Reduction of Couplings and Gauge Yukawa Unification: in Finite Thories and in the MSSM

Size: px
Start display at page:

Download "Reduction of Couplings and Gauge Yukawa Unification: in Finite Thories and in the MSSM"

Transcription

1 Reduction of Couplings and Gauge Yukawa Unification: in Finite Thories and in the MSSM Myriam Mondragón Sven Heinemeyer Nick Tracas George Zoupanos CORFU 2013

2 What happens as we approach the Planck scale? or just as we go up in energy... How do we go from a fundamental theory to field theory as we know it? How are the gauge, Yukawa and Higgs sectors related at a more fundamental level? How do particles get their very different masses? What is the nature of the Higgs? Is there one or many? How this affects all the above? Where is the new physics??

3 Search for understanding relations between parameters addition of symmetries. N = 1 SUSY GUTs. Complementary approach: look for RGI relations among couplings at GUT scale Planck scale reduction of couplings resulting theory: less free parameters more predictive

4 Gauge Yukawa Unification GYU Remarkable: reduction of couplings provides a way to relate two previously unrelated sectors gauge and Yukawa couplings Reduction of couplings in third generation provides predictions for quark masses (top and bottom) Including soft breaking terms gives Higgs masses and SUSY spectrum Kubo, M.M., Olechowski, Tracas, Zoupanos (1995,1996,1997); Oehme (1995); Kobayashi, Kubo, Raby, Zhang (2005); Gogoladze, Mimura, Nandi (2003,2004); Gogoladze, Li, Senoguz, Shafi, Khalid, Raza (2006,2011); M.M., Tracas, Zoupanos (2013)

5 Gauge Yukawa Unification in Finite Theories Dimensionless sector of all-loop finite SU(5) model M top 178 GeV large tan β, heavy SUSY spectrum Kapetanakis, M.M., Zoupanos, Z.f.Physik (1993) M exp top 176 ± 18 GeV found in 1995 M exp top ±.09 GeV 2013 Very promising, a more detailed analysis was clearly needed Higgs mass GeV M exp H 126 ± 1 GeV 2012 Heinemeyer M.M., Zoupanos, JHEP, 2007, Phys.Lett.B (2013)

6 Gauge Yukawa Unification in the MSSM Possible to have a reduced system in the third generation compatible with quark masses large tan β, heavy SUSY spectrum Higgs mass GeV M.M., Tracas, Zoupanos, arxiv:

7 Reduction of Couplings see George Tsamis talk A RGI relation among couplings Φ(g 1,..., g N ) = 0 satisfies µ dφ/dµ = N β i Φ/ g i = 0. i=1 g i = coupling, β i its β function Finding the (N 1) independent Φ s is equivalent to solve the reduction equations (RE) β g (dg i /dg) = β i, i = 1,, N Reduced theory: only one independent coupling and its β function complete reduction: power series solution of RE g a = n=0 ρ (n) a g 2n+1

8 uniqueness of the solution can be investigated at one-loop valid at all loops Zimmermann, Oehme, Sibold (1984,1985) The complete reduction might be too restrictive, one may use fewer Φ s as RGI constraints Reduction of couplings is essential for finiteness finiteness: absence of renormalizations β N = 0 SUSY no-renormalization theorems only study one and two-loops guarantee that is gauge and reparameterization invariant to all loops

9 Finiteness A chiral, anomaly free, N = 1 globally supersymmetric gauge theory based on a group G with gauge coupling constant g has a superpotential W = 1 2 mij Φ i Φ j Cijk Φ i Φ j Φ k, Requiring one-loop finiteness β (1) g following conditions: T (R i ) = 3C 2 (G), i = 0 = γ j(1) i gives the 1 2 C ipqc jpq = 2δ j i g2 C 2 (R i ). C 2 (G) quadratic Casimir invariant, T (R i ) Dynkin index of R i, C ijk Yukawa coup., g gauge coup. restricts the particle content of the models relates the gauge and Yukawa sectors

10 One-loop finiteness two-loop finiteness Jones, Mezincescu and Yao (1984,1985) One-loop finiteness restricts the choice of irreps R i, as well as the Yukawa couplings Cannot be applied to the susy Standard Model (SSM): C 2 [U(1)] = 0 The finiteness conditions allow only SSB terms It is possible to achieve all-loop finiteness β n = 0: 1. One-loop finiteness conditions must be satisfied Lucchesi, Piguet, Sibold 2. The Yukawa couplings must be a formal power series in g, which is solution (isolated and non-degenerate) to the reduction equations

11 SUSY breaking soft terms

12 RGI in the Soft Supersymmetry Breaking Sector Supersymmetry is essential. It has to be broken, though... L SB = 1 6 hijk φ i φ j φ k bij φ i φ j (m2 ) j i φ i φ j + 1 M λλ + H.c. 2 h trilinear couplings (A), b ij bilinear couplings, m 2 squared scalar masses, M unified gaugino mass The RGI method has been extended to the SSB of these theories. One- and two-loop finiteness conditions for SSB have been known for some time Jack, Jones, et al. It is also possible to have all-loop RGI relations in the finite and non-finite cases Kazakov; Jack, Jones, Pickering

13 SSB terms depend only on g and the unified gaugino mass M universality conditions h = MC, m 2 M 2, b Mµ Very appealing! But too restrictive it leads to phenomenological problems: Charge and colour breaking vacua Incompatible with radiative electroweak breaking The lightest susy particle (LSP) is charged Brignole, Ibáñez, Muñoz Yoshioka; Kobayashi et al Possible to relax the universality condition to a sum-rule for the soft scalar masses better phenomenology. Kobayashi, Kubo, M.M., Zoupanos

14 Soft scalar sum-rule for the finite case Finiteness implies C ijk = g n=0 ρ ijk (n) g2n h ijk = MC ijk + = Mρ ijk (0) g + O(g5 ) If lowest order coefficients ρ ijk (0) and (m2 ) i j satisfy diagonality relations ρ ipq(0) ρ jpq (0) δj i, (m 2 ) i j = m 2 j δi j for all p and q. We find the the following soft scalar-mass sum rule, also to all-loops for i, j, k with ρ ijk (0) 0, where (1) is the two-loop correction =0 for universal choice ( m 2 i + m 2 j + m 2 k )/MM = 1 + g2 16π 2 (2) + O(g 4 ) Kazakov et al; Jack, Jones et al; Yamada; Hisano, Shifman; Kobayashi, Kubo, Zoupanos Also satisfied in certain class of orbifold models, where massive states are organized into N = 4 supermultiples

15 Several aspects of Finite Models have been studied SU(5) Finite Models studied extensively Rabi et al; Kazakov et al; López-Mercader, Quirós et al; M.M, Kapetanakis, Zoupanos; etc One of the above coincides with a non-standard Calabi-Yau SU(5) E 8 Greene et al; Kapetanakis, M.M., Zoupanos Finite theory from compactified string model also exists (albeit not good phenomenology) Ibáñez Criteria for getting finite theories from branes N = 2 finiteness Models involving three generations Hanany, Strassler, Uranga Frere, Mezincescu and Yao Babu, Enkhbat, Gogoladze Some models with SU(N) k finite 3 generations, good phenomenology with SU(3) 3 Ma, M.M, Zoupanos Relation between commutative field theories and finiteness studied Jack and Jones Proof of conformal invariance in finite theories Kazakov

16 SU(5) Finite Models We study two models with SU(5) gauge group. The matter content is {5 + 5} + 24 The models are finite to all-loops in the dimensionful and dimensionless sector. In addition: The soft scalar masses obey a sum rule At the M GUT scale the gauge symmetry is broken and we are left with the MSSM At the same time finiteness is broken The two Higgs doublets of the MSSM should mostly be made out of a pair of Higgs {5 + 5} which couple to the third generation The difference between the two models is the way the Higgses couple to the 24 Kapetanakis, Mondragón, Zoupanos; Kazakov et al.

17 The superpotential which describes the two models takes the form W = 3 [ 1 2 gu i 10 i 10 i H i + gi d 10 i 5 i H i ] + g23 u H 4 i=1 +g d H 4 + g d H a=1 g f a H a 24 H a + gλ 3 (24)3 find isolated and non-degenerate solution to the finiteness conditions The unique solution implies discrete symmetries We will do a partial reduction, only third generation

18 The finiteness relations give at the M GUT scale Model A Model B g 2 t = 8 5 g2 g 2 t = 4 5 g2 g 2 b,τ = 6 5 g2 m 2 H u + 2m 2 10 = M2 m 2 H d + m m2 10 = M2 g 2 b,τ = 3 5 g2 m 2 H u + 2m 2 10 = M2 m 2 H d 2m 2 10 = M2 3 m m2 10 = 4M2 3 3 free parameters: M, m 2 5 and m free parameters: M, m 2 5

19 Phenomenology The gauge symmetry is broken below M GUT, and what remains are boundary conditions of the form C i = κ i g, h = MC and the sum rule at M GUT, below that is the MSSM. Fix the value of m τ tan β M top and m bot We assume a unique susy breaking scale The LSP is neutral The solutions should be compatible with radiative electroweak breaking No fast proton decay We also Allow 5% variation of the Yukawa couplings at GUT scale due to threshold corrections Include radiative corrections to bottom and tau, plus resummation (very important!) Estimate theoretical uncertainties

20 We look for the solutions that satisfy the following constraints: Right masses for top and bottom fact of life The decay b sγ fact of life The branching ratio B s µ + µ fact of life Cold dark matter density Ω CDM h 2 loose constraint FeynHiggs MicroOmegas MicroOmegas MicroOmegas The anomalous magnetic moment of the muon g 2 see what we get The lightest MSSM Higgs boson mass The SUSY spectrum FeynHiggs, Suspect, FUT

21 TOP AND BOTTOM MASS M top [GeV] FUTA µ > 0 µ < 0 FUTB µ < 0 µ > 0 m bot (M Z ) FUTA FUTA µ > 0 µ < 0 FUTB FUTB M [GeV] M [GeV] FUTA: M top GeV Theoretical uncertainties 4% FUTB: M top GeV b and τ included, resummation done FUTB µ < 0 favoured

22 New experimental data We use the experimental values of M H to compare with our previous results (M H = GeV, 2007) and put extra constraints M exp H = 126 ± 2 ± 1 2 GeV theoretical, 1 GeV experimental We also use the current experimental value of B µ + µ Upper limit October 2012 BR(B s µ + µ ) = Experimental value November 2012 BR(B s µ + µ ) = ( (stat) (syst)) 10 9 We can now restrict (partly) our boundary conditions on M

23 Higgs mass M Higgs [GeV] M[GeV] FUTB: M Higgs = GeV with B Physics constraints Uncertainties ±3 GeV (FeynHiggs) Heinemeyer, M.M., Zoupanos (2007); Heinemeyer, M.M., Zoupanos (2013)

24 S-SPECTRUM M h =126±1 GeV M h =126±3 GeV masses [GeV] 1000 masses [GeV] 1000 h H A H ± stop 1,2 sbot 1,2 gl stau 1,2 cha 1,2 neu 1,2,3,4 h H A H ± stop 1,2 sbot 1,2 gl stau 1,2 cha 1,2 neu 1,2,3, SUSY spectrum with B physics constraints Challenging for LHC

25 Results When confronted with low-energy precision data only FUTB µ < 0 survives M top 173 GeV 4% M exp top exp = (173.2 ± 0.9)GeV m exp m bot (M Z ) 2.8 GeV 8 % bot (M Z ) = (2.83 ± 0.10)GeV M Higgs GeV 3 GeV M exp Higgs = 126 ± 1 tan β s-spectrum > 500 GeV In progress 3 families with discrete symmetry neutrino masses via R consistent with the exp bounds

26 Reduction of couplings in the MSSM The superpotential W = Y t H 2 Qt c + Y b H 1 Qb c + Y τ H 1 Lτ c + µh 1 H 2 with soft breaking terms, L SSB = φ m 2 φ φ φ + [ m 2 3 H 1H i=1 ] 1 2 M iλ i λ i + h.c + [h t H 2 Qt c + h b H 1 Qb c + h τ H 1 Lτ c + h.c.], then, reduction of couplings implies β Yt,b,τ = β g3 dy t,b,τ dg 3

27 Boundary conditions at the unification scale are given by Y 2 t g 2 3 4π = c 1 4π + c 2 Y 2 b g 2 3 4π = p 1 4π + p 2 ( g 2 ) 2 3 4π (1) ( g 2 ) 2 3 4π (2) c 1 = Kτ = Kτ 35 p 1 = Kτ = Kτ 35 c 2 = K τ Kτ K τ 3 4π K τ Kτ 2 p 2 = K τ Kτ K τ 3 4π K τ Kτ 2 where K τ = Y 2 τ /g 2 3 Y τ not reduced, its reduction gives imaginary values

28 Soft breaking terms The reduction of couplings in the SSB sector gives the following boundary conditions at the unification scale Yt 2 = c 1 g3 2 + c 2g3 4 /(4π) and Y b 2 = p 1g3 2 + p 2g3 4 /(4π) h t,b = MY t,b, m 2 3 = Mµ, M is unified gaugino mass m 2 H 2 + m 2 Q + m2 t c = M2, m 2 H 1 + m 2 Q + m2 b c = M2,

29 Allowed values of K τ tan β K τ Radiative corrections coming from SUSY breaking to the bottom and tau mass can be large (especially to bottom) They depend on the values of the SUSY masses (M), and tan β, and modify the allowed values of K τ = Y 2 τ /g 2 3.

30 M top vs M bot M b (M Z )[GeV] M t [GeV] Requiring the top and bottom masses within experimental bounds further constrains K τ = Yτ 2 /g3 2 with µ < 0. No such region exists for µ > 0 The central value (green dashed lines), 1 and 2σ deviation (orange and magenta lines respectively)

31 Higgs mass vs K τ (aka the bear ) M Higgs K τ SUSY spectrum and the Higgs mass, given the GYU conditions constrained by the third generation of quark masses

32 SUSY spectrum 1e Mass [GeV] 1000 M A, M H, M H+- stop1,2 sbot1,2 stau1,2 charginos neutralinos 100 M Higgs Heavy spectrum, 1.3TeV < M < 10TeV Will be constrained further by B physics and CDM

33 Results GYU in MSSM Possible to have reduction of couplings in MSSM Up to know only attempted in SM or in GUTs Reduced system further constrained by phenomenology: compatible with quark masses with µ < 0 SUSY spectrum, large tan β Higgs mass GeV

34 Conclusions Reduction of couplings: powerful implies Gauge Yukawa Unification Finiteness, interesting and predictive principle reduces greatly the number of free parameters completely finite theories i.e. including the SSB terms, that satisfy the sum rule Confronting the SU(5) FUT models with low-energy precision data does distinguish among models FUTB favoured Possible to have reduction of couplings in MSSM only solutions for µ < 0 compatible with quark masses Heavy SUSY spectrum, large tan β s-spectrum starts above 500 GeV prediction for the Higgs M h GeV Detailed study of SUSY masses and Higgs decays in progress

Reduction of Couplings in Finite Thories and in the MSSM

Reduction of Couplings in Finite Thories and in the MSSM Reduction of Couplings in Finite Thories and in the MSSM Myriam Mondragón IFUNAM Sven Heinemeyer Nick Tracas George Zoupanos Corfu, September 2016 What happens as we approach the Planck scale? or just

More information

Reduction of Couplings: Finite Unified Theories and the reduced MSSM

Reduction of Couplings: Finite Unified Theories and the reduced MSSM Reduction of Couplings: Finite Unified Theories and the reduced MSSM Myriam Mondragón IFUNAM, Mexico Sven Heinemeyer, Gregory Patellis, Nick Tracas, George Zoupanos Corfu, September 7, 2018 Layout Reduction

More information

Reduction of Couplings in Finite Thories and in the MSSM

Reduction of Couplings in Finite Thories and in the MSSM Reduction of Couplings in Finite Thories and in the MSSM Myriam Mondragón IFUNAM Sven Heinemeyer, Jisuke Kubo, Nick Tracas, George Zoupanos In Memory of Wolfhart Zimmermann 17 February 1928 18 September

More information

Updates in the Finite N=1 SU(5) Model

Updates in the Finite N=1 SU(5) Model Updates in the Finite N=1 SU(5) Model Gregory Patellis Physics Department, NTUA Sven Heinemeyer, Myriam Mondragon, Nicholas Tracas, George Zoupanos arxiv:1802.04666 March 31, 2018 Updates in the Finite

More information

Yukawa and Gauge-Yukawa Unification

Yukawa and Gauge-Yukawa Unification Miami 2010, Florida Bartol Research Institute Department Physics and Astronomy University of Delaware, USA in collaboration with Ilia Gogoladze, Rizwan Khalid, Shabbar Raza, Adeel Ajaib, Tong Li and Kai

More information

Heterotic Supersymmetry

Heterotic Supersymmetry Heterotic Supersymmetry Hans Peter Nilles Physikalisches Institut Universität Bonn Heterotic Supersymmetry, Planck2012, Warsaw, May 2012 p. 1/35 Messages from the heterotic string Localization properties

More information

Fuzzy extra dimensions and particle physics models

Fuzzy extra dimensions and particle physics models Fuzzy extra dimensions and particle physics models Athanasios Chatzistavrakidis Joint work with H.Steinacker and G.Zoupanos arxiv:1002.2606 [hep-th] Corfu, September 2010 Overview Motivation N = 4 SYM

More information

Trilinear-Augmented Gaugino Mediation

Trilinear-Augmented Gaugino Mediation Trilinear-Augmented Gaugino Mediation Jörn Kersten Based on Jan Heisig, JK, Nick Murphy, Inga Strümke, JHEP 05, 003 (2017) [arxiv:1701.02313] Supersymmetry Solves Problems Hierarchy problem Dark matter

More information

Beyond the MSSM (BMSSM)

Beyond the MSSM (BMSSM) Beyond the MSSM (BMSSM) Nathan Seiberg Strings 2007 SUSY 2012 Based on M. Dine, N.S., and S. Thomas, to appear Assume The LHC (or the Tevatron) will discover some of the particles in the MSSM. These include

More information

Crosschecks for Unification

Crosschecks for Unification Crosschecks for Unification Hans Peter Nilles Physikalisches Institut Universität Bonn Crosschecks for Unification, Planck09, Padova, May 2009 p. 1/39 Questions Do present observations give us hints for

More information

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1 Physics 662 Particle Physics Phenomenology February 21, 2002 Physics 662, lecture 13 1 Physics Beyond the Standard Model Supersymmetry Grand Unified Theories: the SU(5) GUT Unification energy and weak

More information

Supersymmetry at the LHC

Supersymmetry at the LHC Supersymmetry at the LHC What is supersymmetry? Present data & SUSY SUSY at the LHC C. Balázs, L. Cooper, D. Carter, D. Kahawala C. Balázs, Monash U. Melbourne SUSY@LHC.nb Seattle, 23 Sep 2008 page 1/25

More information

Dark Matter Implications for SUSY

Dark Matter Implications for SUSY Dark Matter Implications for SUSY Sven Heinemeyer, IFCA (CSIC, Santander) Madrid, /. Introduction and motivation. The main idea 3. Some results 4. Future plans Sven Heinemeyer, First MultiDark workshop,

More information

Electroweak and Higgs Physics

Electroweak and Higgs Physics Electroweak and Higgs Physics Lecture 2 : Higgs Mechanism in the Standard and Supersymmetric Models Alexei Raspereza DESY Summer Student Program Hamburg August 2017 Standard Model (Summary) Building blocks

More information

Towards particle physics models from fuzzy extra dimensions

Towards particle physics models from fuzzy extra dimensions Towards particle physics models from fuzzy extra dimensions Athanasios Chatzistavrakidis National Technical University and NCSR Demokritos, Athens Joint work with H.Steinacker and G.Zoupanos Particles

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

SUSY Phenomenology & Experimental searches

SUSY Phenomenology & Experimental searches SUSY Phenomenology & Experimental searches Slides available at: Alex Tapper http://www.hep.ph.ic.ac.uk/~tapper/lecture.html Objectives - Know what Supersymmetry (SUSY) is - Understand qualitatively the

More information

Strings and Particle Physics

Strings and Particle Physics Strings and Particle Physics Hans Peter Nilles Physikalisches Institut Universität Bonn Germany Strings and Particle Physics, SUSY07 p.1/33 Questions What can we learn from strings for particle physics?

More information

arxiv:hep-ph/ v1 15 May 1998

arxiv:hep-ph/ v1 15 May 1998 HIP-1998-25/TH BONN-TH-98-10 KANAZAWA-98-05 May, 1998 arxiv:hep-ph/9805336v1 15 May 1998 Constraints on Supersymmetric SO(10) GUTs with Sum Rules among Soft Masses Yoshiharu Kawamura a,b 1, Tatsuo Kobayashi

More information

Higgs Mass Bounds in the Light of Neutrino Oscillation

Higgs Mass Bounds in the Light of Neutrino Oscillation Higgs Mass Bounds in the Light of Neutrino Oscillation Qaisar Shafi in collaboration with Ilia Gogoladze and Nobuchika Okada Bartol Research Institute Department of Physics and Astronomy University of

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

SUPERSYMETRY FOR ASTROPHYSICISTS

SUPERSYMETRY FOR ASTROPHYSICISTS Dark Matter: From the Cosmos to the Laboratory SUPERSYMETRY FOR ASTROPHYSICISTS Jonathan Feng University of California, Irvine 29 Jul 1 Aug 2007 SLAC Summer Institute 30 Jul 1 Aug 07 Feng 1 Graphic: N.

More information

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002 Physics at e + e - Linear Colliders 4. Supersymmetric particles M. E. Peskin March, 2002 In this final lecture, I would like to discuss supersymmetry at the LC. Supersymmetry is not a part of the Standard

More information

Perspectives for Particle Physics beyond the Standard Model

Perspectives for Particle Physics beyond the Standard Model Perspectives for Particle Physics beyond the Standard Model What is the Higgs boson trying to tell us? Is supersymmetry waiting? Can LHC Run 2 find it? What if X(750) exists? John Ellis Higgs Champagne

More information

Dark Matter Direct Detection in the NMSSM

Dark Matter Direct Detection in the NMSSM Dark Matter Direct Detection in the NMSSM,DSU27. Dark Matter Direct Detection in the NMSSM Daniel E. López-Fogliani Universidad Autónoma de Madrid Departamento de Física Teórica & IFT DSU27 D. Cerdeño,

More information

Higgs Boson and New Particles at the LHC

Higgs Boson and New Particles at the LHC Higgs Boson and New Particles at the LHC Qaisar Shafi Bartol Research Institute Department Physics and Astronomy University of Delaware, USA in collaboration with Adeel Ajaib, Howard Baer, Ilia Gogoladze,

More information

Flavor violating Z from

Flavor violating Z from Flavor violating Z from SO(10) SUSY GUT model Yu Muramatsu( 村松祐 ) CCNU Junji Hisano(KMI, Nagoya U. & IPMU), Yuji Omura (KMI) & Yoshihiro Shigekami (Nagoya U.) Phys.Lett.B744 (2015) 395, and JHEP 1611 (2016)

More information

The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β =

The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β = The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β = Markus Bach Institut für Kern- und Teilchenphysik Technische Universität Dresden IKTP Institute Seminar

More information

arxiv:hep-ph/ v1 6 Feb 2004

arxiv:hep-ph/ v1 6 Feb 2004 arxiv:hep-ph/0402064v1 6 Feb 2004 AN NMSSM WITHOUT DOMAIN WALLS TAO HAN Department of Physics University of Wisconsin Madison, WI 53706 USA E-mail: than@pheno.physics.wisc.edu PAUL LANGACKER Department

More information

Exceptional Supersymmetry. at the Large Hadron Collider

Exceptional Supersymmetry. at the Large Hadron Collider Exceptional Supersymmetry at the Large Hadron Collider E 6 SSM model and motivation Contents Why go beyond the Standard Model? Why consider non-minimal SUSY? Exceptional SUSY Structure, particle content

More information

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

PHYSICS BEYOND SM AND LHC. (Corfu 2010) PHYSICS BEYOND SM AND LHC (Corfu 2010) We all expect physics beyond SM Fantastic success of SM (LEP!) But it has its limits reflected by the following questions: What is the origin of electroweak symmetry

More information

Beyond the SM: SUSY. Marina Cobal University of Udine

Beyond the SM: SUSY. Marina Cobal University of Udine Beyond the SM: SUSY Marina Cobal University of Udine Why the SM is not enough The gauge hierarchy problem Characteristic energy of the SM: M W ~100 GeV Characteristic energy scale of gravity: M P ~ 10

More information

The LHC Higgs Boson Discovery: Updated Implications for Finite Unified Theories and the SUSY Breaking Scale

The LHC Higgs Boson Discovery: Updated Implications for Finite Unified Theories and the SUSY Breaking Scale S S symmetry Article The LHC Higgs Boson Discovery: Updated Implications for Finite Unified Theories and the SUSY Breaking Scale Sven Heinemeyer 1,2,3, Myriam Mondragón 4, Gregory Patellis 5, *, Nicholas

More information

E 6 Spectra at the TeV Scale

E 6 Spectra at the TeV Scale E 6 Spectra at the TeV Scale Instituts-Seminar Kerne und Teilchen, TU Dresden Alexander Knochel Uni Freiburg 24.06.2010 Based on: F. Braam, AK, J. Reuter, arxiv:1001.4074 [hep-ph], JHEP06(2010)013 Outline

More information

Phenomenology of new neutral gauge bosons in an extended MSSM

Phenomenology of new neutral gauge bosons in an extended MSSM Phenomenology of new neutral gauge bosons in an extended MSSM Gennaro Corcella 1, Simonetta Gentile 2 1. Laboratori Nazionali di Frascati, INFN 2. Università di oma, La Sapienza, INFN Outline Motivation

More information

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki Charged Higgs Beyond the MSSM at the LHC Katri Huitu University of Helsinki Outline: Mo;va;on Charged Higgs in MSSM Charged Higgs in singlet extensions H ± à aw ± Charged Higgs in triplet extensions H

More information

Split SUSY and the LHC

Split SUSY and the LHC Split SUSY and the LHC Pietro Slavich LAPTH Annecy IFAE 2006, Pavia, April 19-21 Why Split Supersymmetry SUSY with light (scalar and fermionic) superpartners provides a technical solution to the electroweak

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC 15.01.2010 Marek Olechowski Institut of Theoretical Physics, University of Warsaw LIGHT GLUINOS? Early supersymmetry discovery potential of the LHC Phenomenology

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

GUTs, Inflation, and Phenomenology

GUTs, Inflation, and Phenomenology GUTs, Inflation, and Phenomenology Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware in collaboration with G. Dvali, R. K. Schaefer, G. Lazarides, N. Okada,

More information

SUSY Higgs Physics at the LHC.

SUSY Higgs Physics at the LHC. SUSY Higgs Physics at the LHC. D.J. Miller Dresden, 3 rd July 2008 Outline: Introduction: The SM Higgs Sector The minimal SUSY Higgs sector The NMSSM The mnssm A Local Peccei-Quinn Symmetry (and the E

More information

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

SUSY and Exotics. UK HEP ForumFrom the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1 SUSY and Exotics Standard Model and the Origin of Mass Puzzles of Standard Model and Cosmology Bottom-up and top-down motivation Extra dimensions Supersymmetry - MSSM -NMSSM -E 6 SSM and its exotics UK

More information

arxiv:hep-ph/ v1 20 Mar 2000

arxiv:hep-ph/ v1 20 Mar 2000 CERN-TH/2000-084 FERMILAB-Pub-00/013-T HIP-1999-76/TH KUNS-1650 arxiv:hep-ph/0003187v1 20 Mar 2000 RG-invariant Sum Rule in a Generalization of Anomaly Mediated SUSY Breaking Models Marcela Carena (a,b),

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

Universal Extra Dimensions

Universal Extra Dimensions Universal Extra Dimensions Add compact dimension(s) of radius R ~ ant crawling on tube Kaluza-Klein tower of partners to SM particles due to curled-up extra dimensions of radius R n = quantum number for

More information

Detecting Higgs Bosons within Supersymmetric Models

Detecting Higgs Bosons within Supersymmetric Models Detecting Higgs Bosons within Supersymmetric Models Yili Wang University of Oklahoma C. Kao and Y. Wang, Phys. Lett. B 635, 3 (26) 1 Outlook of the Talk MSSM has two Higgs doulets. After symmetry reaking,

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

The discrete beauty of local GUTs

The discrete beauty of local GUTs The discrete beauty of local GUTs Hans Peter Nilles Physikalisches Institut Universität Bonn The discrete beauty of local grand unification, GUTs and Strings, MPI München, February 2010 p. 1/33 Outline

More information

U(1) Gauge Extensions of the Standard Model

U(1) Gauge Extensions of the Standard Model U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start

More information

Minimal SUSY SU(5) GUT in High- scale SUSY

Minimal SUSY SU(5) GUT in High- scale SUSY Minimal SUSY SU(5) GUT in High- scale SUSY Natsumi Nagata Nagoya University 22 May, 2013 Planck 2013 Based on J. Hisano, T. Kuwahara, N. Nagata, 1302.2194 (accepted for publication in PLB). J. Hisano,

More information

Implications of a Heavy Z Gauge Boson

Implications of a Heavy Z Gauge Boson Implications of a Heavy Z Gauge Boson Motivations A (string-motivated) model Non-standard Higgs sector, CDM, g µ 2 Electroweak baryogenesis FCNC and B s B s mixing References T. Han, B. McElrath, PL, hep-ph/0402064

More information

Supersymmetry Basics. J. Hewett SSI J. Hewett

Supersymmetry Basics. J. Hewett SSI J. Hewett Supersymmetry Basics J. Hewett SSI 2012 J. Hewett Basic SUSY References A Supersymmetry Primer, Steve Martin hep-ph/9709356 Theory and Phenomenology of Sparticles, Manual Drees, Rohini Godbole, Probir

More information

Natural SUSY and the LHC

Natural SUSY and the LHC Natural SUSY and the LHC Clifford Cheung University of California, Berkeley Lawrence Berkeley National Lab N = 4 SYM @ 35 yrs I will address two questions in this talk. What is the LHC telling us about

More information

A Domino Theory of Flavor

A Domino Theory of Flavor A Domino Theory of Flavor Peter Graham Stanford with Surjeet Rajendran arxiv:0906.4657 Outline 1. General Domino Framework 2. Yukawa Predictions 3. Experimental Signatures General Domino Framework Inspiration

More information

Phenomenology of 5d supersymmetry

Phenomenology of 5d supersymmetry Phenomenology of 5d supersymmetry p. 1 Phenomenology of 5d supersymmetry Gautam Bhattacharyya Saha Institute of Nuclear Physics, Kolkata G.B., Tirtha Sankar Ray, JHEP 05 (2010) 040, e-print:arxiv:1003.1276

More information

Electroweak baryogenesis in the MSSM. C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, /15

Electroweak baryogenesis in the MSSM. C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, /15 Electroweak baryogenesis in the MSSM C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, 2005 1/15 Electroweak baryogenesis in the MSSM The basics of EWBG in the MSSM Where do

More information

SUSY PHENOMENOLOGY. A Dissertation BO HU

SUSY PHENOMENOLOGY. A Dissertation BO HU SUSY PHENOMENOLOGY A Dissertation by BO HU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2004

More information

Beyond the SM, Supersymmetry

Beyond the SM, Supersymmetry Beyond the SM, 1/ 44 Beyond the SM, A. B. Lahanas University of Athens Nuclear and Particle Physics Section Athens - Greece Beyond the SM, 2/ 44 Outline 1 Introduction 2 Beyond the SM Grand Unified Theories

More information

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea mued mass spectrum Figure 3.2: (Taken from [46]). The full spectrum of the UED model at the first KK level,

More information

Implication of Higgs at 125 GeV within Stochastic Superspace Framework

Implication of Higgs at 125 GeV within Stochastic Superspace Framework Implication of Higgs at 125 GeV within Stochastic Superspace Framework Department of Theoretical Physics Indian Association for the Cultivation of Science [ With U.Chattopadhyay and R.M.Godbole Phys.Rev.

More information

Reduction of Couplings and Finiteness in Realistic Supersymmetric GUTs

Reduction of Couplings and Finiteness in Realistic Supersymmetric GUTs NTUA-59/96 IFUNAM-FT97-4 hep-ph/9704218 Reduction of Couplings and Finiteness in Realistic Supersymmetric GUTs arxiv:hep-ph/9704218v1 3 Apr 1997 J. Kubo Physics Dept. Faculty of Natural Sciences Kanazawa

More information

SUSY Phenomenology a

SUSY Phenomenology a KEK-TH-606 November 1998 SUSY Phenomenology a Yasuhiro Okada KEK, Oho 1-1, Tsukuba, 305-0801 Japan Three topics on phenomenology in supersymmetric models are reviewed, namely, the Higgs sector in the supersymmetric

More information

Is SUSY still alive? Dmitri Kazakov JINR

Is SUSY still alive? Dmitri Kazakov JINR 2 1 0 2 The l o o h c S n a e p o r Eu y g r e n E h g i of H s c i s y PAnhjou, France 2 1 0 2 e n 6 19 Ju Is SUSY still alive? Dmitri Kazakov JINR 1 1 Why do we love SUSY? Unifying various spins SUSY

More information

Split Supersymmetry A Model Building Approach

Split Supersymmetry A Model Building Approach Split Supersymmetry A Model Building Approach Kai Wang Phenomenology Institute Department of Physics the University of Wisconsin Madison UC Riverside HEP Seminar In Collaboration with Ilia Gogoladze (Notre

More information

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G and Signatures of D-Type Gauge Mediation Ken Hsieh Michigan State Univeristy KH, Ph. D. Thesis (2007) ArXiv:0708.3970 [hep-ph] Other works with M. Luty and Y. Cai (to appear) MSU HEP Seminar November 6,

More information

The Constrained E 6 SSM

The Constrained E 6 SSM The Constrained E 6 SSM and its signatures at the LHC Work with Moretti and Nevzorov; Howl; Athron, Miller, Moretti, Nevzorov Related work: Demir, Kane, T.Wang; Langacker, Nelson; Morrissey, Wells; Bourjaily;

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Jürgen Reuter Albert-Ludwigs-Universität Freiburg W. Kilian, JR, PLB B642 (2006), 81; and work in progress (with F. Deppisch, W. Kilian)

More information

Particle Spectrum in the Modified Nonminimal Supersymmetric Standard Model in the Strong Yukawa Coupling Regime

Particle Spectrum in the Modified Nonminimal Supersymmetric Standard Model in the Strong Yukawa Coupling Regime Journal of Experimental and Theoretical Physics, Vol. 9, No. 6,, pp. 79 97. Translated from Zhurnal Éksperimental noœ i Teoreticheskoœ Fiziki, Vol. 8, No. 6,, pp. 5 7. Original Russian Text Copyright by

More information

The Super-little Higgs

The Super-little Higgs The Super-little Higgs Csaba Csaki (Cornell) with Guido Marandella (UC Davis) Yuri Shirman (Los Alamos) Alessandro Strumia (Pisa) hep-ph/0510294, Phys.Rev.D73:035006,2006 Padua University, July 4, 2006

More information

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Joseph P. Conlon DAMTP, Cambridge University Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications p. 1/4

More information

Grand Unified Theories and Beyond

Grand Unified Theories and Beyond Grand Unified Theories and Beyond G. Zoupanos Department of Physics, NTUA Dubna, February 2014 G. Zoupanos (Department of Physics, NTUA ) Grand Unified Theories and Beyond Dubna, February 2014 1 / 36 Antonio

More information

How high could SUSY go?

How high could SUSY go? How high could SUSY go? Luc Darmé LPTHE (Paris), UPMC November 24, 2015 Based on works realised in collaboration with K. Benakli, M. Goodsell and P. Slavich (1312.5220, 1508.02534 and 1511.02044) Introduction

More information

SO(10) SUSY GUTs with family symmetries: the test of FCNCs

SO(10) SUSY GUTs with family symmetries: the test of FCNCs SO(10) SUSY GUTs with family symmetries: the test of FCNCs Outline Diego Guadagnoli Technical University Munich The DR Model: an SO(10) SUSY GUT with D 3 family symmetry Top down approach to the MSSM+

More information

A light singlet at the LHC and DM

A light singlet at the LHC and DM A light singlet at the LHC and DM of the R-symmetric supersymmetric model Jan Kalinowski University of Warsaw in collaboration with P.Diessner, W. Kotlarski and D.Stoeckinger Supported in part by Harmonia

More information

Prospects for Future Collider Physics

Prospects for Future Collider Physics Prospects for Future Collider Physics What is the Higgs boson trying to tell us? Is supersymmetry waiting? Can LHC Run 2 find it? What if X(750) exists? Sphalerons? John Ellis One thing we have! Higgs

More information

arxiv: v1 [hep-ph] 11 Oct 2013

arxiv: v1 [hep-ph] 11 Oct 2013 Challenging the minimal supersymmetric SU(5) model 1 Borut Bajc,, Stéphane Lavignac and Timon Mede J. Stefan Institute, 1000 Ljubljana, Slovenia Department of Physics, University of Ljubljana, 1000 Ljubljana,

More information

SUSY scale from unication

SUSY scale from unication SUSY scale from unication DESY Summer Student Programme, 2014 Marco Chianese Università degli Studi di Napoli Federico II, Italia Supervisor Stefano Morisi THAT group 5th of September 2014 Abstract The

More information

The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation

The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation SUSY2014 @ Manchester University arxiv:1405.0779 (to be appeared in JHEP ) Junichiro Kawamura and Hiroyuki Abe Waseda Univ,

More information

Proton Decay in SUSY GUTs revisited

Proton Decay in SUSY GUTs revisited Proton Decay in SUSY GUTs revisited J. Hisano (Nagoya Univ.) 2013 Interna,onal Workshop on Baryon and Lepton Number Viola,on (BLV2013): From the Cosmos to the LHC April 8-11, 2013, MPIK Heidelberg, Germany

More information

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK 1 Higgs mechanism One of two principles of the Standard Model. Gauge invariance and Higgs mechanism Origin of the weak scale. Why is the weak

More information

Deflected Mirage Mediation

Deflected Mirage Mediation Deflected Mirage Mediation A Framework for Generalized SUSY Breaking Based on PRL101:101803(2008) (arxiv:0804.0592), JHEP 0808:102(2008) (arxiv:0806.2330) in collaboration with L.Everett, P.Ouyang and

More information

String Phenomenology

String Phenomenology String Phenomenology Hans Peter Nilles Physikalisches Institut Universität Bonn String Phenomenology, DESY, Hamburg, April 2012 p. 1/53 Strategy String models as a top-down approach to particle physics

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

Supersymmetry at the LHC

Supersymmetry at the LHC Supersymmetry at the LHC What is supersymmetry? Present data & SUSY SUSY at the LHC C. Balázs L. Cooper D. Carter D. Kahawala C. Balázs, Monash U. Melbourne SUSY@LHC.nb Beijing, 8 Oct 2008 page 1/25 What

More information

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Joseph P. Conlon DAMTP, Cambridge University Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications p. 1/4

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Radovan Dermíšek Institute for Advanced Study, Princeton R.D. and J. F. Gunion, hep-ph/0502105 R.D. and J. F. Gunion, hep-ph/0510322

More information

General Gauge Mediation Phenomenology

General Gauge Mediation Phenomenology Pre-Strings 2011 @ NORDITA Stockholm May 30 th 2011 General Gauge Mediation Phenomenology Valya Khoze (IPPP Durham University) with Steve Abel, Matt Dolan, David Grellscheid, Joerg Jaeckel, Peter Richardson,

More information

Kaluza-Klein Dark Matter

Kaluza-Klein Dark Matter Kaluza-Klein Dark Matter Hsin-Chia Cheng UC Davis Pre-SUSY06 Workshop Complementary between Dark Matter Searches and Collider Experiments Introduction Dark matter is the best evidence for physics beyond

More information

Realistic Inflation Models and Primordial Gravity Waves

Realistic Inflation Models and Primordial Gravity Waves Journal of Physics: Conference Series Realistic Inflation Models and Primordial Gravity Waves To cite this article: Qaisar Shafi 2010 J. Phys.: Conf. Ser. 259 012008 Related content - Low-scale supersymmetry

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

Where is SUSY? Institut für Experimentelle Kernphysik

Where is SUSY?   Institut für Experimentelle Kernphysik Where is SUSY? Institut ür Experimentelle Kernphysik KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschat www.kit.edu I supersymmetric particles exist,

More information

Infra red soft universality

Infra red soft universality LTH 52 hep-ph/9506467 Infra red soft universality arxiv:hep-ph/9506467v1 0 Jun 1995 P.M. Ferreira, I. Jack, and D.R.T. Jones DAMTP, University of Liverpool, Liverpool L69 BX, U.K. We show that in a special

More information

Electroweak Baryogenesis after LHC8

Electroweak Baryogenesis after LHC8 Electroweak Baryogenesis after LHC8 Gláuber Carvalho Dorsch with S. Huber and J. M. No University of Sussex arxiv:135.661 JHEP 131, 29(213) What NExT? Southampton November 27, 213 G. C. Dorsch EWBG after

More information

125 GeV Higgs Boson and Gauge Higgs Unification

125 GeV Higgs Boson and Gauge Higgs Unification 125 GeV Higgs Boson and Gauge Higgs Unification Nobuchika Okada The University of Alabama Miami 2013, Fort Lauderdale, Dec. 12 18, 2013 Discovery of Higgs boson at LHC! 7/04/2012 Standard Model Higgs boson

More information

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004 Searches at LEP Moriond Electroweak 2004 Ivo van Vulpen CERN On behalf of the LEP collaborations LEP and the LEP data LEP: e + e - collider at s m Z (LEP1) and s = 130-209 GeV (LEP2) Most results (95%

More information

Soft Supersymmetry Breaking Terms in String Compactifications

Soft Supersymmetry Breaking Terms in String Compactifications Soft Supersymmetry Breaking Terms in String Compactifications Joseph P. Conlon DAMTP, Cambridge University Soft Supersymmetry Breaking Terms in String Compactifications p. 1/4 This talk is based on hep-th/0609180

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information