian and ortogonal non-cartesian coordinate systems. Sections

More information

PRACTICE QUESTION PAPER WITH SOLUTION CLASS XI PHYSICS

PRACTICE QUESTION PAPER WITH SOLUTION CLASS XI PHYSICS PRACTICE QUESTION PAPER WITH SOLUTION CLASS XI PHYSICS. A given quantity has both magnitude and direction. Is it necessarily a vector? Justify your answer.. What is the rotational analogue of the force?.

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the 1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle

More information

Physics 201: Lecture 14, Pg 1

Physics 201: Lecture 14, Pg 1 Physics 201: Lecture 14, Pg 1 Physics 131: Lecture 15 Today s Agenda Impulse and Momentum (or the chapter where physicists run out of letters) Non-constant forces Impulse-momentum thm Conservation of Linear

More information

3. Maxwell's Equations and Light Waves

3. Maxwell's Equations and Light Waves 3. Maxwell's Equations and Light Waves Vector fields, vector derivatives and the 3D Wave equation Derivation of the wave equation from Maxwell's Equations Why light waves are transverse waves Why is the

More information

Some fundamentals. Statistical mechanics. The non-equilibrium ISM. = g u

Some fundamentals. Statistical mechanics. The non-equilibrium ISM. = g u Some fundamentals Statistical mechanics We have seen that the collision timescale for gas in this room is very small relative to radiative timesscales such as spontaneous emission. The frequent collisions

More information

Bremsstrahlung Radiation

Bremsstrahlung Radiation Bremsstrahlung Radiation Wise (IR) An Example in Everyday Life X-Rays used in medicine (radiographics) are generated via Bremsstrahlung process. In a nutshell: Bremsstrahlung radiation is emitted when

More information

FIITJEE JEE(Main)

FIITJEE JEE(Main) AITS-FT-II-PCM-Sol.-JEE(Main)/7 In JEE Advanced 06, FIITJEE Students bag 6 in Top 00 AIR, 75 in Top 00 AIR, 8 in Top 500 AIR. 54 Students from Long Term Classroom/ Integrated School Program & 44 Students

More information

Physics 4230 Final Examination 10 May 2007

Physics 4230 Final Examination 10 May 2007 Physics 43 Final Examination May 7 In each problem, be sure to give the reasoning for your answer and define any variables you create. If you use a general formula, state that formula clearly before manipulating

More information

Thermodynamics: A Brief Introduction. Thermodynamics: A Brief Introduction

Thermodynamics: A Brief Introduction. Thermodynamics: A Brief Introduction Brief review or introduction to Classical Thermodynamics Hopefully you remember this equation from chemistry. The Gibbs Free Energy (G) as related to enthalpy (H) and entropy (S) and temperature (T). Δ

More information

BEM for compressible fluid dynamics

BEM for compressible fluid dynamics BEM for compressible fluid dynamics L. gkerget & N. Samec Faculty of Mechanical Engineering, Institute of Power, Process and Environmental Engineering, University of Maribor, Slovenia Abstract The fully

More information

Tutorial: Theory and applications of the Maxwell stress tensor

Tutorial: Theory and applications of the Maxwell stress tensor Tutorial: Theory and applications of the Maxwell stress tensor Stanley Humphries, Copyright 2012 Field Precision PO Box 13595, Albuquerque, NM 87192 U.S.A. Telephone: +1-505-220-3975 Fax: +1-617-752-9077

More information

Electromagnetic Wave Propagation Lecture 1: Maxwell s equations

Electromagnetic Wave Propagation Lecture 1: Maxwell s equations Electromagnetic Wave Propagation Lecture 1: Maxwell s equations Daniel Sjöberg Department of Electrical and Information Technology September 2, 2014 Outline 1 Maxwell s equations 2 Vector analysis 3 Boundary

More information

9231 FURTHER MATHEMATICS

9231 FURTHER MATHEMATICS CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level MARK SCHEME for the October/November 2012 series 9231 FURTHER MATHEMATICS 9231/21 Paper 2, maximum raw mark 100

More information

Lesson Rigid Body Dynamics

Lesson Rigid Body Dynamics Lesson 8 Rigid Body Dynamics Lesson 8 Outline Problem definition and motivations Dynamics of rigid bodies The equation of unconstrained motion (ODE) User and time control Demos / tools / libs Rigid Body

More information

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions alculus III Math 33 pring 7 Final exam May 3rd. uggested solutions This exam contains twenty problems numbered 1 through. All problems are multiple choice problems, and each counts 5% of your total score.

More information

9231 FURTHER MATHEMATICS

9231 FURTHER MATHEMATICS CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International Advanced Level MARK SCHEME for the October/November 015 series 931 FURTHER MATHEMATICS 931/1 Paper, maximum raw mark 100 This mark scheme is

More information

Physics 2101 S c e t c i cti n o 3 n 3 March 31st Announcements: Quiz today about Ch. 14 Class Website:

Physics 2101 S c e t c i cti n o 3 n 3 March 31st Announcements: Quiz today about Ch. 14 Class Website: Physics 2101 Section 3 March 31 st Announcements: Quiz today about Ch. 14 Class Website: http://www.phys.lsu.edu/classes/spring2010/phys2101 3/ http://www.phys.lsu.edu/~jzhang/teaching.html Simple Harmonic

More information

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Faraday s law of induction We have learned that a constant current induces magnetic field and a constant charge (or a voltage) makes an electric

More information

Multiple Integrals and Vector Calculus: Synopsis

Multiple Integrals and Vector Calculus: Synopsis Multiple Integrals and Vector Calculus: Synopsis Hilary Term 28: 14 lectures. Steve Rawlings. 1. Vectors - recap of basic principles. Things which are (and are not) vectors. Differentiation and integration

More information

no incoming fields c D r

no incoming fields c D r A x 4 D r xx ' J x ' d 4 x ' no incoming fields c D r xx ' : the retarded Green function e U x 0 r 0 xr d J e c U 4 x ' r d xr 0 0 x r x x xr x r xr U f x x x i d f d x x xi A x e U Ux r 0 Lienard - Wiechert

More information

4 Relativistic kinematics

4 Relativistic kinematics 4 Relativistic kinematics In astrophysics, we are often dealing with relativistic particles that are being accelerated by electric or magnetic forces. This produces radiation, typically in the form of

More information

FOUNDATION STUDIES EXAMINATIONS November PHYSICS Semester Two February Main

FOUNDATION STUDIES EXAMINATIONS November PHYSICS Semester Two February Main FOUNDATION STUDIES EXAMINATIONS November 203 PHYSICS Semester Two February Main Time allowed 2 hours for writing 0 minutes for reading This paper consists of 5 questions printed on 0 pages. PLEASE CHECK

More information

Electromagnetic Wave Propagation Lecture 1: Maxwell s equations

Electromagnetic Wave Propagation Lecture 1: Maxwell s equations Electromagnetic Wave Propagation Lecture 1: Maxwell s equations Daniel Sjöberg Department of Electrical and Information Technology September 3, 2013 Outline 1 Maxwell s equations 2 Vector analysis 3 Boundary

More information

1 A proper factor of an integer N is a positive integer, not 1 or N, that divides N.

1 A proper factor of an integer N is a positive integer, not 1 or N, that divides N. Section A: Pure Mathematics 1 A proper factor of an integer N is a positive integer, not 1 or N, that divides N. Show that 3 2 5 3 has exactly 10 proper factors. Determine how many other integers of the

More information

First Year Physics: Prelims CP1 Classical Mechanics: DR. Ghassan Yassin

First Year Physics: Prelims CP1 Classical Mechanics: DR. Ghassan Yassin First Year Physics: Prelims CP1 Classical Mechanics: DR. Ghassan Yassin MT 2007 Problems I The problems are divided into two sections: (A) Standard and (B) Harder. The topics are covered in lectures 1

More information

GCE AS. Mathematics. Mark Schemes. Summer 2010

GCE AS. Mathematics. Mark Schemes. Summer 2010 GCE AS Mathematics Summer 010 Mark Schemes Issued: October 010 NORTHERN IRELAND GENERAL CERTIFICATE OF SECONDARY EDUCATION (GCSE) AND NORTHERN IRELAND GENERAL CERTIFICATE OF EDUCATION (GCE) Introduction

More information

Lecture II: Rigid-Body Physics

Lecture II: Rigid-Body Physics Rigid-Body Motion Previously: Point dimensionless objects moving through a trajectory. Today: Objects with dimensions, moving as one piece. 2 Rigid-Body Kinematics Objects as sets of points. Relative distances

More information

Chapter 18 Thermal Properties of Matter

Chapter 18 Thermal Properties of Matter Chapter 18 Thermal Properties of Matter In this section we define the thermodynamic state variables and their relationship to each other, called the equation of state. The system of interest (most of the

More information

Ch 4 Differentiation

Ch 4 Differentiation Ch 1 Partial fractions Ch 6 Integration Ch 2 Coordinate geometry C4 Ch 5 Vectors Ch 3 The binomial expansion Ch 4 Differentiation Chapter 1 Partial fractions We can add (or take away) two fractions only

More information

Electromagnetic Theory

Electromagnetic Theory Summary: Electromagnetic Theory Maxwell s equations EM Potentials Equations of motion of particles in electromagnetic fields Green s functions Lienard-Weichert potentials Spectral distribution of electromagnetic

More information

MATH 18.01, FALL PROBLEM SET #5 SOLUTIONS (PART II)

MATH 18.01, FALL PROBLEM SET #5 SOLUTIONS (PART II) MATH 8, FALL 7 - PROBLEM SET #5 SOLUTIONS (PART II (Oct ; Antiderivatives; + + 3 7 points Recall that in pset 3A, you showed that (d/dx tanh x x Here, tanh (x denotes the inverse to the hyperbolic tangent

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

Maxwell s Equations in Differential Form

Maxwell s Equations in Differential Form Maxwell s Equations in Differential Form CHAPTER 3 In Chapter 2 we introduced Maxwell s equations in integral form. We learned that the quantities involved in the formulation of these equations are the

More information

Single Particle Motion

Single Particle Motion Single Particle Motion C ontents Uniform E and B E = - guiding centers Definition of guiding center E gravitation Non Uniform B 'grad B' drift, B B Curvature drift Grad -B drift, B B invariance of µ. Magnetic

More information

PHYSICS 272 Electric & Magnetic Interactions

PHYSICS 272 Electric & Magnetic Interactions PHYS 7: Matter and Interactions II -- Electric And Magnetic Interactions http://www.physics.purdue.edu/academic_programs/courses/phys7/ PHYSICS 7 Electric & Magnetic Interactions Lecture 7 (last lecture)

More information

Solutions to Homework 1, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y(x) = ce 2x + e x

Solutions to Homework 1, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y(x) = ce 2x + e x Solutions to Homewor 1, Introduction to Differential Equations, 3450:335-003, Dr. Montero, Spring 2009 problem 2. The problem says that the function yx = ce 2x + e x solves the ODE y + 2y = e x, and ass

More information

Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion

Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion Department of applied physics, Aalto University March 8, 2016 Hamiltonian versus Newtonian mechanics Newtonian mechanics:

More information

APPENDIX Z. USEFUL FORMULAS 1. Appendix Z. Useful Formulas. DRAFT 13:41 June 30, 2006 c J.D Callen, Fundamentals of Plasma Physics

APPENDIX Z. USEFUL FORMULAS 1. Appendix Z. Useful Formulas. DRAFT 13:41 June 30, 2006 c J.D Callen, Fundamentals of Plasma Physics APPENDIX Z. USEFUL FORMULAS 1 Appendix Z Useful Formulas APPENDIX Z. USEFUL FORMULAS 2 Key Vector Relations A B = B A, A B = B A, A A = 0, A B C) = A B) C A B C) = B A C) C A B), bac-cab rule A B) C D)

More information