FINITE-DIMENSIONAL REPRESENTATIONS OF THE QUANTUM SUPERALGEBRA U q [gl(2/2)]: I. Typical representations at generic q

Size: px
Start display at page:

Download "FINITE-DIMENSIONAL REPRESENTATIONS OF THE QUANTUM SUPERALGEBRA U q [gl(2/2)]: I. Typical representations at generic q"

Transcription

1 FINITE-DIMENSIONAL REPRESENTATIONS OF THE QUANTUM SUPERALGEBRA U q [gl2/2)]: I. Typical representations at generic q Nguyen Anh Ky ) International Centre for Theoretical Physics P.O. Box 586, Trieste 34100, Italy Abstract In the present paper we construct all typical finite-dimensional representations of the quantum Lie superalgebra U q [gl2/2)] at generic deformation parameter q. As in the non-deformed case the finite-dimensional U q [gl2/2)]-module W q obtained is irreducible and can be decomposed into finite-dimensional irreducible U q [gl2) gl2)]-submodules V q k. PACS numbers: 02.20Tw, 11.30Pb. ) Permanent Mailing Address: Centre for Polytechnic Educations Trung tâm giáo dục kỹthuật tông họp), Vinh, Vietnam Address after June 01, 1993: Institute for Nuclear Research and Nuclear Energy, Boul. Tsarigradsko chaussee 72, Sofia 1784, Bulgaria 1

2 1. Introduction Since the quantum deformations 1 5 became a subject of intensive investigations many algebraic and geometric) structures and different representations of quantum super-) groups have been obtained and understood. For instance, the quantum algebra U q [sl2)] is very well studied 6 8. Originated from intensive investigations on the quantum inverse scattering method and the Yang-Baxter equations, the quantum groups have found various applications in theoretical physics and mathematics see in this context, for example, Refs ). As in the non-deformed case for applications of quantum groups we often need their explicit representations. Being a subject of many investigations, representations of quantum groups, especially representations of quantum superalgebras are presently under development. However, although the progress in this direction is remarkable the problem is still far from being satisfactorily solved. Explicit representations are known only for quantum Lie superalgebras of lower ranks and of particular types like U q [osp)] 13, U q [gl1/n)] 14, etc.. For higher rank quantum Lie superalgebras 15 18, besides some q-oscillator representations which are most popular among those constructed, we do not know so much about other representations, in particular the finite-dimensional ones. Some general aspects and module structures of finite-dimensional representations of U q [glm/n)] are considered in Ref. 18 see also Ref. 14 ) but without their explicit constructions. So the question concerning an explicit construction of finitedimensional representations of U q [glm/n)] is still unsolved for m and n 2. Here, extending the method developed by Kac 19 in the case of Lie superalgebras from now on, only superalgebras) we shall construct all finite-dimensional representations of the quantum Lie superalgebra U q [gl2/2)] at generic q, i.e. q is not a root of unity. It turns out that the finite-dimensional U q [gl2/2)]-modules have similar structures to that of the non-deformed ones 20,21 and are decomposed into finitedimensional irreducible U q [gl2) gl2)]-modules. Finite-dimensional U q [gl2/2)]- modules can be classified again as typical or atypical ones see the Proposition 2). In the frame-work of this paper for the sake of simplicity we shall consider only the typical representations at generic q. When q is a root of unity, as emphasized also 2

3 in 18, the structures of U q [gl2/2)]-modules are drastically different in comparison with the structures of gl2/2)-modules 20,21. The present investigation on typical representations at generic q is easily extended on atypical representations at generic q 22 and finite-dimensional representations at q being a root of unity 23. The paper is organized as follows. In order to make the present construction clear, in the section 2 we expose some introductory concepts and basic definitions of quantum superalgebras, especially U q [glm/n)]. We also describe briefly the procedure used for constructing finite-dimensional representations of U q [glm/n)]. The quantum superalgebra U q [gl2/2)]isdefinedinsection3. Thesection4isdevoted to construction of finite-dimensional representations of U q [gl2/2)]. Some comments and the conclusion are made in the section 5, while the references are given in the last section 6. For a convenient reading we shall keep as many as possible the abbreviations and notations used in Ref. 20 among the following ones: fidirmods) - finite-dimensional irreducible modules), GZ basis - Gel fand-zetlin basis, lin.env.{x} - linear envelope of X, q - the deformation parameter, V q l V q r - tensor product between two linear spaces V q l and V q r or a tensor product between a U q [gl2) l ]-module V q l and a U q [gl2) r ]-module V q r, T q V q 0 - tensor product between two U q [gl2) gl2)]-modules T q and V q 0, [x] q = qx q x q q 1, where x is some number or operator, [x] [x] q 2, [E,F} - supercommutator between E and F, [E,F] q EF qfe - q-deformed commutator between E and F, 3

4 a ij - an element of the Cartan matrix a ij ), q i = q d i, where d i are rational numbers such that d i a ij = d j a ji, i, j =1, 2,..., r, E i = e i q h i i F i = f i q h i i e i k 1 i k i+1, f i k 1 i k i+1. Note that we must not confuse the quantum deformation [x] [x] q 2 of x with the highest weight signature) [m] in the GZ basis m) or with the notation [, ] for commutators. 2. Some introductory concepts of quantum superalgebras Let g be a rank r semi-) simple superalgebra, for example, slm/n) orospm/n). The quantum superalgebra U q g) as a quantum deformation q-deformation) of the universal enveloping algebra Ug)ofg, is completely defined by the Cartan-Chevalley canonical generators h i, e i and f i, i =1, 2,..., r which satisfy a) the quantum Cartan-Kac supercommutation relations [h i,h j ]= 0, [h i,e j ]= a ij e j, [h i,f j ]= a ij f j, [e i,f j }= δ ij [h i ] q 2 i, 2.1) b) the quantum Serre relations ad q E i ) 1 ã ij E j =0, ad q F i ) 1 ã ij F j =0 2.2) where ã ij ) is a matrix obtained from the non-symmetric Cartan matrix a ij )by replacing the strictly positive elements in the rows with 0 on the diagonal entry by 1, while ad q is the q-deformed adjoint operator given by the formula 2.8) and 4

5 c) the quantum extra-serre relations for g being slm/n) orospm/n)) {[e m 1,e m ] q 2, [e m,e m+1 ] q 2} =0, {[f m 1,f m ] q 2, [f m,f m+1 ] q 2} =0, 2.3) being additional constraints on the unique odd Chevalley generators e m and f m.in the above formulas we denoted q i = q d i where d i are rational numbers symmetrizing the Cartan matrix d i a ij = d j a ji,1 i, j r. For example, in case g = slm/n) we have 1 if 1 i m, d i = 2.4) 1 if m +1 i r = m + n 1. The above-defined quantum superalgebras form a subclass of a special class of Hopf algebras called by Drinfel d quasitriangular Hopf algebras 2. They are endowed with a Hopf algebra structure given by the following additional maps: a) coproduct : U U U b) antipode S : U U 1) = 1 1, h i )= h i 1+1 h i, e i )= e i q h i i f i )= f i q h i i S1) = 1, Sh i )= h i, Se i )= q a ii i e i, + q h i i e i, + q h i i f i, 2.5) Sf i )= q a ii i f i 2.6) and c) counit ε : U C 5

6 ε1) = 1, εh i )=εe i )=εf i )=0, 2.7) Then the quantum adjoint operator ad q has the following form 16,27 ad q =µ L µ R )id S) 2.8) with µ L respectively, µ R ) being the left respectively, right) multiplication: µ L x)y = xy respectively, µ R x)y = 1) degx.degy yx). A quantum superalgebra U q [glm/n)] is generated by the generators k i ±1 q ±E ii i, e j E j,j+1 and f j E j+1,j, i =1, 2,..., m + n, j =1, 2,..., m + n 1 such that the following relations hold cf. Refs. 14,18 ) a) the super-commutation relations k i k j = k j k i, k i k 1 i = k 1 i k i =1, k i e j k 1 i = q δ ij δ i,j+1 ) i e j, k i f j k 1 i = q δ ij+1 δ i,j ) i f j, [e i,f j } = δ ij [h i ] q 2 i, where q h i i = k i k 1 i+1, 2.9) b) the Serre relations 2.2) taking now the explicit forms [e i,e j ]=[f i,f j ]=0, if i j =1, e 2 m = f 2 m =0, [e i, [e i,e j ] q ±2] q 2 = [f i, [f i,f j ] q ±2] q 2 =0, if i j = ) and c) the extra-serre relations 2.3) {[e m 1,e m ] q 2, [e m,e m+1 ] q 2} =0, {[f m 1,f m ] q 2, [f m,f m+1 ] q 2} = ) Here, besides d i,1 i r = m + n 1 given in 2.4) we introduced d m+n = 1. The Hopf structure on k i looks as 6

7 k i )= k i k i, Sk i )= k 1 i, εk i ) = ) The generators E ii, E i,i+1 and E i+1,i together with the generators defined in the following way E ij := [E ik E kj ] q 2 E ik E kj q 2 E kj E ik, i<k<j, E ji := [E jk E ki ] q 2 E jk E ki q 2 E ki E jk, i < k < j, 2.13) play an analogous role as the Weyl generators e ij, e ij ) kl = δ ik δ jl, 2.14) of the superalgebra glm/n) whose universal enveloping algebra U[glm/n)] represents a classical limit of U q [glm/n)] when q 1. The quantum algebra U q [glm/n) 0 ] = U q [glm) gln)] generated by k i, e j and f j, i =1, 2,..., m + n, m j =1, 2,..., m + n 1, U q [glm/n) 0 ] = lin.env.{e ij 1 i, j m and m +1 i, j m + n} 2.15) is an even subalgebra of U q [glm/n)]. Note that U q [glm/n) 0 ] is included in the largest even subalgebra U q [glm/n)] 0 containing all elements of U q [glm/n)] with even powers of the odd generators. As is shown by M. Rosso 28 and C. Lusztig 29, a finite-dimensional representation of a Lie algebra g can be deformed to a finite-dimensional representation of its quantum analogue U q g). In particular, finite-dimensional representations of U q [glm) gln)] are quantum deformations of those of glm) gln). Hence, a finite-dimensional irreducible representation of U q [glm) gln)] is again highest weight. Following the classical procedure 19,20 we can construct representations of U q [glm/n)] induced from finite-dimensional irreducible representations of U q [glm) gln)] which, as we can see from ) and 2.15), is the stability subalgebra of U q [glm/n)]. Let V q 0 Λ) be a U q [glm) gln)]-fidirmod characterized 7

8 by some highest weight Λ. For a basis of V q 0 Λ) we can choose the Gel fand-zetlin GZ) tableaux 30, since the latter are invariant under the quantum deformations 28,29,31,32. Therefore, the highest weight Λ is described again by the first row of the GZ tableaux called from now on as the GZ basis) vectors. Demanding E m,m+1 V q 0 Λ) e m V q 0 Λ) = ) i.e. U q A + )V q 0 Λ) = ) we turn V q 0 Λ) into a U q B)-module, where A + = {E ij 1 i m<j m + n} 2.18) B = A + glm) gln) 2.19) The U q [glm/n)] -module W q induced from the U q [glm) gln)]-module V q 0 Λ) is the factor-space W q = W q Λ)=[U q V q 0 Λ)]/I q Λ) 2.20) where U q U q [glm/n)], while I q Λ) is the subspace I q Λ) = lin.env.{ub v u bv u U q,b U q B) U q,v V q 0 Λ)} 2.21) In order to complete the present section let us note that the modules W q Λ) and V q 0 Λ) have one and the same highest vector. Therefore, they are characterized by oneandthesamehighestweightλ. 3.U[gl2/2)]U[gl2/2)]The quantum superalgebra U q [gl2/2)] The quantum superalgebra U q U q [gl2/2)] is generated by the generators E ii, i =1, 2, 3, 4, E 12 e 1, E 23 e 2, E 34 e 3, E 21 f 1, E 32 f 2 and E 43 f 3 satisfying the relations ) which now read a) the super-commutation relations 1 i, i +1,j,j+1 4): [E ii,e jj ] = 0, 8

9 with d 1 = d 2 = d 3 = d 4 =1, [E ii,e j,j+1 ] = δ ij δ i,j+1 )E j,j+1, [E ii,e j+1,j ] = δ i,j+1 δ ij )E j+1,j, [E i,i+1,e j+1,j }= δ ij [h i ] q 2, h i =E ii d i+1 d i E i+1,i+1 ), 3.1) b) the Serre-relations: [E 12,E 34 ] = [E 21,E 43 ] = 0, E23 2 = E32 2 =0, [E 12,E 13 ] q 2 =[E 24,E 34 ] q 2 =0, [E 21,E 31 ] q 2 =[E 42,E 43 ] q 2 = 0, 3.2) and c) the extra-serre relations: {E 13,E 24 } =0, {E 31,E 42 } = 0, 3.3) respectively. Here, for a further convenience, the operators E 13 := [E 12,E 23 ] q 2, E 24 := [E 23,E 34 ] q 2, E 31 := [E 21,E 32 ] q 2, E 42 := [E 32,E 43 ] q ) and the operators composed in the following way E 14 := [E 12, [E 23,E 34 ] q 2] q 2 [E 12,E 24 ] q 2, E 41 := [E 21, [E 32,E 43 ] q 2] q 2 [E 21,E 42 ] q 2 3.5) are defined as new generators. The latter are odd and have vanishing squares. They, together with the Cartan-Chevalley generators, form a full system of q-analogues of the Weyl generators e ij,1 i, j 4, of the superalgebra gl2/2) whose universal enveloping algebra U[gl2/2)] is a classical limit of U q [gl2/2)] when q 1. Other commutation relations between E ij follow from the relations 3.1-3) and the defini- 9

10 tions 3.4-5). The subalgebra U q [gl2/2) 0 ] U q [gl2/2)] 0 U q [gl2/2)]) is even and isomorphic to U q [gl2) gl2)] U q [gl2)] U q [gl2)] which is completely defined by E ii, 1 i 4, E 12, E 34, E 21 and E 43 U q [gl2/2) 0 ] = lin.env.{e ij i, j =1, 2 and i, j =3, 4} 3.6) In order to distinguish two components of U q [gl2/2) 0 ]weset left U q [gl2)] U q [gl2) l ]:=lin.env.{e ij i, j =1, 2}, 3.7) right U q [gl2)] U q [gl2) r ]:=lin.env.{e ij i, j =3, 4}. 3.8) That means U q [gl2/2) 0 ] = U q [gl2) l gl2) r ]. 3.9) Let V q Λ) be a U q [gl2/2) 0 ]-fidirmod of the highest weight Λ. Thus V q can be decomposed into a tensor product V q Λ) = V q l Λ l) V q r Λ r ), 3.10) between a U q [gl2) l ]-fidirmod V q l Λ l) of a highest weight Λ l and a U q [gl2) r ]-fidirmod Vr qλ r) of a highest weight Λ r,whereλ l and Λ r are defined respectively as the left and right components of Λ : Λ=[Λ l, Λ r ]. 3.11) 4. Finite-dimensional representations of U q [gl2/2)] Here, we shall construct finite-dimensional representations of U q [gl2/2)] induced from finite-dimensional irreducible representations of U q [gl2/2) 0 ]. In the framework of the present paper we consider only typical representations of U q [gl2/2)] at generic q. Atypical representations at generic q and finite-dimensional representations of U q [gl2/2)] at roots of unity are subjects of later publications 22,23. 10

11 As mentioned earlier a fidirmod V q 0 Λ) of the quantum algebra U q [gl2/2) 0 ]represents a quantum deformation q-deformation) of some fidirmod V 0 Λ) of the algebra gl2/2) 0. Moreover, following the classical procedure we can construct U q [gl2/2)]- fidirmods induced from U q [gl2/2) 0 ]-fidirmods. Setting E 23 V q 0 =0, 4.1) a U q [gl2/2)]-module W q induced from the U q [gl2/2) 0 ]-fidirmod V q 0, by the construction, is the factor-space 2.20) with m = n =2: where W q Λ)=[U q V q 0 Λ)]/I q Λ), 4.2) I q Λ) = lin.env.{ub v u bv u U q,b U q B) U q,v V q 0 Λ)} U q B) =lin.env.{e ij, E 23 i, j =1, 2 and i, j =3, 4} 4.3) Any vector w from the module W q has the form Then W q is a U q [gl2/2)]-module in the sense for g, u U q, w W q and v V q 0. w = u v, u U q, v V q 0 4.4) gw gu v) =gu v W q 4.5) In the next two subsections we shall construct the bases of the module W q and find the explicit matrix elements for the typical representations of U q [gl2/2)]. 4.1 The bases Since the GZ basis is invariant under the q-deformation, for a basis of a U q [gl2)]- fidirmod V 0 we can choose m 12 m 22 m 11 [m] m ) 11

12 where m ij are complex numbers such that m 12 m 11 Z + and m 11 m 22 Z +. Under the actions of the U q [gl2)]-generators E ij, i, j =1, 2 the basis 4.6) transforms as follows 32 E 12 m = l 11 +1) 12 m 22, m 11 m 11 E m 12 m = l 12 + l 22 l 11 +2) m 12 m 22, m 11 m 11 E 12 m 12 m 22 m 11 = [l 12 l 11 ][l 11 l 22 ]) m 12 m 22 m E m 12 m = [l 12 l 11 [l 11 l 22 1]) m 12 m 22, 4.7) m 11 m 11 1 where l ij = m ij i for i =1, 2andl ij = m ij i + 2 for i =3, 4., On the other hands, V q 0 is decomposed into the tensor product V q 0 = V q 0,l V q 0,r. 4.8) where V q 0,l and V q 0,r are a U q [gl2) l ]- and a U q [gl2) r ]-fidirmods, respectively. Therefore, the GZ basis of V q 0 is the tensor product m 13 m 23 m 11 m 33 m 43 m 31 [m] l m 11 [m] r m 31 m) l m) r m) 4.9) between the GZ basis of V q 0,l spanned on the vectors m) l and the GZ basis of V q 0,r spanned on the vectors m) r. Following the approach of Ref. 20 and keeping the notations used there, we can represent the GZ basis 4.9) of V q 0 in the form m 13 m 23 m 33 m 43 ; [m] l [m] r ; m) 4.10) m 11 m 11 m 31 Then, the highest weight Λ is given by the first row signature) [m 13,m 23,m 33,m 43 ] [[m] l, [m] r ] [m] common for all the GZ basis vectors 4.10) of V q 0 : m 31 V q 0 V q 0 Λ) = V q 0 [m]) = V q 0,l [m] l) V q 0,r[m] r ) 4.11) 12

13 The explicit action of U q [gl2/2) 0 ]onv q 0 [m]) follows directly from 4.7) and : g 0 m) =g 0,l m) l m) r +m) l g 0,r m) r 4.12) for g 0 g 0,l g 0,r U q [gl2/2) 0 ]andm) V q 0 [m]). The GZ basis vector m 13 m 23 ; m 13 satisfying the conditions m 33 m 43 m 33 [m] l ; m 13 [m] r M) 4.13) m 33 E ii M) =m i3 M), i =1, 2, 3, 4, E 12 M)= E 34 M) = ) by definition, is the highest weight vector in V q 0 [m]). Therefore, as in the classical case q = 1) the highest weight [m] is nothing but an ordered set of the eigen values of the Cartan generators E ii on the highest weight vector M). The latter is also highest weight vector in W q [m]) because of the condition 4.1). All other, i.e. lower weight, basis vectors of V q 0 can be obtained from the highest weight vector M) through acting on the latter by monomials of definite powers of the lowering generators E 21 and E 43 : m) = where [n] s are short hands of [m 11 m 23 ]![m 31 m 43 ]! ) [m 13 m 23 ]![m 13 m 11 ]![m 33 m 43 ]![m 33 m 31 ]! E 21 ) m 13 m 11 E 43 ) m 33 m 31 M), 4.15) q 2n q 2n q 2 q 2 [n] q 2 [n], 4.16) while [n]! = [1][2]...[n 1][n]. 4.17) Using 3.1-5) we can show that a q-analogue of the Poincaré-Birkhoff-Witt theorem holds 26 see also 18 ), namely U q is a linear span of the elements of the form g =E 31 ) θ 1 E 32 ) θ 2 E 41 ) θ 3 E 42 ) θ 4 b, b U q B), θ i =0, 1, i =1, 2, 3, ) 13

14 Indeed, a right-ordered basis vector of U q like h =E 23 ) η 1 E 24 ) η 2 E 13 ) η 3 E 14 ) η 4 E 41 ) θ 1 E 31 ) θ 2 E 42 ) θ 3 E 32 ) θ 4 h 0, where η i,θ i =0, 1, h 0 U q [gl2/2) 0 ], can be re-ordered and expressed through the vectors 4.18) which are more convenient for consulting the classical case in Refs. 20,21. Taking into account the fact that V q 0 [m]) is a U q B)-module we have W q [m]) = lin.env.{e 31 ) θ 1 E 32 ) θ 2 E 41 ) θ 3 E 42 ) θ 4 v v V q 0,θ 1,..., θ 4 =0, 1}. Consequently, the vectors 4.19) θ 1 θ 2,θ 3,θ 4 ;m) := E 31 ) θ 1 E 32 ) θ 2 E 41 ) θ 3 E 42 ) θ 4 m), 4.20) all together span a basis of the module W q [m]). We shall call this basis induced in order to distinguish it from the introduced later reduced basis and is more convenient for us to investigate the reducibleness of W q [m]). The subspace T q consisting of θ 1,θ 2,θ 3,θ 4 := E 31 ) θ 1 E 32 ) θ 2 E 41 ) θ 3 E 42 ) θ ) can be considered as a U q [gl2/2) 0 ]-adjoint module upto rescaling by k i in definite powers). The latter is 16-dimensional as begins from 0, 0, 0, 0 when θ i =0and ends at 1, 1, 1, 1 when θ i = 1. Therefore, W q [m]), as a U q [gl2/2) 0 ]-module W q [m]) = T q V q 0 [m]), 4.19 ) is reducible and can be decomposed into 16 finite-dimensional irreducible U q [gl2/2) 0 ]- submodules V q k [m] k), k =0, 1,..., 15 : W q [m]) = 15 k=0 V q k [m] k). 4.22) Here, [m] k [m 12,m 22,m 32,m 42 ] k are the local highest weights of the submodules V q k in their GZ bases denoted now as m 12 m 22 ; m 11 m 32 m 42 m m) k. 4.23) k

15 The highest weight [m] 0 [m] ofv q 0 being also the highest weight of W q is referred as a global highest weight. We call [m] k, k 1 the local highest weights in the sense that they characterize only the submodules V q k W q as U q [gl2/2) 0 ]-fidirmods, while the global highest weight [m] characterizes the U q [gl2/2)]-module W q as the whole. In the same way we define the local highest weight vectors M) k in V q k as those m) k satisfying the conditions cf. 4.14)) E ii M) k = m i2 M) k, i =1, 2, 3, 4, E 12 M) k = E 34 M) k = ) The highest weight vector M) ofv q 0 is also the global highest weight vector in W q for which the condition see 4.1)) and the conditions 4.24) simultaneously hold. E 23 M) =0 4.25) Let us denote by Γ q k the basis system spanned on the basis vectors m) k 4.23) in each V q k [m]). For a basis of W q we can choose the union Γ q = 15 k=0 Γ q k of all the bases Γ q k, namely, a basis vector of W q has to be identified with one of the vectors m) k, k =0, 1,..., 15. The basis Γ q is referred as a U q [gl2/2) 0 ]-) reduced basis. It is clear that every basis Γ q k =Γ k[m] k ) q is labelled by a local highest weight [m] k, while the basis Γ q =Γ q [m]) is labelled by the global highest weight [m]. Going ahead, we modify the notation 4.23) for the basis vectors in Γ q as follows see 3.54) in Ref. 20 ) m 13 m 23 m 33 m 43 m 12 m 22 m 32 m 42 m 12 m 22 m 32 m 42 ; m 11 m 31 m 11 0 m 31 0 k m) k, 4.26) with k running from 0 to 15 as for k = 0 we have to take into account m i2 = m i3, i =1, 2, 3, 4, i.e. m 13 m 23 m 33 m 43 m) 0 m) = m 13 m 23 m 33 m 43 m 11 0 m 31 0 k. 4.27) 15

16 In 4.26) the first row [m] =[m 13,m 23,m 33,m 43 ] being the global) highest weight of W q is fixed for all the vectors in the whole W q and characterizes the module itself, while the second row is a local) highest weight of some submodule V q k and tells us that the considered basis vector m) k of W q belongs to this submodule in the decomposition 4.22) corresponding to the branching rule U q [gl2/2)] U q [gl2/2) 0 ]. It is easy to see that the highest vectors M) k in the notation 4.26) are m 13 m 23 m 33 m 43 M) k = m 12 m 22 m 32 m 42, k =0, 1, ) m 12 0 m 32 0 k The global) highest weight vector M) 4.13) is given now by m 13 m 23 m 33 m 43 M) = m 13 m 23 m 33 m ) m 13 0 m 33 0 Let us denote by m) ±ij k a GZ vector obtained from m) k by replacing the element m ij of the latter by m ij ± 1. We can prove that the highest weight vectors M) k expressed in terms of the induced basis 4.20) have the following explicit forms M) 0 = a 0 0, 0, 0, 0; M), a 0 1, M) 1 = a 1 0, 1, 0, 0; M), M) 2 = { a 2 1, 0, 0, 0; M) + q 4l [2l] } 0, 1, 0, 0; M) 11, M) 3 = { a 3 0, 0, 0, 1; M) q 4l 2 [2l ] } 0, 1, 0, 0; M) 31, M) 4 = { a 4 0, 0, 1, 0; M) + q 4l [2l] 0, 0, 0, 1; M) 11 q 4l 2 [2l ] 1, 0, 0, 0; M) 31 q 4l 4l 2 [2l][2l ]) } 0, 1, 0, 0; M) 11 31, M) 5 = a 5 0, 1, 0, 1; M), M) 6 = a 6 { 1, 0, 0, 1; M) + q 2 0, 1, 1, 0; M) 16

17 +q 4l q 2 + q 2 )[2l] } 0, 1, 0, 1; M) 11, M) 7 = { a 7 1, 0, 1, 0; M) + q 4l [2l] 1, 0, 0, 1; M) 11 +q 4l 2 [2l] 0, 1, 1, 0; M) 11 +q 8l 4 q 2 + q 2) [2l][2l 1]) } 0, 1, 0, 1; M) 11 11, M) 8 = a 8 1, 1, 0, 0; M), M) 9 = { a 9 1, 0, 0, 1; M) q 2 0, 1, 1, 0; M) q 4l q 2 + q 2 )[2l ] } 1, 1, 0, 0; M) 31, M) 10 = { a 10 0, 0, 1, 1; M) q 4l 4 [2l ] 1, 0, 0, 1; M) 31 +q 4l 2 [2l ] 0, 1, 1, 0; M) 31 +q 8l q 2 + q 2) [2l ][2l 1]) } 1, 1, 0, 0; M) 31 31, M) 11 = a 11 1, 1, 0, 1; M), M) 12 = { a 12 1, 1, 1, 0; M) + q 4l [2l] } 1, 1, 0, 1; M) 11, M) 13 = { a 13 0, 1, 1, 1; M) + q 4l 2 [2l ] } 1, 1, 0, 1; M) 31, M) 14 = { a 14 1, 0, 1, 1; M) + q 4l [2l] 0, 1, 1, 1; M) 11 +q 4l 2 [2l ] 1, 1, 1, 0; M) 31 +q 4l 4l 2 [2l][2l ]) } 1, 1, 0, 1; M) 11 31, M) 15 = a 15 1, 1, 1, 1; M), 4.30) where l = 1 2 m 13 m 23 )andl = 1 2 m 33 m 43 ), while a k = a k q) are coefficients depending on q. Indeed, M) k given in 4.30) form a set of all linear independent vectors satisfying the conditions 4.24). For a further convenience, let us rescale the coefficients a k as follows a 0 = c 0 1, a 8 = q 2 c 8, a 1 = q 2 c 1, a 9 = q 2 [2l ) ] c [2][2l 9, +2] 17

18 ) [2l] [2l a 2 = q 2 c 2, a 10 = q 2 ) 1] c [2l [2l 10, a 3 = a 4 = [2l ) ] c [2l 3, a 11 = q 2 c 11, [2l][2l ) ) ] [2l] c [2l + 1][2l 4, a 12 = q 2 c 12, [2l a 5 = q 2 c 5, a 13 = ) a 6 = q 2 [2l] c 6, a 14 = [2][2l +2] [2l ) ] c [2l 13, [2l][2l ) ] c [2l + 1][2l 14, where c k ) [2l 1] a 7 = q 2 c 7, a 15 = c 15, 4.31) [2l = c k q) are some other constants which may depend on q. Looking at 4.30) we easily identify the highest weights [m] k [m] 0 = [m 13,m 23,m 33,m 43 ], [m] 1 = [m 13,m 23 1,m 33 +1,m 43 ], [m] 2 = [m 13 1,m 23,m 33 +1,m 43 ], [m] 3 = [m 13,m 23 1,m 33,m 43, [m] 4 = [m 13 1,m 23,m 33,m 43, [m] 5 = [m 13,m 23 2,m 33 +1,m 43, [m] 6 = [m 13 1,m 23 1,m 33 +1,m 43 6, [m] 7 = [m 13 2,m 23,m 33 +1,m 43, [m] 8 = [m 13 1,m 23 1,m 33 +2,m 43 ], [m] 9 = [m 13 1,m 23 1,m 33 +1,m 43 9, [m] 10 = [m 13 1,m 23 1,m 33,m 43 +2], [m] 11 = [m 13 1,m 23 2,m 33 +2,m 43, [m] 12 = [m 13 2,m 23 1,m 33 +2,m 43, [m] 13 = [m 13 1,m 23 2,m 33 +1,m 43 +2], [m] 14 = [m 13 2,m 23 1,m 33 +1,m 43 +2], 18

19 [m] 15 = [m 13 2,m 23 2,m 33 +2,m ]. 4.32) In the latest formula 4.32), with the exception of [m] 6 and [m] 9 where a degeneration is present, we skip the subscript k in the r.h.s.. The proofs of 4.30) and 4.32) follow from direct computations. Using the rule 4.15) which now reads m) k = [m 11 m 22 ]![m 31 m 42 ]! ) [m 12 m 22 ]![m 12 m 11 ]![m 32 m 42 ]![m 32 m 31 ]! E 21 ) m 12 m 11 E 43 ) m 32 m 31 M) k 4.15 ) we can find all the basis vectors m) k : m) 0 = 0, 0, 0, 0; m), m) 1 = ) p c ) [l13 l 11 ][l 31 l 43 1] 1, 1 q2l 0, 0, 0; m) [2l + 1][2l ) q 2 l+p+l p ) [l11 l 23 ][l 31 l 43 1] 0, 1, 0, 0; m) 31 [2l + 1][2l ) [l13 l 11 ][l 33 l 31 0, + 0, 1, 0; m) +11 [2l + 1][2l ) q 2 l+p) [l11 l 23 ][l 33 l 31 0, 0, 0, 1; m) [2l + 1][2l m) 2 = ) p c ) [l11 l 23 ][l 31 l 43 1] 1, 2 q2l 0, 0, 0; m) [2l + 1][2l ) [l13 l 11 ][l 31 l 43 1] 0, 1, 0, 0; m) 31 q 2l+p+l p +1) m) 3 = c 3 [2l + 1][2l ) [l11 l 23 ][l 33 l 31 0, 0, 1, 0; m) +11 [2l + 1][2l q 2l+p+1) [l13 l 11 ][l 33 l 31 [2l + 1][2l +p +1) q 2l ) 0, 0, 0, 1; m) ) [l13 l 11 ][l 33 l 31 1, 0, 0, 0; m) [2l + 1][2l 19

20 q 2l p+l +p +1) ) [l11 l 23 ][l 33 l 31 0, 1, 0, 0; m) 31 [2l + 1][2l ) [l13 l 11 ][l 31 l 43 1] 0, 0, 1, 0; m) +11 [2l + 1][2l +q 2 l+p) [l11 l 23 ][l 31 l 43 1] [2l + 1][2l ) 0, 0, 0, 1; m) m) 4 = ) +p c +1) [l11 l 23 ][l 33 l 31 1, 4 q 2l 0, 0, 0; m) [2l + 1][2l ) q 2l+p l p ) [l13 l 11 ][l 33 l 31 0, 1, 0, 0; m) 31 [2l + 1][2l ) [l11 l 23 ][l 31 l 43 1] 0, + 0, 1, 0; m) +11 [2l + 1][2l ) +q 2l+p+1) [l13 l 11 ][l 31 l 43 1] 0, 0, 0, 1; m) [2l + 1][2l m) 5 = c 5 q 2 ) [l13 l 11 ][l 13 l 11 1] 1, 0, 1, 0; m) [2l + 1][2l +2] ) q 2 l+p) [l13 l 11 ][l 11 l 23 1, 0, 0, 1; m) [2l + 1][2l +2] ) 0, 1, 1, 0; m) q 2 l+p 1) [l13 l 11 ][l 11 l 23 [2l + 1][2l +2] +q 2 2l+2p 1) [l11 l 23 ][l 11 l 23 [2l + 1][2l +2] ) 0, 1, 0, 1; m) 31 ) m) 6 = c 6 q 2 q 2 + q 2 [l13 l 11 1][l 11 l 23 1, ) 0, 1, 0; m) [2][2l][2l +2] m) 7 = c 7 +q 2 l+p) [l 11 l 23 ] q 4l+1) [l 13 l 11 1]) [2][2l][2l +2]) +q 2 l+p 1) [l 11 l 23 ] q 4l+1) [l 13 l 11 1]) [2][2l][2l +2]) +q 2 + q 2 )q 22p+1) [l11 l 23 ][l 13 l 11 ] [2][2l][2l +2] q 2 1, 0, 0, 1; m) , 1, 1, 0; m) ) 0, 1, 0, 1; m) 31 ) [l11 l 23 ][l 11 l 23 1, 0, 1, 0; m) [2l][2l 20

21 ) +q 2l+p+1) [l11 l 23 ][l 13 l 11 1] 1, 0, 0, 1; m) [2l][2l ) +q 2l+p) [l11 l 23 ][l 13 l 11 1] 0, 1, 1, 0; m) [2l][2l +q 22l+2p+1) [l13 l 11 ][l 13 l 11 1] [2l][2l ) 0, 1, 0, 1; m) 31 m) 8 = ) [l33 l 31 [l 33 l 31 +2] 0, c 8 q2 0, 1, 1; m) +11 [2l + 1][2l +2] ) +q 2l p ) [l33 l 31 +2][l 31 l 43 1] 1, 0, 0, 1; m) [2l + 1][2l +2] ) q 2l p +1) [l33 l 31 +2][l 31 l 43 1] 0, 1, 1, 0; m) [2l + 1][2l +2] ) +q 22l 2p +3) [l31 l 43 2][l 31 l 43 1] 1, 1, 0, 0; m) [2l + 1][2l +2] ) m) 9 = c 9 q2 q 2 + q 2 [l33 l 31 [l 31 l 43 1] 0, ) 0, 1, 1; m) +11 [2][2l ][2l +2] q 2l p ) [l 31 l 43 2] q 4l +1) [l 33 l 31 ) [2][2l ][2l +2]) +q 2l p +1) [l 31 l 43 2] q 4l +1) [l 33 l 31 ) [2][2l ][2l +2]) +q 2 2p +1) q 2 + q 2 [l31 l 43 2][l 33 l 31 +2] ) [2][2l ][2l +2] 1, 0, 0, 1; m) , 1, 1, 0; m) ) 1, 1, 0, 0; m) m) 10 = ) [l31 l 43 2][l 31 l 43 1] 0, c 10 q2 0, 1, 1; m) +11 [2l ][2l ) q 2l +p +1) [l33 l 31 [l 31 l 43 2] 1, 0, 0, 1; m) [2l ][2l ) +q 2l +p ) [l33 l 31 [l 31 l 43 2] 0, 1, 1, 0; m) [2l ][2l ) +q 22l +2p 1) [l33 l 31 [l 33 l 31 +2] 1, 1, 0, 0; m) [2l ][2l ) [l13 l 11 1][l 33 l 31 +2] 1, m) 11 = c 11 0, 1, 1; m) [2l + 1][2l 21

22 ) q 2 l+p+1) [l11 l 23 [l 33 l 31 +2] 0, 1, 1, 1; m) [2l + 1][2l ) q 2l p +1) [l13 l 11 1][l 31 l 43 2] 1, 1, 1, 0; m) [2l + 1][2l ) +q 2 l+p+l p +2) [l11 l 23 [l 31 l 43 2] 1, 1, 0, 1; m) [2l + 1][2l m) 12 = ) c 12 [l11 l 23 [l 33 l 31 +2] 1, 0, 1, 1; m) [2l + 1][2l ) q 2l+p+2) [l13 l 11 1][l 33 l 31 +2] 0, 1, 1, 1; m) [2l + 1][2l ) +q 2l p +1) [l11 l 23 [l 31 l 43 2] 1, 1, 1, 0; m) [2l + 1][2l ) +q 2l+p+l p +3) [l13 l 11 1][l 31 l 43 2] 1, 1, 0, 1; m) [2l + 1][2l m) 13 = ) c 13 [l13 l 11 1][l 31 l 43 2] 1, 0, 1, 1; m) [2l + 1][2l ) +q 2 l+p+1) [l11 l 23 [l 31 l 43 2] 0, 1, 1, 1; m) [2l + 1][2l ) q 2l +p ) [l13 l 11 1][l 33 l 31 +2] 1, 1, 1, 0; m) [2l + 1][2l ) +q 2 l+p l p +1) [l11 l 23 [l 33 l 31 +2] 1, 1, 0, 1; m) [2l + 1][2l m) 14 = ) [l11 l 23 [l 31 l 43 2] 1, c 14 0, 1, 1; m) [2l + 1][2l ) +q 2l+p+2) [l13 l 11 1][l 31 l 43 2] 0, 1, 1, 1; m) [2l + 1][2l ) +q 2l +p ) [l11 l 23 [l 33 l 31 +2] 1, 1, 1, 0; m) [2l + 1][2l ) +q 2l+p l p +2) [l13 l 11 1][l 33 l 31 +2] 1, 1, 0, 1; m) [2l + 1][2l m) 15 = c 15 1, 1, 1, 1; m), 4.33) where l = 1 2 m 13 m 23 ), p = m m 13 + m 23 ), l = 1 2 m 33 m 43 )andp = 22

23 m m 33 + m 43 ). The latest formula 4.33), in fact, represents a way in which the reduced basis is expressed in terms of the induced basis and vas versa it is not a problem for us to find the invert relation between these bases see the Appendix). Taking into account all results obtained above we have proved the following assertion Proposition 1:TheU q [gl2/2)]-module W q is decomposed as a direct sum 4.22) of sixteen U q [gl2/2) 0 ]-fidirmods V q k, k =0, 1,..., 15, every one of which is characterized by a highest weight [m] k given in 4.32) and is spanned by a GZ basis m) k given in 4.33). The decomposition 4.22) of W q [m]) W q [m 13,m 23,m 33,m 43 ]) can be rewrittenintheform 21 W q [m]) = V q 00) [m 13,m 23,m 33,m 43 ]) min1,2l) i=0 min1,2l ) j=0 V q 10) [m 13 i, m 23 + i 1,m 33 j +1,m 43 + j]) min2,2l) i=0 min2,2l ) j=0 V q 11) [m 13 i, m 23 + i 2,m 33 +1,m 43 ) V q 20) [m 13 1,m 23 1,m 33 j +2,m 43 + j]) min1,2l) i=0 min1,2l ) j=0 V q 21) [m 13 i 1,m 23 + i 2,m 33 j +2,m 43 + j ) V q 22) [m 13 2,m 23 2,m 33 +2,m 43 +2]) 4.34) where V q ab) [m] ab)) is an alternative notation of that submodule V q k [m] k) with [m] k =[m] ab) : V q 00) [m] 00)) V q 00) [m]) = V q 0 [m]), V q 10) [m] 10)) V q 10) [m] k)=v q k [m] k), 1 k 4, 23

24 V q 11) [m] 11)) V q 11) [m] k)=v q k [m] k), 5 k 7, V q 20) [m] 20)) V q 20) [m] k)=v q k [m] k), 8 k 10, V q 21) [m] 21)) V q 21) [m] k)=v q k [m] k), 11 k 14, V q 22) [m] 22)) V q 22) [m] 15) =V q 15[m] 15 ). 4.35) In a natural way we denote by m) ab) the GZ basis of V q ab) [m] ab)). Thus, the basis of W q [m]) is spanned on the set of all possible patterns 21 such that m 13 m 23 m 33 m 43 m) ab) m 12 m 22 m 32 m 42, a,b {0, 1, 2} 4.36) m 11 0 m 31 0 ab) m 12 = m 13 r θa 2) θb 2) + 1, m 22 = m 23 + r θa 1) θb 1) 1, m 32 = m 33 + a s +1, m 42 = m 43 + b + s 1, 4.37) where r = 1,..., 1+mina b, 2l ), s = 1,..., 1+min a + b, 2l), 4.38) and 1 if x 0, θx) = 0 if x < 0 1 for odd i, i = 0 for even i. 4.39) 4.40) 4.2. Typical representations 24

25 The U q [gl2/2)]-module W q constructed is either irreducible or indecomposable. We can verify that Proposition 2 : The induced U q [gl2/2)]-module W q is irreducible if and only if the following condition holds [l 13 + l 33 +3][l 13 + l 43 +3][l 23 + l 33 +3][l 23 + l 43 +3] ) In this case we say that the module W q is typical, otherwise it is called atypical. The proof of the latter proposition follows the one for the classical case considered in Ref. 20 cf. Ref. 18 ). Indeed, by the same argument we can conclude that W q is irreducible if and only if E 24 E 14 E 23 E 13 E 31 E 32 E 41 E 42 M) ) The latest condition 4.42) in turn can be proved, after some elementary calculations, to be equivalent to [E 11 + E 33 [E 11 + E 44 ][E 22 + E 33 ][E 22 + E 44 1]M) 0, 4.42 ) which is nothing but the condition 4.41). Since U q [gl2/2)] is generated by the even generators and the odd Chevalley generators E 23 and E 32, any its representations in some basis is completely defined by the actions of these generators on the same basis. In the case of the typical representations the matrix elements of the generators in the reduced basis 4.33) can be obtained by keeping the conditions 4.1) and 4.41) valid and using the relations 3.1-5). For the even generators we readily have E 11 m) k = l 11 +1)m) k, E 22 m) k = l 12 + l 22 l 11 +2)m) k, E 12 m) k = [l 12 l 11 ][l 11 l 22 ]) m) +11 k, E 21 m) k = [l 12 l 11 [l 11 l 22 1]) m) 11 k, E 33 m) k = l 31 +1)m) k, 25

26 E 43 m) k = l 32 + l 42 l 31 +2)m) k, E 34 m) k = [l 32 l 31 ][l 31 l 42 ]) m) +31 k, E 43 m) k = [l 32 l 31 [l 31 l 42 1]) m) 31 k. 4.43) As the computations on finding the matrix elements of E 23 and E 32 are too cumbersome, we shall write down here only the final results. If we assume the formal notation [x 1 ]...[x i ] [y 1 ]...[y j ] := [ x 1 ]...[ x i ] 4.44) [ y 1 ]...[ y j ] the generator E 23 acts on the basis vectors m) ab), i.e. on m) k, as follows E 23 m) 00) = 0, E 23 m) 10) = q 2 [l 3 r,3 l 11 ][l 5 s,3 l 31 [l 3 r,3 + l s+2,3 +3] [l 13 l 23 ][l 33 l 43 ] m) +i2 j ), min2,b r+3) E 23 m) ab) = q 2 i=max1,b r+2) min4,b+s+2) j=max3,b+s+1) 1) b 1)i+bj+1) [l i3 + l j3 + s r +3] [l i2 l 11 [l 7 j,2 l 31 [l i2 l 3 i,2 + r 1] [l 12 l 22 ][l 32 l 42 ] [2 r ][l i3 l 3 i,3 + 1) r ] [l j2 l 7 j,2 s [2 s ][l j3 l 7 j,3 1) s ] 1 b)/2 m) +i2 j ), a+ b =2, b/2 2 4 E 23 m) 21) = q 2 i=1 j=3 s+j k=0,1 r+i 1) 1 k)i+kj [l i3 + l j3 1) k i + j + s + r +3] [l i2 l 11 [l 7 j,2 l 31 [l r2 l i2 +2k 2] [l 12 l 22 ][l 32 l 42 ] [2 k][l 13 l 23 ] [l 5 s,2 l j2 +2k] s+j+1 /2 [1 + k][l 33 l 43 ] E 23 m) 22) = 2 4 q 2 1) i+j [l i3 + l j3 +3] i=1 j=3 26 m) +i2 j k,1 k), i+r /2

27 [l i3 l 11 1][l 7 j,3 l 31 +3] [l 13 l 23 ][l 33 l 43 ] m) +i2 j ), 4.45) while the generator E 32 has the following matrix elements E 32 m) 00) = q [l i3 l 11 ][l 7 j,3 l 31 ] m) i2+j2+31 [l 13 l 23 ][l 33 l 43 ] 10), E 32 m) 10) = q 2 2 i=1 j=3 4 i=1 j=3 r+i k=0,1 s+j 1) 1 k)i+kj+1) [l i2 l 11 ][l 7 j,2 l 31 ] [l 3 i,3 l i3 +2k 1] i+r+1 /2 [l 12 l 22 ][l 32 l 42 ] [1 + k][l 13 l 23 ] [l 7 j,3 l j3 +2k 1] s+j /2 [2 k][l 33 l 43 ] min2,r b+1) E 32 m) ab) = q 2 i=max1,r b) min4,6 b s) j=max3,5 b s) m) i2+j k,k), 1) bi+1 b)j [l i2 l 11 ][l 7 j,2 l 31 ] [l i2 l 3 i,2 r b/2 [l 12 l 22 ][l 32 l 42 ] [2 r ][l i3 l 3 i,3 1) r ] [l j2 l 7 j,2 + s 1] [2 s ][l j3 l 7 j,3 + 1) s ] 1 b)/2 E 32 m) 21) = q 2 1) r+s [l r3 l 11 1][l s+2,3 l 31 +2] [l 13 l 23 ][l 33 l 43 ] m) i2+j ), a+ b =2, m) r2+j ), j =5 s, E 32 m) 22) = ) where m) ab) are obtained from m) ab) by rescaling. 5. Conclusion m) k = 1 c k m) k, k =0, 1,..., ) In this work we have constructed all typical representations of the quantum superalgebras U q [gl2/2)] at the generic q leaving the coefficients c k see )) as free parameters. The latter can be fixed by some additional conditions, for example the hermiticity condition. The quantum typical U q [gl2/2)]-module W q [m]) 27

28 obtained has the same structure as the classical gl2/2)-module the module W in Ref. 20 ) and can be decomposed into sixteen U q [gl2/2) 0 ]-fidirmods V q k [m] k), k =0, 1,..., 15. In general, the method used here is similar to that one of Ref. 20. It is not difficult for us to see that for c k =1, k =0, 1,.., 15, we obtain at q = 1 the classical results given in Refs. 20 see also Ref. 21 ). However, unlike the latter our approach in this paper avoids the use of the Clebsch-Gordan coefficients 33 which are not always known for higher rank quantum and classical) algebras. We hope that the present approach can be applied for larger quantum superalgebras. Following the classical programme 20,21 we can construct atypical representations of U q [gl2/2)] at generic q 22. Moreover, an extension of the present investigations on the case when q is a root of unity is also possible 23. Acknowledgements I am grateful to Prof. Tch. Palev for numerous discussions. It is a pleasure for me to thank Prof. E. Celeghini and Dr. M. Tarlini for the kind hospitality at the Florence University where the present investigations were reported. I am thankful to Profs. A. Barut, R. Floreanini and V. Rittenberg for useful discussions. I would like to thank Prof. Abdus Salam, the International Atomic Energy Agency and UNESCO for the kind hospitality at the High Energy- and the Mathematical Section of the International Centre for Theoretical Physics, Trieste, Italy. The present work also was partially supported by the National Scientific Foundation of the Bulgarian Ministry of Science and Higher Education under the contract F

29 6. References 1. L. D. Faddeev, N. Yu. Reshetikhin and L. A. Takhtajan, Algebra and Analys, 1, ). 2. V. D. Drinfel d, Quantum groups, inproceedings of the International Congress of Mathematicians, 1986, Berkeley, vol. 1, The American Mathematical Society, 1987). 3. Yu. I. Manin, Quantum groups and non-commutative geometry, Centre des Recherchers Mathématiques, Montréal 1988); Topics in non-commutative geometry, Princeton University Press, Princeton, New Jersey 1991). 4. M. Jimbo, Lett. Math. Phys. 10, ), ibit 11, ). 5. S. I. Woronowicz, Comm. Math. Phys., 111, ). 6. E. K. Sklyanin, Funct. Anal. Appl., 16, ). 7. P. P. Kulish and N. Yu. Reshetikhin, Zapiski nauch. semin. LOMI 101, ),in Russian); English translation: J. Soviet Math. 23, ). 8. L. C. Biedenharn, J. Phys. A 22, L ); A. J. Macfarlane, J. Phys. A 22, ). 9. H. D. Doebner and J. D. Hennig eds., Quantum groups, Lecture Notes in Physics 370 Springer - Verlag, Berlin 1990). 10. P. P. Kulish ed., Quantum groups, Lecture Notes in Mathematics 1510 Springer - Verlag, Berlin 1992) 11. E. Celeghini and M. Tarlini eds., Italian Workshop on quantum groups, Florence, February 3-6, 1993, hep-th/ ; E. Celeghini, Quantum algebras and Lie groups, contribution to the Symposium Symmetries in Science VI in honour of L. C. Biedenharn, Bregenz, Austria, August 2-7, B. Grubered ed., Plenum, New York

30 12. C. N. Yang and M. L. Ge eds., Braid groups, knot theory and statistical mechanics, World Scientific, Singapore P. P. Kulish and N. Yu. Reshetikhin, Lett. Math. Phys. 18, ) ; E. Celeghini, Tch. Palev and M. Tarlini, Mod. Phys. Lett. B5, ). 14. Tch. D. Palev and V. N. Tolstoy, Comm. Math. Phys. 141, ). 15. Yu. I. Manin, Comm. Math. Phys. 123, ). 16. M. Chaichian and P. Kulish, Phys. Lett. B 234, ). 17. R. Floreanini, V. Spiridonov and L. Vinet, Comm. Math. Phys. 137, ); E. D Hoker, R. Floreanini and L. Vinet, J. Math. Phys., 32, ). 18. R. B. Zhang, J. Math. Phys., 34, ). 19. V. Kac, Comm. Math. Phys., 53, ); Adv. Math. 26, ); Lecture Notes in Mathematics 676, 597 Springer - Verlag, Berlin 1978). 20. A. H. Kamupingene, Nguyen Anh Ky and Tch. D. Palev, J. Math. Phys. 30, ). 21. Tch. Palev and N. Stoilova, J. Math. Phys., 31, ). 22. Nguyen Anh Ky, Finite-dimensional representations of the quantum superalgebra U q [gl2/2)]: II. Atypical representations at generic q, in preparation. 23. Nguyen Anh Ky, Finite-dimensional representations of the quantum superalgebra U q [gl2/2)] at q being roots of unity, in preparation. 24. R. Floreanini, D. Leites and L. Vinet, Lett. Math. Phys. 23, ). 25. M. Scheunert, Lett. Math. Phys. 24, );. 26. S. M. Khoroshkin and V. N. Tolstoy, Comm. Math. Phys. 141, ). 27. M. Rosso, Comm. Math. Phys. 124, ). 30

31 28. M. Rosso, Comm. Math. Phys. 117, ). 29. G. Lusztig, Adv. in Math 70, ). 30. I. M. Gel fand and M. L. Zetlin, Dokl. Akad. Nauk USSR, 71, ), in Russian); for a detailed description of the Gel fand-zetlin basis see also G. E. Baird and L. C. Biedenharn, J. Math. Phys., 4, ); A. O. Barut and R. Raczka, Theory of Group Representations and Applications, Polish Scientific Publishers, Warszawa, M. Jimbo, Lecture Notes in Physics 246, 335 Springer-Verlag, Berlin 1985); I.V. Cherednik, Duke Math. Jour. 5, ); K. Ueno, T. Takebayashi and Y. Shibukawa, Lett. Math. Phys. 18, ). 31

32 32. V. N. Tolstoy, in ref. 9 : Quantum Groups, Lecture Notes in Physics 370 Springer - Verlag, Berlin 1990), p V. A. Groza, I. I. Kachurik and A. U. Klimyk, J. Math. Phys., 31, ). 32

33 Appendix The induced basis 4.20) is expressed in terms of the reduced basis through the following invert relation ) 1 1, 0, 0, 0; m) = q 2l+p+1) [l13 l 11 [l 31 l 43 ] m) c 1 [2l + 1][2l 1 1 ) q 2 l+p) [l11 l 23 1][l 31 l 43 ] m) c 2 [2l + 1][2l 2 0, 1, 0, 0; m) = + 1 ) q 2l+p+1) [l13 l 11 [l 33 l 31 ] m) c 3 [2l + 1][2l 3 1 c 4 q 2 l+p) [l11 l 23 1][l 33 l 31 ] [2l + 1][2l 1 q 2 c 1 ) [l11 l 23 ][l 31 l 43 ] m) +31 [2l + 1][2l 1 ) m) ) q 2 [l13 l 11 ][l 31 l 43 ] m) +31 c 2 [2l + 1][2l 2 0, 0, 1, 0; m) = 1 ) q 2 [l11 l 23 ][l 33 l 31 ] m) +31 c 3 [2l + 1][2l 3 1 c 4 q 2 [l13 l 11 ][l 33 l 31 ] [2l + 1][2l 1 q 2l+p l p ) c 1 ) m) [l13 l 11 [l 33 l 31 [2l + 1][2l ) m) c 2 q 2 l+p l p 1) [l11 l 23 1][l 33 l 31 [2l + 1][2l ) m) , 0, 0, 1; m) = 1 c 3 q 2l+p+l p +1) + 1 c 4 q 2 l+p+l p ) 1 q 2l +p ) c 1 [l13 l 11 [l 31 l 43 1] [2l + 1][2l [l11 l 23 1][l 31 l 43 1] [2l + 1][2l ) [l11 l 23 ][l 33 l 31 m) [2l + 1][2l 1 ) m) 11 3 ) m) ) q 2l +p ) [l13 l 11 ][l 33 l 31 m) c 2 [2l + 1][2l 2 33

34 + 1 ) q 2l p +1) [l11 l 23 ][l 31 l 43 1] m) c 3 [2l + 1][2l 3 1, 0, 1, 0; m) = 1, 0, 0, 1; m) = + 1 c 4 q 2l p +1) 1 q 22l+2p+1) c 5 [l13 l 11 ][l 31 l 43 1] [2l + 1][2l ) m) 4 ) [l13 l 11 [l 13 l 11 +2] m) [2l + 1][2l +2] 1 ) q 22p 1) [2][l13 l 11 [l 11 l 23 1] m) c 6 [2l][2l +2] + 1 c 7 q 2 2l+2p 1) [l11 l 23 2][l 11 l 23 1] [2l][2l 1 q 2l+p+2) c 5 ) [l13 l 11 [l 11 l 23 ] m) [2l + 1][2l +2] 5 ) m) [2] q 2p+1) q 2l+2 [l 13 l 11 ] q 2l 2 [l 11 l 23 1]) m) c 6 q 2 + q 2 )[2l][2l +2]) ) q 2 l+p+1) [l13 l 11 ][l 11 l 23 1] m) c 7 [2l][2l + 1 c 8 q 2l +p ) ) [l33 l 31 [l 31 l 43 ] m) [2l + 1][2l +2] 8 0, 1, 1, 0; m) = 1 [2] q 2 p +1) q 2l +2 [l 31 l 43 1] q 2l 2 [l 33 l 31 ]) m) c 9 q 2 + q 2 )[2l ][2l +2]) 9 1 c 10 q 2l p +1) 1 q 2l+p+1) c 5 [l33 l 31 ][l 31 l 43 1] [2l ][2l ) m) ) [l13 l 11 [l 11 l 23 ] m) [2l + 1][2l +2] 5 1 [2] q 2p q 2l+2 [l 13 l 11 ] q 2l 2 [l 11 l 23 1]) m) c 6 q 2 + q 2 )[2l][2l +2]) ) q 2 l+p) [l13 l 11 ][l 11 l 23 1] m) c 7 [2l][2l 1 c 8 q 2 l p +1) ) [l33 l 31 [l 31 l 43 ] m) [2l + 1][2l +2] + 1 [2] q 2 p +2) q 2l +2 [l 31 l 43 1] q 2l 2 [l 33 l 31 ]) m) c 9 q 2 + q 2 )[2l ][2l +2])

35 0, 1, 0, 1; m) = 1, 1, 0, 0; m) = 0, 0, 1, 1; m) = 1, 1, 1, 0; m) = + 1 c 10 q 2l p +2) 1 q 2 c 5 [l33 l 31 ][l 31 l 43 1] [2l ][2l [l11 l 23 ][l 11 l 23 [2l + 1][2l +2] ) m) ) q 2 [2][l11 l 23 ][l 13 l 11 ] m) c 6 [2l][2l +2] + 1 c 7 q 2 [l13 l 11 1][l 13 l 11 ] [2l][2l 1 q 2 c 8 ) m) ) m) ) [l31 l 43 ][l 31 l 43 m) [2l + 1][2l +2] + 1 ) q 2 [2][l31 l 43 ][l 33 l 31 ] m) c 9 [2l ][2l 9 +2] + 1 c 10 q 2 ) [l33 l 31 1][l 33 l 31 ] m) q 22l +2p +1) c 8 1 c 9 q 2 2p +1) + 1 c 10 q 22l 2p +1) 1 c 11 q 2l+p+1) [2l ][2l 8 10 [l33 l 31 [l 33 l 31 +2] [2l + 1][2l +2] [2][l33 l 31 [l 31 l 43 1] [2l ][2l +2] [l31 l 43 2][l 31 l 43 1] [2l ][2l ) m) 11 8 ) m) 11 9 ) m) ) [l13 l 11 [l 31 l 43 ] m) [2l + 1][2l c 12 q 2 l+p) ) [l11 l 23 1][l 31 l 43 ] m) [2l + 1][2l 2 1, 1, 0, 1; m) = 1 c 13 q 2l+p+1) + 1 c 14 q 2 l+p) 1 q 2 c 11 ) [l13 l 11 [l 33 l 31 ] m) [2l + 1][2l ) [l11 l 23 1][l 33 l 31 ] m) [2l + 1][2l ) [l11 l 23 ][l 31 l 43 ] m) [2l + 1][2l

36 + 1 c 12 q 2 ) [l13 l 11 ][l 31 l 43 ] m) [2l + 1][2l 12 1, 0, 1, 1; m) = + 1 c 13 q c 14 q 2 ) [l11 l 23 ][l 33 l 31 ] m) [2l + 1][2l 3 [l13 l 11 ][l 33 l 31 ] [2l + 1][2l 1 q 2l+p l p ) c 11 ) m) ) [l13 l 11 [l 33 l 31 m) [2l + 1][2l 11 1 c 12 q 2 l+p l p 1) ) [l11 l 23 1][l 33 l 31 m) [2l + 1][2l 12 0, 1, 1, 1; m) = 1 c 13 q 2l+p+l p +1) + 1 c 14 q 2 l+p+l p ) 1 c 11 q 2l +p ) ) [l13 l 11 [l 31 l 43 1] m) [2l + 1][2l ) [l11 l 23 1][l 31 l 43 1] m) [2l + 1][2l [l11 l 23 ][l 33 l 31 [2l + 1][2l ) m) c 12 q 2l +p ) + 1 c 13 q 2l p +1) + 1 c 14 q 2l p +1) 1, 1, 1, 1; m) = 1 c 15 m) [l13 l 11 ][l 33 l 31 [2l + 1][2l [l11 l 23 ][l 31 l 43 1] [2l + 1][2l [l13 l 11 ][l 31 l 43 1] [2l + 1][2l ) m) ) m) ) m)

arxiv:hep-th/ v2 14 Nov 1994

arxiv:hep-th/ v2 14 Nov 1994 FINITE-DIMENSIONAL REPRESENTATIONS OF THE QUANTUM SUPERALGEBRA U q [gl(2/2)]: I. Typical representations at generic q Nguyen Anh Ky ) arxiv:hep-th/9305183v2 14 Nov 1994 International Centre for Theoretical

More information

Deformation of the `embedding'

Deformation of the `embedding' Home Search Collections Journals About Contact us My IOPscience Deformation of the `embedding' This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1997 J.

More information

Cartan A n series as Drinfeld doubles

Cartan A n series as Drinfeld doubles Monografías de la Real Academia de Ciencias de Zaragoza. 9: 197 05, (006). Cartan A n series as Drinfeld doubles M.A. del Olmo 1, A. Ballesteros and E. Celeghini 3 1 Departamento de Física Teórica, Universidad

More information

On integrals of Quantum Supergroup U q gl(n m)

On integrals of Quantum Supergroup U q gl(n m) On integrals of Quantum Supergroup U q gl(n m) Jianjun Paul Tian Department of Mathematical Sciences New Mexico State University, Las Cruces, NM 88001 Abstract A linear basis of quantum supergroup U q

More information

INTRODUCTION TO QUANTUM LIE ALGEBRAS

INTRODUCTION TO QUANTUM LIE ALGEBRAS QUANTUM GROUPS AND QUANTUM SPACES BANACH CENTER PUBLICATIONS, VOLUME 40 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1997 INTRODUCTION TO QUANTUM LIE ALGEBRAS GUSTAV W. DELIU S Department

More information

arxiv:q-alg/ v1 13 Jul 1995

arxiv:q-alg/ v1 13 Jul 1995 1 THE EXPONENTIAL MAP FOR REPRESENTATIONS OF U p,q (gl(2)) arxiv:q-alg/9507009v1 13 Jul 1995 Joris Van der Jeugt Department of Applied Mathematics and Computer Science, University of Ghent, Krijgslaan

More information

Atypical representations of the Lie superalgebra sl(1,n) for n greater than 1

Atypical representations of the Lie superalgebra sl(1,n) for n greater than 1 Seminar Sophus Lie 3 (1993) 15 24 Atypical representations of the Lie superalgebra sl(1,n) for n greater than 1 Hartmut Schlosser 1. Preliminaries The Lie superalgebra (LSA) sl(1, n) with n > 1 is a concrete

More information

EXPLICIT REPRESENTATIONS OF CLASSICAL LIE SUPERALGEBRAS IN A GEL

EXPLICIT REPRESENTATIONS OF CLASSICAL LIE SUPERALGEBRAS IN A GEL **************************************** BANACH CENTER PUBLICATIONS, VOLUME ** INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 200* EXPLICIT REPRESENTATIONS OF CLASSICAL LIE SUPERALGEBRAS

More information

Quantizations of cluster algebras

Quantizations of cluster algebras Quantizations of cluster algebras Philipp Lampe Bielefeld University International Conference Mathematics Days in Sofia July 10, 2014, Sofia, Bulgaria Ph. Lampe (Bielefeld) Quantum cluster algebras July

More information

arxiv:math/ v1 [math.qa] 6 Jul 2004

arxiv:math/ v1 [math.qa] 6 Jul 2004 arxiv:math/0407085v1 [math.qa] 6 Jul 2004 EXOTIC BIALGEBRAS : NON-DEFORMATION QUANTUM GROUPS D. ARNAUDON Laboratoire d Annecy-le-Vieux de Physique Théorique LAPTH, UMR 5108 du CNRS associée à l Université

More information

arxiv:math/ v1 [math.qa] 5 Nov 2002

arxiv:math/ v1 [math.qa] 5 Nov 2002 A new quantum analog of the Brauer algebra arxiv:math/0211082v1 [math.qa] 5 Nov 2002 A. I. Molev School of Mathematics and Statistics University of Sydney, NSW 2006, Australia alexm@ maths.usyd.edu.au

More information

Combinatorial bases for representations. of the Lie superalgebra gl m n

Combinatorial bases for representations. of the Lie superalgebra gl m n Combinatorial bases for representations of the Lie superalgebra gl m n Alexander Molev University of Sydney Gelfand Tsetlin bases for gln Gelfand Tsetlin bases for gl n Finite-dimensional irreducible representations

More information

Non-Commutative Covariant Differential Calculi on Quantum Spaces and Quantum Groups

Non-Commutative Covariant Differential Calculi on Quantum Spaces and Quantum Groups Seminar Sophus Lie 1 (1991) 125 132 Non-Commutative Covariant Differential Calculi on Quantum Spaces and Quantum Groups Konrad Schmüdgen 1. Introduction There are two alternative fundamental approaches

More information

BLOCKS IN THE CATEGORY OF FINITE-DIMENSIONAL REPRESENTATIONS OF gl(m n)

BLOCKS IN THE CATEGORY OF FINITE-DIMENSIONAL REPRESENTATIONS OF gl(m n) BLOCKS IN THE CATEGORY OF FINITE-DIMENSIONAL REPRESENTATIONS OF gl(m n) VERA SERGANOVA Abstract. We decompose the category of finite-dimensional gl (m n)- modules into the direct sum of blocks, show that

More information

2 JAKOBSEN, JENSEN, JNDRUP AND ZHANG Let U q be a quantum group dened by a Cartan matrix of type A r together with the usual quantized Serre relations

2 JAKOBSEN, JENSEN, JNDRUP AND ZHANG Let U q be a quantum group dened by a Cartan matrix of type A r together with the usual quantized Serre relations QUADRATIC ALGEBRAS OF TYPE AIII; I HANS PLESNER JAKOBSEN, ANDERS JENSEN, SREN JNDRUP, AND HECHUN ZHANG 1;2 Department of Mathematics, Universitetsparken 5 DK{2100 Copenhagen, Denmark E-mail: jakobsen,

More information

arxiv: v1 [math.rt] 15 Oct 2008

arxiv: v1 [math.rt] 15 Oct 2008 CLASSIFICATION OF FINITE-GROWTH GENERAL KAC-MOODY SUPERALGEBRAS arxiv:0810.2637v1 [math.rt] 15 Oct 2008 CRYSTAL HOYT AND VERA SERGANOVA Abstract. A contragredient Lie superalgebra is a superalgebra defined

More information

RE-NORMALIZED LINK INVARIANTS FROM THE UNROLLED QUANTUM GROUP. 1. Introduction

RE-NORMALIZED LINK INVARIANTS FROM THE UNROLLED QUANTUM GROUP. 1. Introduction RE-NORMALIZED LINK INARIANS FROM HE UNROLLED QUANUM GROUP NAHAN GEER 1 Introduction In the last several years, C Blanchet, F Costantino, B Patureau, N Reshetikhin, uraev and myself (in various collaborations)

More information

A method for construction of Lie group invariants

A method for construction of Lie group invariants arxiv:1206.4395v1 [math.rt] 20 Jun 2012 A method for construction of Lie group invariants Yu. Palii Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna, Russia and Institute

More information

DESCRIPTION OF SIMPLE MODULES FOR SCHUR SUPERALGEBRA S(2j2)

DESCRIPTION OF SIMPLE MODULES FOR SCHUR SUPERALGEBRA S(2j2) DESCRIPTION OF SIMPLE MODULES FOR SCHUR SUPERALGEBRA S(22) A.N. GRISHKOV AND F. MARKO Abstract. The goal of this paper is to describe explicitly simple modules for Schur superalgebra S(22) over an algebraically

More information

arxiv:math/ v1 [math.qa] 28 Nov 2001

arxiv:math/ v1 [math.qa] 28 Nov 2001 Jacobson generators of the quantum superalgebra U q [sl(n+1 m)] and Fock representations arxiv:math/0111289v1 [math.qa] 28 Nov 2001 T.D. Palev Institute for Nuclear Research and Nuclear Energy, Boul. Tsarigradsko

More information

SELF-DUAL HOPF QUIVERS

SELF-DUAL HOPF QUIVERS Communications in Algebra, 33: 4505 4514, 2005 Copyright Taylor & Francis, Inc. ISSN: 0092-7872 print/1532-4125 online DOI: 10.1080/00927870500274846 SELF-DUAL HOPF QUIVERS Hua-Lin Huang Department of

More information

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III Lie algebras. Let K be again an algebraically closed field. For the moment let G be an arbitrary algebraic group

More information

A Note on Poisson Symmetric Spaces

A Note on Poisson Symmetric Spaces 1 1 A Note on Poisson Symmetric Spaces Rui L. Fernandes Abstract We introduce the notion of a Poisson symmetric space and the associated infinitesimal object, a symmetric Lie bialgebra. They generalize

More information

SCHUR-WEYL DUALITY FOR QUANTUM GROUPS

SCHUR-WEYL DUALITY FOR QUANTUM GROUPS SCHUR-WEYL DUALITY FOR QUANTUM GROUPS YI SUN Abstract. These are notes for a talk in the MIT-Northeastern Fall 2014 Graduate seminar on Hecke algebras and affine Hecke algebras. We formulate and sketch

More information

(Kac Moody) Chevalley groups and Lie algebras with built in structure constants Lecture 1. Lisa Carbone Rutgers University

(Kac Moody) Chevalley groups and Lie algebras with built in structure constants Lecture 1. Lisa Carbone Rutgers University (Kac Moody) Chevalley groups and Lie algebras with built in structure constants Lecture 1 Lisa Carbone Rutgers University Slides will be posted at: http://sites.math.rutgers.edu/ carbonel/ Video will be

More information

The adjoint representation of quantum algebra U q

The adjoint representation of quantum algebra U q Journal of Nonlinear Mathematical Physics Volume * Number * 20** 1 14 Article The adjoint representation of quantum algebra U q sl2 Č Burdík a O Navrátil b and S Pošta c a Department of Mathematics Czech

More information

Quantized Hermitian Symmetric Spaces. Hans Plesner Jakobsen. Dk-2100 Copenhagen, Denmark. Abstract

Quantized Hermitian Symmetric Spaces. Hans Plesner Jakobsen. Dk-2100 Copenhagen, Denmark. Abstract Quantized Hermitian Symmetric Spaces Hans Plesner Jakobsen Mathematics Institute University of Copenhagen Universitetsparken 5 Dk-00 Copenhagen, Denmark Abstract This talk is basically a progress report

More information

Classical Lie algebras and Yangians

Classical Lie algebras and Yangians Classical Lie algebras and Yangians Alexander Molev University of Sydney Advanced Summer School Integrable Systems and Quantum Symmetries Prague 2007 Lecture 1. Casimir elements for classical Lie algebras

More information

Lie Superalgebras and Lie Supergroups, II

Lie Superalgebras and Lie Supergroups, II Seminar Sophus Lie 2 1992 3 9 Lie Superalgebras and Lie Supergroups, II Helmut Boseck 6. The Hopf Dual. Let H = H 0 H 1 denote an affine Hopf superalgebra, i.e. a Z 2 -graded commutative, finitely generated

More information

The Dirac operator on quantum SU(2)

The Dirac operator on quantum SU(2) Rencontres mathématiques de Glanon 27 June - 2 July 2005 The Dirac operator on quantum SU(2) Walter van Suijlekom (SISSA) Ref: L. D abrowski, G. Landi, A. Sitarz, WvS and J. Várilly The Dirac operator

More information

The u(2) α and su(2) α Hahn Harmonic Oscillators

The u(2) α and su(2) α Hahn Harmonic Oscillators Bulg. J. Phys. 40 (013) 115 10 The u() α and su() α Hahn Harmonic Oscillators E.I. Jafarov 1, N.I. Stoilova, J. Van der Jeugt 3 1 Institute of Physics, Azerbaijan National Academy of Sciences, Javid av.

More information

On Algebraic and Semialgebraic Groups and Semigroups

On Algebraic and Semialgebraic Groups and Semigroups Seminar Sophus Lie 3 (1993) 221 227 Version of July 15, 1995 On Algebraic and Semialgebraic Groups and Semigroups Helmut Boseck 0. This is a semi lecture 1 whose background is as follows: The Lie-theory

More information

Tetrahedron equation and generalized quantum groups

Tetrahedron equation and generalized quantum groups Atsuo Kuniba University of Tokyo PMNP2015@Gallipoli, 25 June 2015 PMNP2015@Gallipoli, 25 June 2015 1 / 1 Key to integrability in 2D Yang-Baxter equation Reflection equation R 12 R 13 R 23 = R 23 R 13 R

More information

arxiv:quant-ph/ v1 20 Apr 1995

arxiv:quant-ph/ v1 20 Apr 1995 Combinatorial Computation of Clebsch-Gordan Coefficients Klaus Schertler and Markus H. Thoma Institut für Theoretische Physik, Universität Giessen, 3539 Giessen, Germany (February, 008 The addition of

More information

Coloured Kac-Moody algebras, Part I

Coloured Kac-Moody algebras, Part I Coloured Kac-Moody algebras, Part I Alexandre Bouayad Abstract We introduce a parametrization of formal deformations of Verma modules of sl 2. A point in the moduli space is called a colouring. We prove

More information

arxiv:math/ v2 [math.qa] 10 Jan 2003

arxiv:math/ v2 [math.qa] 10 Jan 2003 R-matrix presentation for (super) Yangians Y(g) D. Arnaudon a, J. Avan b, N. Crampé a, L. Frappat ac, E. Ragoucy a arxiv:math/0111325v2 [math.qa] 10 Jan 2003 a Laboratoire d Annecy-le-Vieux de Physique

More information

ON CHARACTERS AND DIMENSION FORMULAS FOR REPRESENTATIONS OF THE LIE SUPERALGEBRA

ON CHARACTERS AND DIMENSION FORMULAS FOR REPRESENTATIONS OF THE LIE SUPERALGEBRA ON CHARACTERS AND DIMENSION FORMULAS FOR REPRESENTATIONS OF THE LIE SUPERALGEBRA gl(m N E.M. MOENS Department of Applied Mathematics, Ghent University, Krijgslaan 281-S9, B-9000 Gent, Belgium. e-mail:

More information

POINCARÉ-BIRKHOFF-WITT BASES FOR TWO-PARAMETER QUANTUM GROUPS. 0. Introduction

POINCARÉ-BIRKHOFF-WITT BASES FOR TWO-PARAMETER QUANTUM GROUPS. 0. Introduction POINCARÉ-BIRKHOFF-WITT BASES FOR TWO-PARAMETER QUANTUM GROUPS GEORGIA BENKART, SEOK-JIN KANG, AND KYU-HWAN LEE Abstract. We construct Poincaré-Birkhoff-Witt (PBW) bases for the two-parameter quantum groups

More information

The Gelfand-Tsetlin Realisation of Simple Modules and Monomial Bases

The Gelfand-Tsetlin Realisation of Simple Modules and Monomial Bases arxiv:8.976v [math.rt] 3 Dec 8 The Gelfand-Tsetlin Realisation of Simple Modules and Monomial Bases Central European University Amadou Keita (keita amadou@student.ceu.edu December 8 Abstract The most famous

More information

Towards a Cartan Classification of Quantum Algebras

Towards a Cartan Classification of Quantum Algebras Bulg. J. Phys. 33 (2006) 114 127 Towards a Cartan Classification of Quantum Algebras M.A. del Olmo 1, A. Ballesteros 2, E. Celeghini 3 1 Departamento de Física Teórica, Universidad de Valladolid, E-47011,

More information

Highest-weight Theory: Verma Modules

Highest-weight Theory: Verma Modules Highest-weight Theory: Verma Modules Math G4344, Spring 2012 We will now turn to the problem of classifying and constructing all finitedimensional representations of a complex semi-simple Lie algebra (or,

More information

ON THE CHIEF FACTORS OF PARABOLIC MAXIMAL SUBGROUPS IN FINITE SIMPLE GROUPS OF NORMAL LIE TYPE

ON THE CHIEF FACTORS OF PARABOLIC MAXIMAL SUBGROUPS IN FINITE SIMPLE GROUPS OF NORMAL LIE TYPE Siberian Mathematical Journal, Vol. 55, No. 4, pp. 622 638, 2014 Original Russian Text Copyright c 2014 Korableva V.V. ON THE CHIEF FACTORS OF PARABOLIC MAXIMAL SUBGROUPS IN FINITE SIMPLE GROUPS OF NORMAL

More information

Linear and Multilinear Algebra. Linear maps preserving rank of tensor products of matrices

Linear and Multilinear Algebra. Linear maps preserving rank of tensor products of matrices Linear maps preserving rank of tensor products of matrices Journal: Manuscript ID: GLMA-0-0 Manuscript Type: Original Article Date Submitted by the Author: -Aug-0 Complete List of Authors: Zheng, Baodong;

More information

THE LIE ALGEBRA sl(2) AND ITS REPRESENTATIONS

THE LIE ALGEBRA sl(2) AND ITS REPRESENTATIONS An Şt Univ Ovidius Constanţa Vol 11(1), 003, 55 6 THE LIE ALGEBRA sl() AND ITS REPRESENTATIONS Camelia Ciobanu To Professor Silviu Sburlan, at his 60 s anniversary Abstract In this paper we present same

More information

Baxter Q-operators and tau-function for quantum integrable spin chains

Baxter Q-operators and tau-function for quantum integrable spin chains Baxter Q-operators and tau-function for quantum integrable spin chains Zengo Tsuboi Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin This is based on the following papers.

More information

Xin Tang's research paper on derivations

Xin Tang's research paper on derivations Fayetteville State University DigitalCommons@Fayetteville State University Math and Computer Science Working Papers College of Arts and Sciences 6-7-2011 Xin Tang's research paper on derivations Xin Tang

More information

A NOTE ON TENSOR CATEGORIES OF LIE TYPE E 9

A NOTE ON TENSOR CATEGORIES OF LIE TYPE E 9 A NOTE ON TENSOR CATEGORIES OF LIE TYPE E 9 ERIC C. ROWELL Abstract. We consider the problem of decomposing tensor powers of the fundamental level 1 highest weight representation V of the affine Kac-Moody

More information

Quantum supergroups and canonical bases

Quantum supergroups and canonical bases Quantum supergroups and canonical bases Sean Clark University of Virginia Dissertation Defense April 4, 2014 WHAT IS A QUANTUM GROUP? A quantum group is a deformed universal enveloping algebra. WHAT IS

More information

A REMARK ON SIMPLICITY OF VERTEX ALGEBRAS AND LIE CONFORMAL ALGEBRAS

A REMARK ON SIMPLICITY OF VERTEX ALGEBRAS AND LIE CONFORMAL ALGEBRAS A REMARK ON SIMPLICITY OF VERTEX ALGEBRAS AND LIE CONFORMAL ALGEBRAS ALESSANDRO D ANDREA Ad Olivia, che mi ha insegnato a salutare il Sole ABSTRACT. I give a short proof of the following algebraic statement:

More information

Integrable operator representations of R 2 q and SL q (2, R)

Integrable operator representations of R 2 q and SL q (2, R) Seminar Sophus Lie 2 (1992) 17 114 Integrable operator representations of R 2 q and SL q (2, R) Konrad Schmüdgen 1. Introduction Unbounded self-adjoint or normal operators in Hilbert space which satisfy

More information

We simply compute: for v = x i e i, bilinearity of B implies that Q B (v) = B(v, v) is given by xi x j B(e i, e j ) =

We simply compute: for v = x i e i, bilinearity of B implies that Q B (v) = B(v, v) is given by xi x j B(e i, e j ) = Math 395. Quadratic spaces over R 1. Algebraic preliminaries Let V be a vector space over a field F. Recall that a quadratic form on V is a map Q : V F such that Q(cv) = c 2 Q(v) for all v V and c F, and

More information

Lecture 10 - Representation Theory II: Heuristics

Lecture 10 - Representation Theory II: Heuristics Lecture 10 - Representation Theory II: Heuristics February 15, 2013 1 Weights 1.1 Weight space decomposition We switch notation from last time. We let Λ indicate a highest weight, and λ to be an arbitrary

More information

Kac Moody superalgebras and integrability

Kac Moody superalgebras and integrability Kac Moody superalgebras and integrability Vera Serganova Dept. of Mathematics, University of California at Berkeley, Berkeley, CA 94720 serganov@math.berkeley.edu Summary. The first part of this paper

More information

arxiv:math/ v1 [math.qa] 20 Feb 2001

arxiv:math/ v1 [math.qa] 20 Feb 2001 COLOURED EXTENSION OF GL (2) AND ITS DUAL ALGEBRA arxiv:math/0102163v1 [math.qa] 20 Feb 2001 Deepak Parashar Max-Planck-Institute for Mathematics in the Sciences Inselstrasse 22-26, D-04103 Leipzig Germany

More information

Mic ael Flohr Representation theory of semi-simple Lie algebras: Example su(3) 6. and 20. June 2003

Mic ael Flohr Representation theory of semi-simple Lie algebras: Example su(3) 6. and 20. June 2003 Handout V for the course GROUP THEORY IN PHYSICS Mic ael Flohr Representation theory of semi-simple Lie algebras: Example su(3) 6. and 20. June 2003 GENERALIZING THE HIGHEST WEIGHT PROCEDURE FROM su(2)

More information

Lie Superalgebras and Sage

Lie Superalgebras and Sage 1/19 Lie Superalgebras and Sage Daniel Bump July 26, 2018 With the connivance of Brubaker, Schilling and Scrimshaw. 2/19 Lie Methods in Sage Lie methods in WeylCharacter class: Compute characters of representations

More information

Harmonic Oscillator Lie Bialgebras and their Quantization

Harmonic Oscillator Lie Bialgebras and their Quantization Harmonic Oscillator Lie Bialgebras and their Quantization arxiv:q-alg/9701027v1 27 Jan 1997 Angel Ballesteros and Francisco J. Herranz Departamento de Física, Universidad de Burgos Pza. Misael Bañuelos,

More information

arxiv:math/ v1 [math.qa] 4 Jul 2001

arxiv:math/ v1 [math.qa] 4 Jul 2001 Elementary parabolic twist 1 Lyakhovsky V.D. 2 and Samsonov M.E. 3 arxiv:math/0107034v1 [math.qa] 4 Jul 2001 Theoretical Department, St. Petersburg State University, 198904, St. Petersburg, Russia Abstract

More information

Yangian Flags via Quasideterminants

Yangian Flags via Quasideterminants Yangian Flags via Quasideterminants Aaron Lauve LaCIM Université du Québec à Montréal Advanced Course on Quasideterminants and Universal Localization CRM, Barcelona, February 2007 lauve@lacim.uqam.ca Key

More information

Difference Equations and Highest Weight Modules of U q [sl(n)]

Difference Equations and Highest Weight Modules of U q [sl(n)] arxiv:math/9805089v1 [math.qa] 20 May 1998 Difference Equations and Highest Weight Modules of U q [sl(n)] A. Zapletal 1,2 Institut für Theoretische Physik Freie Universität Berlin, Arnimallee 14, 14195

More information

MAT 5330 Algebraic Geometry: Quiver Varieties

MAT 5330 Algebraic Geometry: Quiver Varieties MAT 5330 Algebraic Geometry: Quiver Varieties Joel Lemay 1 Abstract Lie algebras have become of central importance in modern mathematics and some of the most important types of Lie algebras are Kac-Moody

More information

The number of simple modules of a cellular algebra

The number of simple modules of a cellular algebra Science in China Ser. A Mathematics 2005 Vol.?? No. X: XXX XXX 1 The number of simple modules of a cellular algebra LI Weixia ( ) & XI Changchang ( ) School of Mathematical Sciences, Beijing Normal University,

More information

(super)algebras and its applications

(super)algebras and its applications for Lie (super)algebras and its applications Institute of Nuclear Physics, Moscow State University, 119 992 Moscow, Russia The International School Advanced Methods of Modern Theoretical Physics: Integrable

More information

Group Gradings on Finite Dimensional Lie Algebras

Group Gradings on Finite Dimensional Lie Algebras Algebra Colloquium 20 : 4 (2013) 573 578 Algebra Colloquium c 2013 AMSS CAS & SUZHOU UNIV Group Gradings on Finite Dimensional Lie Algebras Dušan Pagon Faculty of Natural Sciences and Mathematics, University

More information

Clifford Algebras and Spin Groups

Clifford Algebras and Spin Groups Clifford Algebras and Spin Groups Math G4344, Spring 2012 We ll now turn from the general theory to examine a specific class class of groups: the orthogonal groups. Recall that O(n, R) is the group of

More information

A Study on Kac-Moody Superalgebras

A Study on Kac-Moody Superalgebras ICGTMP, 2012 Chern Institute of Mathematics, Tianjin, China Aug 2o-26, 2012 The importance of being Lie Discrete groups describe discrete symmetries. Continues symmetries are described by so called Lie

More information

arxiv: v1 [math.ac] 11 Dec 2013

arxiv: v1 [math.ac] 11 Dec 2013 A KOSZUL FILTRATION FOR THE SECOND SQUAREFREE VERONESE SUBRING arxiv:1312.3076v1 [math.ac] 11 Dec 2013 TAKAYUKI HIBI, AYESHA ASLOOB QURESHI AND AKIHIRO SHIKAMA Abstract. The second squarefree Veronese

More information

arxiv: v1 [math.rt] 1 Dec 2010

arxiv: v1 [math.rt] 1 Dec 2010 Articl Journal of Nonlinear Mathematical Physics, Vol. 17, No. Supp 01 (2010) 163 167 c Sofiane Bouarroudj, Pavel Grozman, Dimitry Leites arxiv:1012.0176v1 [math.rt] 1 Dec 2010 DEFINING RELATIONS OF ALMOST

More information

arxiv:math-ph/ v1 29 Dec 1999

arxiv:math-ph/ v1 29 Dec 1999 On the classical R-matrix of the degenerate Calogero-Moser models L. Fehér and B.G. Pusztai arxiv:math-ph/9912021v1 29 Dec 1999 Department of Theoretical Physics, József Attila University Tisza Lajos krt

More information

STRUCTURE AND ISOMORPHISM CLASSIFICATION OF COMPACT QUANTUM GROUPS A u (Q) AND B u (Q)

STRUCTURE AND ISOMORPHISM CLASSIFICATION OF COMPACT QUANTUM GROUPS A u (Q) AND B u (Q) J. OPERATOR THEORY 48(2002), 573 583 c Copyright by Theta, 2002 STRUCTURE AND ISOMORPHISM CLASSIFICATION OF COMPACT QUANTUM GROUPS A u (Q) AND B u (Q) SHUZHOU WANG Communicated by William B. Arveson Abstract.

More information

Representations of Sp(6,R) and SU(3) carried by homogeneous polynomials

Representations of Sp(6,R) and SU(3) carried by homogeneous polynomials Representations of Sp(6,R) and SU(3) carried by homogeneous polynomials Govindan Rangarajan a) Department of Mathematics and Centre for Theoretical Studies, Indian Institute of Science, Bangalore 560 012,

More information

CRYSTAL GRAPHS FOR BASIC REPRESENTATIONS OF QUANTUM AFFINE ALGEBRAS

CRYSTAL GRAPHS FOR BASIC REPRESENTATIONS OF QUANTUM AFFINE ALGEBRAS Trends in Mathematics Information Center for Mathematical Sciences Volume 4, Number, June, Pages 8 CRYSTAL GRAPHS FOR BASIC REPRESENTATIONS OF QUANTUM AFFINE ALGEBRAS SEOK-JIN KANG Abstract. We give a

More information

U() the universal enveloping superalgebra o In this note, we associate, to each an h-adic topological C[[h]]-Hop superalgebra (U(),

U() the universal enveloping superalgebra o In this note, we associate, to each an h-adic topological C[[h]]-Hop superalgebra (U(), 108 Proc Japan Acad 67 Ser A (1991) [Vol 67 (A) Universal Rmatrices for Quantum Groups Associated to Simple Lie Superalgebras By Hiroyuki YAMANE Department of Mathematics Osaka University (Communicated

More information

R_ -MATRICES, TRIANGULAR L_ -BIALGEBRAS, AND QUANTUM_ GROUPS. Denis Bashkirov and Alexander A. Voronov. IMA Preprint Series #2444.

R_ -MATRICES, TRIANGULAR L_ -BIALGEBRAS, AND QUANTUM_ GROUPS. Denis Bashkirov and Alexander A. Voronov. IMA Preprint Series #2444. R_ -MATRICES, TRIANGULAR L_ -BIALGEBRAS, AND QUANTUM_ GROUPS By Denis Bashkirov and Alexander A. Voronov IMA Preprint Series #2444 (December 2014) INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS UNIVERSITY

More information

Representations of U q (sl(n)) at Roots of Unity

Representations of U q (sl(n)) at Roots of Unity Groupe d Annecy Groupe de Lyon Laboratoire d Annecy-le-Vieux de Physique des Particules Ecole Normale Supérieure de Lyon arxiv:q-alg/9504006v2 21 Jun 1995 Representations of U q (sl(n)) at Roots of Unity

More information

Hopf Algebras. Zajj Daugherty. March 6, 2012

Hopf Algebras. Zajj Daugherty. March 6, 2012 Hopf Algebras Zajj Daugherty March 6, 2012 Big idea: The Hopf algebra structure is essentially what one needs in order to guarantee that tensor products of modules are also modules Definition A bialgebra

More information

Generators of affine W-algebras

Generators of affine W-algebras 1 Generators of affine W-algebras Alexander Molev University of Sydney 2 The W-algebras first appeared as certain symmetry algebras in conformal field theory. 2 The W-algebras first appeared as certain

More information

AN UPPER BOUND FOR SIGNATURES OF IRREDUCIBLE, SELF-DUAL gl(n, C)-REPRESENTATIONS

AN UPPER BOUND FOR SIGNATURES OF IRREDUCIBLE, SELF-DUAL gl(n, C)-REPRESENTATIONS AN UPPER BOUND FOR SIGNATURES OF IRREDUCIBLE, SELF-DUAL gl(n, C)-REPRESENTATIONS CHRISTOPHER XU UROP+ Summer 2018 Mentor: Daniil Kalinov Project suggested by David Vogan Abstract. For every irreducible,

More information

MAPS PRESERVING ZERO JORDAN PRODUCTS ON HERMITIAN OPERATORS

MAPS PRESERVING ZERO JORDAN PRODUCTS ON HERMITIAN OPERATORS Illinois Journal of Mathematics Volume 49, Number 2, Summer 2005, Pages 445 452 S 009-2082 MAPS PRESERVING ZERO JORDAN PRODUCTS ON HERMITIAN OPERATORS MIKHAIL A. CHEBOTAR, WEN-FONG KE, AND PJEK-HWEE LEE

More information

On the Drinfel d-kohno Equivalence. of Groups and Quantum Groups

On the Drinfel d-kohno Equivalence. of Groups and Quantum Groups LMU TPW 95 13 August 1995 q-alg/9509001 arxiv:q-alg/9509001v1 5 Sep 1995 On the Drinfel d-kohno Equivalence of Groups and Quantum Groups Ralf A. Engeldinger Sektion Physik der Ludwig-Maximilians-Universität

More information

From Schur-Weyl duality to quantum symmetric pairs

From Schur-Weyl duality to quantum symmetric pairs .. From Schur-Weyl duality to quantum symmetric pairs Chun-Ju Lai Max Planck Institute for Mathematics in Bonn cjlai@mpim-bonn.mpg.de Dec 8, 2016 Outline...1 Schur-Weyl duality.2.3.4.5 Background.. GL

More information

Classification of semisimple Lie algebras

Classification of semisimple Lie algebras Chapter 6 Classification of semisimple Lie algebras When we studied sl 2 (C), we discovered that it is spanned by elements e, f and h fulfilling the relations: [e, h] = 2e, [ f, h] = 2 f and [e, f ] =

More information

THE QUANTUM DOUBLE AS A HOPF ALGEBRA

THE QUANTUM DOUBLE AS A HOPF ALGEBRA THE QUANTUM DOUBLE AS A HOPF ALGEBRA In this text we discuss the generalized quantum double construction. treatment of the results described without proofs in [2, Chpt. 3, 3]. We give several exercises

More information

arxiv: v1 [math.qa] 22 May 2007

arxiv: v1 [math.qa] 22 May 2007 Symmetry, Integrability and Geometry: Methods and Applications SIGMA 3 007), 069, 1 pages Yangian ofthe StrangeLie Superalgebraof Q n 1 Type, Drinfel d Approach Vladimir STUKOPIN arxiv:0705.350v1 [math.qa]

More information

arxiv: v1 [math.rt] 14 May 2014

arxiv: v1 [math.rt] 14 May 2014 arxiv:405.340v [math.rt] 4 May 04 Representations of centrally extended Lie superalgebra psl( ) Takuya Matsumoto and Alexander Molev Abstract The symmetries provided by representations of the centrally

More information

FOURIER - SATO TRANSFORM BRAID GROUP ACTIONS, AND FACTORIZABLE SHEAVES. Vadim Schechtman. Talk at

FOURIER - SATO TRANSFORM BRAID GROUP ACTIONS, AND FACTORIZABLE SHEAVES. Vadim Schechtman. Talk at , BRAID GROUP ACTIONS, AND FACTORIZABLE SHEAVES Vadim Schechtman Talk at Kavli Institute for the Physics and Mathematics of the Universe, Kashiwa-no-ha, October 2014 This is a report on a joint work with

More information

Thus we get. ρj. Nρj i = δ D(i),j.

Thus we get. ρj. Nρj i = δ D(i),j. 1.51. The distinguished invertible object. Let C be a finite tensor category with classes of simple objects labeled by a set I. Since duals to projective objects are projective, we can define a map D :

More information

16.2. Definition. Let N be the set of all nilpotent elements in g. Define N

16.2. Definition. Let N be the set of all nilpotent elements in g. Define N 74 16. Lecture 16: Springer Representations 16.1. The flag manifold. Let G = SL n (C). It acts transitively on the set F of complete flags 0 F 1 F n 1 C n and the stabilizer of the standard flag is the

More information

Towers of algebras categorify the Heisenberg double

Towers of algebras categorify the Heisenberg double Towers of algebras categorify the Heisenberg double Joint with: Oded Yacobi (Sydney) Alistair Savage University of Ottawa Slides available online: AlistairSavage.ca Preprint: arxiv:1309.2513 Alistair Savage

More information

Foundations of Matrix Analysis

Foundations of Matrix Analysis 1 Foundations of Matrix Analysis In this chapter we recall the basic elements of linear algebra which will be employed in the remainder of the text For most of the proofs as well as for the details, the

More information

arxiv:hep-th/ v1 23 Mar 1998

arxiv:hep-th/ v1 23 Mar 1998 March 1998 Two-point Functions in Affine Current Algebra and Conjugate Weights arxiv:hep-th/9803182v1 23 Mar 1998 Jørgen Rasmussen 1 Laboratoire de Mathématiques et Physique Théorique, Université de Tours,

More information

Projective Quantum Spaces

Projective Quantum Spaces DAMTP/94-81 Projective Quantum Spaces U. MEYER D.A.M.T.P., University of Cambridge um102@amtp.cam.ac.uk September 1994 arxiv:hep-th/9410039v1 6 Oct 1994 Abstract. Associated to the standard SU (n) R-matrices,

More information

Kac-Moody Algebras. Ana Ros Camacho June 28, 2010

Kac-Moody Algebras. Ana Ros Camacho June 28, 2010 Kac-Moody Algebras Ana Ros Camacho June 28, 2010 Abstract Talk for the seminar on Cohomology of Lie algebras, under the supervision of J-Prof. Christoph Wockel Contents 1 Motivation 1 2 Prerequisites 1

More information

Structure of Compact Quantum Groups A u (Q) and B u (Q) and their Isomorphism Classification

Structure of Compact Quantum Groups A u (Q) and B u (Q) and their Isomorphism Classification Structure of Compact Quantum Groups A u (Q) and B u (Q) and their Isomorphism Classification Shuzhou Wang Department of Mathematics University of Georgia 1. The Notion of Quantum Groups G = Simple compact

More information

Denominator identities and Lie superalgebras

Denominator identities and Lie superalgebras Denominator identities and Lie superalgebras Paolo Papi Sapienza Università di Roma We find an analogue of the Weyl denominator identity for a basic classical Lie superalgebra. joint work with Victor Kac

More information

A CHARACTERIZATION OF THE MOONSHINE VERTEX OPERATOR ALGEBRA BY MEANS OF VIRASORO FRAMES. 1. Introduction

A CHARACTERIZATION OF THE MOONSHINE VERTEX OPERATOR ALGEBRA BY MEANS OF VIRASORO FRAMES. 1. Introduction A CHARACTERIZATION OF THE MOONSHINE VERTEX OPERATOR ALGEBRA BY MEANS OF VIRASORO FRAMES CHING HUNG LAM AND HIROSHI YAMAUCHI Abstract. In this article, we show that a framed vertex operator algebra V satisfying

More information

FUSION PROCEDURE FOR THE BRAUER ALGEBRA

FUSION PROCEDURE FOR THE BRAUER ALGEBRA FUSION PROCEDURE FOR THE BRAUER ALGEBRA A. P. ISAEV AND A. I. MOLEV Abstract. We show that all primitive idempotents for the Brauer algebra B n ω can be found by evaluating a rational function in several

More information

Gelfand Tsetlin bases for classical Lie algebras

Gelfand Tsetlin bases for classical Lie algebras Gelfand Tsetlin bases for classical Lie algebras A. I. Molev School of Mathematics and Statistics University of Sydney, NSW 2006, Australia alexm@ maths.usyd.edu.au To appear in Handbook of Algebra (M.

More information

Further properties of Gelfand-Zetlin modules were obtained in [M1, M2, MO, O]. For example a huge family of Verma and generalized Verma modules were r

Further properties of Gelfand-Zetlin modules were obtained in [M1, M2, MO, O]. For example a huge family of Verma and generalized Verma modules were r On Gelfand-Zetlin modules over orthogonal Lie algebras Volodymyr Mazorchuk Descriptive title: Gelfand-Zetlin modules 1991 Mathematics Subject Classication: 17B10, 17B35 Abstract We construct a new family

More information

LECTURE 3: REPRESENTATION THEORY OF SL 2 (C) AND sl 2 (C)

LECTURE 3: REPRESENTATION THEORY OF SL 2 (C) AND sl 2 (C) LECTURE 3: REPRESENTATION THEORY OF SL 2 (C) AND sl 2 (C) IVAN LOSEV Introduction We proceed to studying the representation theory of algebraic groups and Lie algebras. Algebraic groups are the groups

More information