Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Size: px
Start display at page:

Download "Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV"

Transcription

1 Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Radovan Dermíšek Institute for Advanced Study, Princeton R.D. and J. F. Gunion, hep-ph/ R.D. and J. F. Gunion, hep-ph/ Natural EWSB in NMSSM p.1/23

2 EWSB in MSSM Minimum of the Higgs potential: 1 2 m2 Z = µ 2 + m2 H d tan 2 β m 2 H u tan 2 β 1, tan β = v u v d tan β = 10: m 2 Z 2.0 µ 2 (0) M3 2 (0) m 2 t L (0) m 2 t R (0) 1.2 m 2 H u (0) 0.7 M 3 (0)A t (0) +... Without specific relations between SSB parameters and/or µ: m Z M 3 (0), m t L (0), m t R (0) m g, m t natural EWSB light gluino and stop! Natural EWSB in NMSSM p.2/23

3 Higgs Mass in MSSM m 2 h m 2 Z cos 2 2β + 3 ( 4π 2 v2 yt 4 sin 4 β log m t 1 m t 2 m 2 t ) +... m 2 h (91GeV) 2 + (38GeV) 2 log ( m t 1 m t 2 m 2 t ) LEP limit: m h 115 GeV m t 1 m t 2 ( 900 GeV ) 2 LEP heavy stop! Natural EWSB in NMSSM p.3/23

4 Little Hierarchy Problem in MSSM + m h < 115 GeV x m h > 115 GeV M 1 (m Z ) = 100 GeV M 2 (m Z ) = 200 GeV M 3 (m Z ) = 300 GeV tan β = 10 other SSB parameters randomly generated Fine tuning measure: F = max p F p = max p p dm Z m Z dp m 2 Z = 1 2 (g2 2 + g 2 )(vu 2 + vd 2) v u = v u (a), v d = v d (a). p {M i (0), i = 1, 2, 3; m 2 s(0), s = Q, u, d, L, e, H u, H d ; A t (0), µ(0), B µ (0)} Natural EWSB in NMSSM p.4/23

5 Little Hierarchy Problem in MSSM Large A t : L SSB λ t A t Q ūh u Natural EWSB in NMSSM p.5/23

6 NMSSM - brief review MSSM + one additional singlet superfield (results in one CP-even and one CP-odd neutral Higgs bosons, and one additional neutralino): W = W MSSM + λ ŜĤuĤd + κ 3 Ŝ3 L SSB = L SSB MSSM + λa λ SH u H d + κ 3 A κs 3 + m 2 SSS tan β = v u v d, µ eff = λs m 2 H u, m 2 H d, m 2 S m 2 Z = 1 2 (g2 2 + g 2 )(v 2 u + v 2 d ) determined by 3 minimization eqs. of the scalar potential Higgs mass at tree level: m 2 h m 2 Z cos 2 2β + m 2 Z 2λ 2 g g 2 sin2 2β Natural EWSB in NMSSM p.6/23

7 Natural Higgs mass in NMSSM tan β = 10, M 3 (M Z ) = 300 GeV no constraints Natural EWSB in NMSSM p.7/23

8 Natural Higgs mass in NMSSM tan β = 10, M 3 (M Z ) = 300 GeV no constraints SUSY constraints Natural EWSB in NMSSM p.7/23

9 Natural Higgs mass in NMSSM tan β = 10, M 3 (M Z ) = 300 GeV no constraints SUSY constraints m h > 114 GeV or h aa Natural EWSB in NMSSM p.7/23

10 Natural Higgs mass in NMSSM tan β = 10, M 3 (M Z ) = 300 GeV no constraints SUSY constraints m h > 114 GeV or h aa h aa, m a < 2m b Natural EWSB in NMSSM p.7/23

11 Natural Higgs mass in NMSSM tan β = 10, M 3 (M Z ) = 300 GeV no constraints SUSY constraints m h > 114 GeV or h aa h aa, m a < 2m b Maybe Higgs is at 100 GeV Natural EWSB in NMSSM p.7/23

12 Precision electroweak data Theory uncertainty α had = α (5) ± ± incl. low Q 2 data χ Excluded m H [GeV] Natural EWSB in NMSSM p.8/23

13 Precision electroweak data Theory uncertainty α had = α (5) ± ± incl. low Q 2 data Maybe Higgs is at 100 GeV 3 χ Excluded m H [GeV] Natural EWSB in NMSSM p.8/23

14 Search for the SM Higgs at LEP LHWG CL b 1 LEP σ 10-2 Observed Expected for signal plus background Expected for background 3σ m H (GeV/c 2 ) Natural EWSB in NMSSM p.9/23

15 Search for the SM Higgs at LEP LHWG CL b 1 LEP 10-1 Maybe Higgs is at 100 GeV 2σ 10-2 Observed Expected for signal plus background Expected for background 3σ m H (GeV/c 2 ) Natural EWSB in NMSSM p.9/23

16 Explaining m h 100 GeV excess m h1 /m a1 Branching Ratios n obs /n exp s95 NSD LHC (GeV) h 1 b b h 1 a 1 a 1 a 1 τ + τ units of 1σ 98.0/ / / / / / / / / / / / / / / / n obs = (1 CL b ) observed n exp = (1 CL b ) expected thanks to P. Bechtle, LHWG C 2b eff = [g2 ZZh /g2 ZZh SM ]B(h b b) Natural EWSB in NMSSM p.10/23

17 Is light CP-odd Higgs natural? V NMSSM has U(1) R symmetry in the limit A λ, A κ 0 B. A. Dobrescu and K. T. Matchev, hep-ph/ Superpotential is U(1) R invariant for R S = 1/2 R Hu H d : W = W MSSM + λ ŜĤuĤd + κ 3 Ŝ3 U(1) R spontaneously broken by v u, v d, s NG boson! A λ, A κ explicitely break U(1) R : L SSB = L SSB MSSM + λa λ SH u H d + κ 3 A κs 3 + m 2 SSS m a1 A κ, A λ U(1) R also broken by gaugino masses (effect at 1-loop level) Natural EWSB in NMSSM p.11/23

18 Is light CP-odd Higgs natural? V NMSSM has U(1) R symmetry in the limit A λ, A κ 0 B. A. Dobrescu and K. T. Matchev, hep-ph/ m 2 a 1 3s ( κa κ sin 2 θ A + 3λA λ cos 2 ) θ A 2 sin 2β a 1 cos θ A a MSSM + sin θ A a S cos θ A 2v s tan β Natural EWSB in NMSSM p.11/23

19 Is light CP-odd Higgs natural? V NMSSM has U(1) R symmetry in the limit A λ, A κ 0 B. A. Dobrescu and K. T. Matchev, hep-ph/ m 2 a 1 3s ( κa κ sin 2 θ A + 3λA λ cos 2 ) θ A 2 sin 2β a 1 cos θ A a MSSM + sin θ A a S cos θ A 2v s tan β RG running: A κ, A λ 0 at M GUT da λ /dt = ` 6A t λ 2 t + 8λ2 A λ 4κ 2 A κ 6g 2 2 M 2 (6/5)g 2 1 M 1 /(16π 2 ) A κ A λ O(M 2 ) at M Z da κ /dt = 12 ` λ 2 A λ + κ 2 A κ /(16π 2 ) Natural EWSB in NMSSM p.11/23

20 Is light CP-odd Higgs natural? V NMSSM has U(1) R symmetry in the limit A λ, A κ 0 B. A. Dobrescu and K. T. Matchev, hep-ph/ m 2 a 1 3s ( κa κ sin 2 θ A + 3λA λ cos 2 ) θ A 2 sin 2β a 1 cos θ A a MSSM + sin θ A a S cos θ A 2v s tan β A κ and A λ terms comparable for: cos θ A 1, equivalent to a 1 a s m a1 < m h1 /2, mostly singlet, is natural! Natural EWSB in NMSSM p.11/23

21 Is light CP-odd Higgs natural? LEP allowed LEP excluded { A λ F MAX = max m 2 a dm 2 a da λ, A κ m 2 a dm 2 a da κ } 5-10 % tuning of A κ to A λ is required for m a < 2m b! Natural EWSB in NMSSM p.12/23

22 Br(h aa) vs. A κ and A λ LEP allowed LEP excluded haa coupling: c λ A λ + c κ A κ for A κ few GeV, h aa always dominates no additional constraints from Br(h aa) Natural EWSB in NMSSM p.13/23

23 Conclusions Higgs 100 GeV wanted by SUSY/natural EWSB preferred by precision EW data indicated by LEP data possible and natural in NMSSM! h aa τ + τ τ + τ, B(h aa) 0.9 h b b, B(h b b) 0.1 can fully explain 2σ excess Natural EWSB in NMSSM p.14/23

24 Conclusions Higgs 100 GeV wanted by SUSY/natural EWSB preferred by precision EW data indicated by LEP data possible and natural in NMSSM! h aa τ + τ τ + τ, B(h aa) 0.9 h b b, B(h b b) 0.1 can fully explain 2σ excess important to study Higgs to Higgs decays at LEP, Tevatron and LHC similar results to be expected in many SUSY models with more complicated Higgs sector than that of CP conserving MSSM Natural EWSB in NMSSM p.14/23

25 F vs. m 2 s, m 2 H u, m 2 H d (M GUT ) Natural EWSB in NMSSM p.15/23

26 F vs. A t, A κ, A λ Natural EWSB in NMSSM p.16/23

27 F vs. m 2 s, m 2 H u, m 2 H d All constraints satisfied! Natural EWSB in NMSSM p.17/23

28 Is light CP-odd Higgs natural? Natural EWSB in NMSSM p.18/23

29 Fine Tuning in NMSSM, tan β = 10 + escapes LEP because h aa Fine tuning measure: x escapes LEP because m h > 115 GeV F = max F p = max p dm Z p p m Z dp. p {M i (0), i = 1, 2, 3; m 2 s(0), s = Q, u, d, L, e, H u, H d, S; A t (0), A λ (0), A κ (0)} Natural EWSB in NMSSM p.19/23

30 Fine Tuning in NMSSM, tan β = 10 + (m h1 < 115 GeV) h 1 a 1 a 1 dominates Fine tuning measure: x (m h1 > 115 GeV) h 1 b b dominates F = max F p = max p dm Z p p m Z dp. p {M i (0), i = 1, 2, 3; m 2 s(0), s = Q, u, d, L, e, H u, H d, S; A t (0), A λ (0), A κ (0)} Natural EWSB in NMSSM p.19/23

31 Comparing MSSM and NMSSM Natural EWSB in NMSSM p.20/23

32 h aa b bb b (m a > 2m b ) Natural EWSB in NMSSM p.21/23

33 LHC Discovery Potential for an integrated luminosity: L = 300fb 1 Standard decay modes: gg h/a γγ associated W h/a or t th/a prod. with γγl ± in the final state t th/a prod. with h/a b b b bh/a prod. with h/a τ + τ gg h ZZ ( ) 4 leptons gg h W W ( ) l + l ν ν W W h τ + τ W W h W W ( ) W W h invisible Natural EWSB in NMSSM p.22/23

34 Search for the SM Higgs at LEP LHWG CL b 1 ALEPH (a) 1-CL b 1 DELPHI (b) 1-CL b 1 LEP four-jet (e) σ 2σ 2σ σ m H (GeV/c 2 ) 3σ m H (GeV/c 2 ) 3σ m H (GeV/c 2 ) 1-CL b 1 L3 (c) 1-CL b 1 OPAL (d) 1-CL b 1 LEP all except four-jet (f) σ 2σ 2σ σ m H (GeV/c 2 ) 3σ m H (GeV/c 2 ) 3σ m H (GeV/c 2 ) Natural EWSB in NMSSM p.23/23

The NMSSM h aa Scenario

The NMSSM h aa Scenario The NMSSM h aa Scenario A Supersymmetric model with minimal fine-tuning, coupling constant unification, RGE generated EWSB and a SM-like Higgs with mass 100 GeV. Jack Gunion U.C. Davis Vancouver Linear

More information

Light Pseudoscalar Higgs boson in NMSSM

Light Pseudoscalar Higgs boson in NMSSM K. Cheung 1 Light Pseudoscalar Higgs boson in NMSSM Kingman Cheung NTHU, December 2006 (with Abdesslam Arhrib, Tie-Jiun Hou, Kok-Wee Song, hep-ph/0606114 K. Cheung 2 Outline Motivations for NMSSM The scenario

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

Supersymmetry, Baryon Number Violation and a Hidden Higgs. David E Kaplan Johns Hopkins University

Supersymmetry, Baryon Number Violation and a Hidden Higgs. David E Kaplan Johns Hopkins University Supersymmetry, Baryon Number Violation and a Hidden Higgs David E Kaplan Johns Hopkins University Summary LEP looked for a SM Higgs and didn t find it. Both electroweak precision measurements and supersymmetric

More information

SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM

SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM USING LEP DATA Elizabeth Locci SPP/DAPNIA Saclay Representing LEP Collaborations 1 Outline LEP performance Theoretical framework Search for neutral Higgs

More information

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor Search for Higgs Bosons at LEP Haijun Yang University of Michigan, Ann Arbor L3 On behalf of the L3 Collaboration American Physical Society Meeting(APS03), Philadelphia April 5-8, 2003 OUTLINE Introduction

More information

Higgs boson(s) in the NMSSM

Higgs boson(s) in the NMSSM Higgs boson(s) in the NMSSM U. Ellwanger, LPT Orsay Supersymmetry had a bad press recently: No signs for squarks/gluino/charginos/neutralinos... at the LHC Conflict (?) between naturalness and the Higgs

More information

HUNTING FOR THE HIGGS

HUNTING FOR THE HIGGS Univ. of Sci. and Tech. of China Dec. 16th, 2011 HUNTING FOR THE HIGGS Tao Liu UC@ Santa Barbara Why Higgs Mechanism? Two mysteries in the Electroweak (EW) theory : The cause of the EW symmetry breaking

More information

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09 The first year of the LHC and Theory G.G.Ross, Krakow, December 09 The LHC a discovery machine The gauge sector : new gauge bosons? The maber sector : new quarks and leptons? The scalar sector : the hierarchy

More information

Hidden / Camouflaged Higgs

Hidden / Camouflaged Higgs Hidden / Camouflaged Higgs Jack Gunion U.C. Davis Implications of LHC Results, TH/LPCC Workshop, September 1, 2011 Conclusion: There are surely at least 50 ways to hide the Higgs(es) 1 for now in very

More information

Status of low energy SUSY models confronted with the 125 GeV Higgs data

Status of low energy SUSY models confronted with the 125 GeV Higgs data Status of low energy SUSY models confronted with the 5 GeV Higgs data Junjie Cao On behalf of my collaborators J. M. Yang, et al Based on our works arxiv: 7.3698, 6.3865, 3.3694,.58,.439 junjiec@itp.ac.cn

More information

Natural SUSY and the LHC

Natural SUSY and the LHC Natural SUSY and the LHC Clifford Cheung University of California, Berkeley Lawrence Berkeley National Lab N = 4 SYM @ 35 yrs I will address two questions in this talk. What is the LHC telling us about

More information

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004 Searches at LEP Moriond Electroweak 2004 Ivo van Vulpen CERN On behalf of the LEP collaborations LEP and the LEP data LEP: e + e - collider at s m Z (LEP1) and s = 130-209 GeV (LEP2) Most results (95%

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING

A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING UC @ Santa Barbara Feb. 2nd, 2011 A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING Tao Liu UC @ Santa Barbara Higgs Boson And Particle Physics The Standard Model (SM) is a successful theory of describing the

More information

The NMSSM Higgs Sector

The NMSSM Higgs Sector The NMSSM Higgs Sector Jack Gunion Davis Institute for High Energy Physics, U.C. Davis Snowmass 2005, August 17, 2005 Collaborators: U. Ellwanger, C. Hugonie, R. Dermisek Outline Why the NMSSM? Brief Review

More information

Dark Matter Direct Detection in the NMSSM

Dark Matter Direct Detection in the NMSSM Dark Matter Direct Detection in the NMSSM,DSU27. Dark Matter Direct Detection in the NMSSM Daniel E. López-Fogliani Universidad Autónoma de Madrid Departamento de Física Teórica & IFT DSU27 D. Cerdeño,

More information

Phenomenology of a light singlet-like scalar in NMSSM

Phenomenology of a light singlet-like scalar in NMSSM Phenomenology of a light singlet-like scalar in NMSSM Institute of Theoretical Physics, University of Warsaw Corfu Summer Institute, 12 September 2014 based on: MB, M. Olechowski and S. Pokorski, JHEP

More information

Identifying the NMSSM by combined LHC-ILC analyses

Identifying the NMSSM by combined LHC-ILC analyses Identifying the NMSSM by combined LHC-ILC analyses Stefan Hesselbach High Energy Physics, Uppsala University based on G. Moortgat-Pick, S. Hesselbach, F. Franke, H. Fraas, JHEP 06 (2005) 048 [hep-ph/0502036]

More information

Higgs Results from LEP2. University of Wisconsin January 24, 2002 WIN 02

Higgs Results from LEP2. University of Wisconsin January 24, 2002 WIN 02 Higgs Results from LEP2 Peter McNamara University of Wisconsin January 24, 22 WIN 2 No Higgs? In December, 2, New Scientist wrote: The legendary particle that physicists thought explained why matter has

More information

Search for SUperSYmmetry SUSY

Search for SUperSYmmetry SUSY PART 3 Search for SUperSYmmetry SUSY SUPERSYMMETRY Symmetry between fermions (matter) and bosons (forces) for each particle p with spin s, there exists a SUSY partner p~ with spin s-1/2. q ~ g (s=1)

More information

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

SUSY and Exotics. UK HEP ForumFrom the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1 SUSY and Exotics Standard Model and the Origin of Mass Puzzles of Standard Model and Cosmology Bottom-up and top-down motivation Extra dimensions Supersymmetry - MSSM -NMSSM -E 6 SSM and its exotics UK

More information

Motivations and Discovery Prospects for Elusive Higgs Boson(s)

Motivations and Discovery Prospects for Elusive Higgs Boson(s) Motivations and Discovery Prospects for Elusive Higgs Boson(s) Jack Gunion U.C. Davis LAPTh, Annecy, Nov. 13, 2009 Synopsis/Outline There are excellent motivations for an m H < 105 GeV SUSY Higgs with

More information

Hidden Higgs boson in extended supersymmetric scenarios at the LHC

Hidden Higgs boson in extended supersymmetric scenarios at the LHC Hidden Higgs boson in extended supersymmetric scenarios at the LHC Priyotosh Bandyopadhyay INFN Lecce & University of Salento, Lecce arxiv:1512.09241, arxiv:1512.08651, JHEP 1512 (2015) 127, JHEP 1509

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Outline I. Higgs physics afer discovery Ø What is the current data telling us?

More information

arxiv: v2 [hep-ph] 7 Feb 2008

arxiv: v2 [hep-ph] 7 Feb 2008 Nonstandard Higgs Boson Decays 1 Nonstandard Higgs Boson Decays arxiv:0801.4554v2 [hep-ph] 7 Feb 2008 Spencer Chang Center for Cosmology and Particle Physics, Dept. of Physics, New York University, New

More information

Update on NMSSM Ideal Higgs Scenarios

Update on NMSSM Ideal Higgs Scenarios Update on NMSSM Ideal Higgs Scenarios Jack Gunion U.C. Davis Fermilab, April 7, 2010 Definition of Ideal Model 1. Excellent agreement with precision electroweak (PEW) data. August 2009 Γ Z σ 0 had R 0

More information

Split SUSY and the LHC

Split SUSY and the LHC Split SUSY and the LHC Pietro Slavich LAPTH Annecy IFAE 2006, Pavia, April 19-21 Why Split Supersymmetry SUSY with light (scalar and fermionic) superpartners provides a technical solution to the electroweak

More information

NMSSM Higgs Detection: LHC, LC, γc Complementarity and h aa decays

NMSSM Higgs Detection: LHC, LC, γc Complementarity and h aa decays NMSSM Higgs Detection: LHC, LC, γc Complementarity and h aa decays Jack Gunion Davis Institute for High Energy Physics, U.C. Davis ALCPG24, SLAC, January 9, 24 Outline Why go beyond the MSSM? The CPC NMSSM

More information

Beyond the SM: SUSY. Marina Cobal University of Udine

Beyond the SM: SUSY. Marina Cobal University of Udine Beyond the SM: SUSY Marina Cobal University of Udine Why the SM is not enough The gauge hierarchy problem Characteristic energy of the SM: M W ~100 GeV Characteristic energy scale of gravity: M P ~ 10

More information

Little Higgs at the LHC: Status and Prospects

Little Higgs at the LHC: Status and Prospects Little Higgs at the LHC: Status and Prospects Marco Tonini DESY Theory Group (Hamburg) based on: Reuter/MT, JHEP 1302, 077 (2013) Reuter/MT/de Vries, hep-ph/1307.5010 Reuter/MT/de Vries, DESY-13-123 (in

More information

Yasunori Nomura. UC Berkeley; LBNL. hep-ph/ [PLB] hep-ph/ [PLB] hep-ph/ [PRD] Based on work with Ryuichiro Kitano (SLAC)

Yasunori Nomura. UC Berkeley; LBNL. hep-ph/ [PLB] hep-ph/ [PLB] hep-ph/ [PRD] Based on work with Ryuichiro Kitano (SLAC) Yasunori Nomura UC Berkeley; LBNL Based on work with Ryuichiro Kitano (SLAC) hep-ph/0509039 [PLB] hep-ph/0509221 [PLB] hep-ph/0602096 [PRD] We will be living in the Era of Hadron Collider Exploring highest

More information

BSM Higgs Searches at ATLAS

BSM Higgs Searches at ATLAS BSM Higgs Searches at ATLAS Martin zur Nedden Humboldt-Universität zu Berlin for the ATLAS Collaboration SUSY Conference 2014 Manchester July 20 th July 25 th, 2014 Introduction Discovery of a scalar Boson

More information

Beyond the MSSM (BMSSM)

Beyond the MSSM (BMSSM) Beyond the MSSM (BMSSM) Nathan Seiberg Strings 2007 SUSY 2012 Based on M. Dine, N.S., and S. Thomas, to appear Assume The LHC (or the Tevatron) will discover some of the particles in the MSSM. These include

More information

Searching for neutral Higgs bosons in non-standard channels

Searching for neutral Higgs bosons in non-standard channels Searching for neutral Higgs bosons in non-standard channels Arjun Menon University of Oregon April 9, 2013 Motivation A SM-Higgs like resonance has been observed at the LHC The Higgs sector may also have

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

Higgs boson searches at LEP II

Higgs boson searches at LEP II PROCEEDINGS Higgs boson searches at LEP II Department of Physics and Astronomy University of Glasgow Kelvin Building University Avenue Glasgow G12 8QQ UK E-mail: D.H.Smith@cern.ch Abstract: A brief overview

More information

Highlights of Higgs Physics at LEP

Highlights of Higgs Physics at LEP hep-ph/43 February 4 Highlights of Higgs Physics at André Sopczak Lancaster University arxiv:hep-ph/43 v Feb 4 Abstract Final results from the combined data of the four experiments AH,, L3 and OPAL on

More information

arxiv:hep-ph/ v1 6 Feb 2004

arxiv:hep-ph/ v1 6 Feb 2004 arxiv:hep-ph/0402064v1 6 Feb 2004 AN NMSSM WITHOUT DOMAIN WALLS TAO HAN Department of Physics University of Wisconsin Madison, WI 53706 USA E-mail: than@pheno.physics.wisc.edu PAUL LANGACKER Department

More information

Higgs, neutralinos and exotics beyond the MSSM

Higgs, neutralinos and exotics beyond the MSSM Higgs, neutralinos and exotics beyond the MSSM N 5 (Singlino in χ ).8.6.4. nmssm N 6 in Beyond the MSSM Heavy Z Higgs Neutralinos Exotics 3 (GeV) M χ Fermilab (March, 6) References V. Barger, PL and H.

More information

Complete LEP Data: Status of Higgs Boson Searches

Complete LEP Data: Status of Higgs Boson Searches hep-ph/282 December 2 Complete LEP Data: Status of Higgs Boson Searches arxiv:hep-ph/282v 5 Dec 2 André Sopczak Lancaster University Abstract The LEP experiments completed data-taking in November 2. New

More information

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC 15.01.2010 Marek Olechowski Institut of Theoretical Physics, University of Warsaw LIGHT GLUINOS? Early supersymmetry discovery potential of the LHC Phenomenology

More information

Basics of Higgs Physics

Basics of Higgs Physics Basics of iggs Physics Sven einemeyer, IFCA (Santander) Karlsruhe, 07/2007 1. The iggs Boson in the SM 2. The iggs Boson in the MSSM Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007

More information

Discovery potential for SUGRA/SUSY at CMS

Discovery potential for SUGRA/SUSY at CMS Discovery potential for SUGRA/SUSY at CMS Stefano Villa, Université de Lausanne, April 14, 2003 (Based on talk given at SUGRA20, Boston, March 17-21, 2003) Many thanks to: Massimiliano Chiorboli, Filip

More information

Supersymmetric Origin of Matter (both the bright and the dark)

Supersymmetric Origin of Matter (both the bright and the dark) Supersymmetric Origin of Matter (both the bright and the dark) C.E.M. Wagner Argonne National Laboratory EFI, University of Chicago Based on following recent works: C. Balazs,, M. Carena and C.W.; Phys.

More information

NMSSM Tevatron/LHC Scenarios: Motivation and Phenomenology

NMSSM Tevatron/LHC Scenarios: Motivation and Phenomenology NMSSM Tevatron/LHC Scenarios: Motivation and Phenomenology Jack Gunion Davis Institute for High Energy Physics, U.C. Davis TeV4LHC, Fermilab, December 14, 2004 News from the NMSSM and Beyond NMSSM Naturalness

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN)

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Rutgers University, December 8, 2009 Preview Found a SUSY model, where: Weird higgs decays

More information

NMSSM Higgs Detection: LHC, LC, γc Complementarity and h aa decays

NMSSM Higgs Detection: LHC, LC, γc Complementarity and h aa decays NMSSM Higgs Detection: LHC, LC, γc Complementarity and h aa decays Jack Gunion Davis Institute for High Energy Physics, U.C. Davis LCWS24, Paris, April 21, 24 Outline Why go beyond the MSSM? The CPC NMSSM

More information

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki Charged Higgs Beyond the MSSM at the LHC Katri Huitu University of Helsinki Outline: Mo;va;on Charged Higgs in MSSM Charged Higgs in singlet extensions H ± à aw ± Charged Higgs in triplet extensions H

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Non-Standard Higgs Decays

Non-Standard Higgs Decays Non-Standard Higgs Decays David Kaplan Johns Hopkins University in collaboration with M McEvoy, K Rehermann, and M Schwartz Standard Higgs Decays Standard Higgs Decays 1 _ bb 140 GeV WW BR for SM Higgs

More information

Early SUSY Searches in Events with Leptons with the ATLAS-Detector

Early SUSY Searches in Events with Leptons with the ATLAS-Detector Early SUSY Searches in Events with Leptons with the ATLAS-Detector Timo Müller Johannes Gutenberg-Universität Mainz 2010-29-09 EMG Annual Retreat 2010 Timo Müller (Universität Mainz) Early SUSY Searches

More information

SUSY with light electroweakino

SUSY with light electroweakino SUSY with light electroweakino Sho IWAMOTO A self introduction 17 Dec. 2014 Joint HEP Seminar @ Tel Aviv University References: * M. Endo, K. Hamaguchi, S. I., and T. Yoshinaga [1303.4256] * S. I., T.

More information

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Peter Krieger Carleton University Physics Motivations Experimental Theoretical New particles searches Standard Model Higgs

More information

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ. Decoupling and Alignment in Light of the Higgs Data Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ. Outline I. IntroducCon Ø Snapshot of the LHC Higgs data Ø SuggesCons

More information

Sven Heinemeyer GK Seminar, University of Freiburg,

Sven Heinemeyer GK Seminar, University of Freiburg, Sven Heinemeyer GK Seminar, University of Freiburg, 09.02.2017 1 SUSY and its Higgs Bosons at the LHC Sven Heinemeyer, IFT/IFCA (CSIC, Madrid/Santander) Freiburg, 02/2017 Motivation SUSY after LHC Run

More information

Hiding the Higgs with Lepton Jets

Hiding the Higgs with Lepton Jets Hiding the Higgs with Lepton Jets Joshua T. Ruderman Princeton University February 2, 2010 Adam Falkowski, JTR, Tomer Volansky, and Jure Zupan (1002.XXXX) Talk Outline 1 Hiding the Higgs 2 A Light Hidden

More information

Higgs searches at LEP: Beyond the SM and MSSM models. Pauline Gagnon Indiana University

Higgs searches at LEP: Beyond the SM and MSSM models. Pauline Gagnon Indiana University Higgs searches at LEP: Beyond the SM and MSSM models Pauline Gagnon Indiana University Where oh where s my underwear? Where oh where can they be? I can t find them anywhere! They must be hiding from me

More information

Hiding the Higgs with Lepton Jets

Hiding the Higgs with Lepton Jets Hiding the Higgs with Lepton Jets Joshua T. Ruderman Princeton University March 3, 2010 Adam Falkowski, JTR, Tomer Volansky, and Jure Zupan 1002.2952 Talk Outline 1 Hiding the Higgs 2 A Light Hidden Sector

More information

Resonant H/A Mixing in CP Noninvariant 2HDM and MSSM

Resonant H/A Mixing in CP Noninvariant 2HDM and MSSM Resonant H/A Mixing Outline S.Y. Choi (Chonbuk, Korea) Resonant H/A Mixing in CP Noninvariant 2HDM and MSSM [SYC, J. Kalinowski, Y. Liao and P.M. Zerwas, to appear in EPJC] Outline. Introduction to CP

More information

arxiv: v1 [hep-ph] 31 Jan 2014

arxiv: v1 [hep-ph] 31 Jan 2014 The price of being SM-like in SUSY Tony Gherghetta a,b,1, Benedict von Harling c,, Anibal D. Medina b,3, Michael A. Schmidt b,4 a School of Physics & Astronomy, University of Minnesota, Minneapolis, MN

More information

Neutralino dark matter in the NMSSM

Neutralino dark matter in the NMSSM Neutralino dark matter in the NMSSM Ana M. Teixeira (LPT - Orsay) XLII Rencontres de Moriond La Thuile, Italy, 4 March 27 In collaboration with Cerdeño, Gabrielli, Hugonie, López-Fogliani and Muñoz Discussion

More information

Search for physics beyond the Standard Model at LEP 2

Search for physics beyond the Standard Model at LEP 2 Search for physics beyond the Standard Model at LEP 2 Theodora D. Papadopoulou NTU Athens DESY Seminar 28/10/03 1 Outline Introduction about LEP Alternatives to the Higgs mechanism Technicolor Contact

More information

+ µ 2 ) H (m 2 H 2

+ µ 2 ) H (m 2 H 2 I. THE HIGGS POTENTIAL AND THE LIGHT HIGGS BOSON In the previous chapter, it was demonstrated that a negative mass squared in the Higgs potential is generated radiatively for a large range of boundary

More information

LHC Signals of (MSSM) Electroweak Baryogenesis

LHC Signals of (MSSM) Electroweak Baryogenesis LHC Signals of (MSSM) Electroweak Baryogenesis David Morrissey Department of Physics, University of Michigan Michigan Center for Theoretical Physics (MCTP) With: Csaba Balázs, Marcela Carena, Arjun Menon,

More information

Diagnosing the nature of the 126 GeV Higgs signal

Diagnosing the nature of the 126 GeV Higgs signal Diagnosing the nature of the 6 GeV Higgs signal Jack Gunion U.C. Davis CERN, BSM lunch/forum, January 4, 3 Higgs couplings Collaborators: Belanger, Beranger, Ellwanger, Kraml. Higgs Couplings at the End

More information

The Higgs discovery - a portal to new physics

The Higgs discovery - a portal to new physics The Higgs discovery - a portal to new physics Department of astronomy and theoretical physics, 2012-10-17 1 / 1 The Higgs discovery 2 / 1 July 4th 2012 - a historic day in many ways... 3 / 1 July 4th 2012

More information

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March EW Naturalness in Light of the LHC Data Maxim Perelstein, Cornell U. ACP Winter Conference, March 3 SM Higgs: Lagrangian and Physical Parameters The SM Higgs potential has two terms two parameters: Higgs

More information

CMS Higgs Results Adi Bornheim Caltech

CMS Higgs Results Adi Bornheim Caltech CMS Higgs Results Adi Bornheim Caltech 06.04.2014 1 A brief history of recent times W & Z Boson t-quark H Boson 1964 1974 1984 1994 2004 2014 Peter Higgs This talk : Summary of 29 CMS publications and

More information

Lepton non-universality at LEP and charged Higgs

Lepton non-universality at LEP and charged Higgs Lepton non-universality at LEP and charged Higgs Jae-hyeon Park TU Dresden Institutsseminar TU Dresden, 13.10.2011 Standard Model L SM = 1 4 F F+ ψi/dψ [H ψ L Y ψ R+ h.c.] + g2 θ 32π 2 F F+ DH 2 V(H) Omitted:

More information

Light neutralino dark matter

Light neutralino dark matter Light Neutralino Dark Matter Shufang Su U. of Arizona Mitchell Workshop Texas A&M May 15, 2014 S. Su T. Han, Z. Liu and SS, to appear Outline Introduction/Motiation Light neutralino dark matter A1 /H1

More information

sin(2θ ) t 1 χ o o o

sin(2θ ) t 1 χ o o o Production of Supersymmetric Particles at High-Energy Colliders Tilman Plehn { Search for the MSSM { Production of Neutralinos/Charginos { Stop Mixing { Production of Stops { R Parity violating Squarks

More information

Potential Discoveries at the Large Hadron Collider. Chris Quigg

Potential Discoveries at the Large Hadron Collider. Chris Quigg Potential Discoveries at the Large Hadron Collider Chris Quigg Fermilab quigg@fnal.gov XXIII Taiwan Spring School Tainan 31 March - 3 April 2010 Electroweak theory successes Theoretical Physics Department,

More information

Higgs Physics in the NMSSM

Higgs Physics in the NMSSM Higgs Physics in the NMSSM Jack Gunion Davis Institute for High Energy Physics, U.C. Davis Collaborators: U. Ellwanger, C. Hugonie, S. Moretti SUSY 2004, Tsukuba, June 18, 2004 Outline Why go beyond the

More information

The Higgs boson mass in a natural MSSM with nonuniversal gaugino masses

The Higgs boson mass in a natural MSSM with nonuniversal gaugino masses 20/11/2013@ PASCOS 2013, Taipei Taiwan The Higgs boson mass in a natural MSSM with nonuniversal gaugino masses Hajime Otsuka (Waseda University) with H. Abe and J. Kawamura PTEP 2013 (2013) 013B02, arxiv

More information

Conformal Standard Model

Conformal Standard Model K.A. Meissner, Conformal Standard Model p. 1/13 Conformal Standard Model Krzysztof A. Meissner University of Warsaw AEI Potsdam HermannFest, AEI, 6.09.2012 K.A. Meissner, Conformal Standard Model p. 2/13

More information

SO(10) SUSY GUTs with family symmetries: the test of FCNCs

SO(10) SUSY GUTs with family symmetries: the test of FCNCs SO(10) SUSY GUTs with family symmetries: the test of FCNCs Outline Diego Guadagnoli Technical University Munich The DR Model: an SO(10) SUSY GUT with D 3 family symmetry Top down approach to the MSSM+

More information

Beyond the Standard Model Higgs boson searches using the ATLAS etector

Beyond the Standard Model Higgs boson searches using the ATLAS etector EPJ Web of Conferences 95, 47 (5) DOI:.5/ epjconf/ 5947 C Owned by the authors, published by EDP Sciences, 5 Beyond the Standard Model Higgs boson searches using the ATLAS etector I.I. Tsukerman the ATLAS

More information

SUSY at Accelerators (other than the LHC)

SUSY at Accelerators (other than the LHC) SUSY at Accelerators (other than the LHC) Beate Heinemann, University of Liverpool Introduction Final LEP Results First Tevatron Run 2 Results Summary and Outlook IDM 2004, Edinburgh, September 2004 Why

More information

mh = 125 GeV and SUSY naturalness

mh = 125 GeV and SUSY naturalness mh = 125 GeV and SUSY naturalness Josh Ruderman (UC Berkeley) March 13, 212 Lawrence Hall, David Pinner, JTR 1112.273 h! ATLAS CMS p Observed p 1-2 1 2 SM H expected p Data 211, s = 7 TeV Ldt = 4.9 fb

More information

Implications of a Heavy Z Gauge Boson

Implications of a Heavy Z Gauge Boson Implications of a Heavy Z Gauge Boson Motivations A (string-motivated) model Non-standard Higgs sector, CDM, g µ 2 Electroweak baryogenesis FCNC and B s B s mixing References T. Han, B. McElrath, PL, hep-ph/0402064

More information

Higgs: Interpretation and Implications. Marco Farina April 19, 2013

Higgs: Interpretation and Implications. Marco Farina April 19, 2013 Higgs: Interpretation and Implications Marco Farina April 19, 2013 Discovery! ATLAS coll. ATLAS-CONF-2013-034. CMS coll. CMS-PAS-HIG-13-002 Data Giardino et al. 1303.3570 Giardino et al. 1303.3570 Higgs

More information

LHC+LC Synergy: SUSY as a case study

LHC+LC Synergy: SUSY as a case study LHC+LC Synergy: SUSY as a case study εργον συν work together Outline: Why LHC/LC studies? Why SUSY as case study? 5 Examples of Synergy Conclusions Klaus Desch University of Hamburg ALCPG meeting - SLAC

More information

perturbativity Pankaj Sharma Based on : arxiv: st September, 2012 Higgs-electroweak precision, vacuum stability and perturbativity

perturbativity Pankaj Sharma Based on : arxiv: st September, 2012 Higgs-electroweak precision, vacuum stability and perturbativity 21st September, 2012 PLAN Type II Seesaw Particle Spectrum Vacuum Stabilty and. RG evolution of couplings Electroweak precision data (EWPD). enhancement. Conclusion. A 125 GeV Higgs has been discovered

More information

Dark Matter Implications for SUSY

Dark Matter Implications for SUSY Dark Matter Implications for SUSY Sven Heinemeyer, IFCA (CSIC, Santander) Madrid, /. Introduction and motivation. The main idea 3. Some results 4. Future plans Sven Heinemeyer, First MultiDark workshop,

More information

Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS2014, 04/28/2014

Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS2014, 04/28/2014 Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS4, 4/8/4 Introduc)on We discovered a Standard Model (SM) like Higgs boson at mh=5 GeV. This is not the end of the story.

More information

SUSY at Accelerators (other than the LHC)

SUSY at Accelerators (other than the LHC) SUSY at Accelerators (other than the LHC) Beate Heinemann, University of Liverpool Introduction Final LEP Results First Tevatron Run 2 Results Summary and Outlook IDM 2004, Edinburgh, September 2004 Why

More information

Supersymmetry at the LHC

Supersymmetry at the LHC Supersymmetry at the LHC What is supersymmetry? Present data & SUSY SUSY at the LHC C. Balázs, L. Cooper, D. Carter, D. Kahawala C. Balázs, Monash U. Melbourne SUSY@LHC.nb Seattle, 23 Sep 2008 page 1/25

More information

Baryogenesis and dark matter in the nmssm

Baryogenesis and dark matter in the nmssm Baryogenesis and dark matter in the nmssm C.Balázs, M.Carena, A. Freitas, C.Wagner Phenomenology of the nmssm from colliders to cosmology arxiv:0705431 C. Balázs, Monash U Melbourne BG & DM in the nmssm

More information

The Constrained E 6 SSM

The Constrained E 6 SSM The Constrained E 6 SSM and its signatures at the LHC Work with Moretti and Nevzorov; Howl; Athron, Miller, Moretti, Nevzorov Related work: Demir, Kane, T.Wang; Langacker, Nelson; Morrissey, Wells; Bourjaily;

More information

USTC 2011 Dec., 2011 ``DARK LIGHT HIGGS - A NEW PARADIGM FOR LIGHT DARK MATTER AND NONSTANDARD HIGGS PHYSICS. Tao Liu.

USTC 2011 Dec., 2011 ``DARK LIGHT HIGGS - A NEW PARADIGM FOR LIGHT DARK MATTER AND NONSTANDARD HIGGS PHYSICS. Tao Liu. USTC 2011 Dec., 2011 ``DARK LIGHT HIGGS - A NEW PARADIGM FOR LIGHT DARK MATTER AND NONSTANDARD HIGGS PHYSICS Tao Liu UC@ Santa Barbara Why Higgs Mechanism? Two mysteries in the Electroweak (EW) theory

More information

Searches for Beyond SM Physics with ATLAS and CMS

Searches for Beyond SM Physics with ATLAS and CMS Searches for Beyond SM Physics with ATLAS and CMS (University of Liverpool) on behalf of the ATLAS and CMS collaborations 1 Why beyond SM? In 2012 the Standard Model of Particle Physics (SM) particle content

More information

Higgs Searches beyond SM

Higgs Searches beyond SM Higgs Searches beyond SM and MSSM at the LHC Daniela Rebuzzi Pavia University and INFN on behalf of the ATLAS and CMS Collaborations MCTP Spring Symposium on Higgs Boson Physics Ann Arbor, Michigan - May

More information

Diagnosing the Nature of the GeV LHC Higgs-like signal

Diagnosing the Nature of the GeV LHC Higgs-like signal Diagnosing the Nature of the 25-26 GeV LHC Higgs-like signal Jack Gunion U.C. Davis Orsay, March 26, 203 Higgs couplings Collaborators: Belanger, Beranger, Ellwanger, Kraml. Status of invisible Higgs decays

More information

Multiple Higgs models and the 125 GeV state: NMSSM and 2HDM perspectives

Multiple Higgs models and the 125 GeV state: NMSSM and 2HDM perspectives Multiple Higgs models and the 25 GeV state: NMSSM and 2HDM perspectives Jack Gunion U.C. Davis Particle and Astro-Particle Physics Seminar, CERN, Nov. 6, 22 Collaborators: G. Belanger, U. Ellwanger, Y.

More information

Higgs in the light of Hadron Collider limits: impact on a 4th generation

Higgs in the light of Hadron Collider limits: impact on a 4th generation Higgs in the light of Hadron Collider limits: impact on a 4th generation Jack Gunion U.C. Davis Saclay, June 6, 2011 Outline Review of Experimental Status. Eliminating a 4th generation for a light SM-like

More information

Implications of an extra U(1) gauge symmetry

Implications of an extra U(1) gauge symmetry Implications of an extra U(1) gauge symmetry Motivations 400 LEP2 (209 GeV) Higgsstrahlung Cross Section A (string-motivated) model σ(e + e - -> ZH) (fb) 350 300 250 200 150 100 50 H 1 H 2 Standard Model

More information

U(1) Gauge Extensions of the Standard Model

U(1) Gauge Extensions of the Standard Model U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start

More information