Characterizing degradation kinetics and cellular mechanisms of PROTAC compounds. Kristin M. Riching, Ph.D. Protein Degradation Therapeutics 2018

Size: px
Start display at page:

Download "Characterizing degradation kinetics and cellular mechanisms of PROTAC compounds. Kristin M. Riching, Ph.D. Protein Degradation Therapeutics 2018"

Transcription

1 Characterizing degradation kinetics and cellular mechanisms of PROTAC compounds Kristin M. Riching, Ph.D. Protein Degradation Therapeutics 28

2 Understanding the Dynamics and Mechanisms of Protein Degradation Challenges in understanding degradation and PROTAC efficacy: Protein degradation is a dynamic and complex process. How do we assess whether a PROTAC degrades its target? If no degradation is observed, what happened? How do we know what steps in the pathway to optimize or improve? Is degradation efficacy correlated to specific mechanisms? Solutions Develop technologies to understand the key steps for efficient and targeted degradation. Use assays to advance research and help development of degradation/protac compounds. Clin. Cancer Res. 8(), AACR 2

3 Comprehensive Approach for Cellular Characterization PROTAC Target Protein Degradation PROTAC permeability/binding PROTAC induced interactions Target Protein Degradation Phenotype Target + PROTAC PROTAC Ternary Complex VHL E3 Ligase HaloTag Fusion Cl Ubiquitin Ub Ub Ub Target Binary Complexes E3 Recruiter Ub Proteasome Proprietary Information. Not for further distribution.

4 Technologies for Monitoring Events within the Degradation Pathway Luminescence Protein Levels: Degradation and recovery NanoLuc Luciferase NanoLuc Fusion HiBiT Technology Binary Complementation of NanoBiT Enzyme HiBiT Fusion + LgBiT NanoBiT Fusion NanoLuc aa HiBiT 7kDa LgBiT NanoBiT NanoBRET: Bioluminescence Resonance Energy Transfer Fluorescent Acceptor Donor:Acceptor Complex Mechanism: PROTAC binding and protein:protein interactions Luminescent Donor OR + HaloTag Fusion Energy Transfer Energy Transfer NanoBiT or NanoLuc Fusion Tracer Compound 4

5 Luminescent imaging capturing endogenously tagged BRD4 degradation Brightfield CRISPR HiBiT-BRD4 Treatment with MZ shows uniform loss of BRD4 over 2 hours Imaging performed on Olympus LV2 How do we look at degradation quantitatively? Degradation rate Degradation IC5 Proprietary Information. Not for further distribution.

6 BET family comparisons of protein degradation and recovery HiBiT (CRISPR) BRD2, BRD3, or BRD4 Endogenously tagged protein + MZ or dbet.c M M Z nm MZ BRD2 BRD3 BRD4 B R D 2 c B R D 3 B R D 4. cm d B e t nm dbet BRD2 BRD3 BRD4 B R D 2 B R D 3 B R D Each family member reveals both unique degradation and recovery response Where should dose response curves be performed to understand degradation IC 5 s? Time component is critical, what about drug concentration treatment? Proprietary Information. Not for further distribution.

7 Live Cell Degradation Profiles Across Concentration Series B R D 2 B R D 3 B R D 4 M d B E T B R D 2 B R D 3 B R D 4 M M Z Target and concentration-specific degradation and recovery response to MZ and dbet 7

8 Using Profiles to Calculate PROTAC Degradation Parameters D max Degradation Profile Plateau +.(D max ) Plateau Time at D max Quantitative Parameters Rate of degradation Dmax/DC 5 Time at Dmax y = (y Plateau)e ƛt + Plateau ƛ = Degradation Rate Can calculate multiple parameters in a single degradation profile. B R D 2 Dmax B R D 3 M M Z B R D 2 Rate M M Z M M Z

9 D egrada tion R ate C onstant, (h r - ) F r a c t i o n a l R L U T im e (h o u rs) Graphical Representations of Calculated Profile Degradation Parameters D egrada tion R ate D e g r a d a t i o n M a x i m u m T im e a t D m a x, M M P R O T A C M P R O T A C DC 5 (nm) 5 B R D 2 B R D 3 B R D 4 B R D 2 dbe T B R D 3 dbe T B R D 4 dbe T B R D 2 M Z B R D 3 M Z B R D 4 M Z B R D 2 d B E T B R D 3 d B E T B R D 4 d B E T B R D 2 M Z B R D 3 M Z B R D 4 M Z C R B N / dbet V HL / M Z Can rank the order of PROTAC and family member responses across various quantitative parameters. 9

10 % D e g r a d a tio n Comparing Degradation from Endogenous and Ectopic Expression Endogenous B RHiBiT-BRD4 D 4 M M Z Transient NanoLuc-BRD4 B R D 4 M M Z Ectopic expression differs from endogenous by: Degradation rate Extent Protein recovery R a te v s C o n c. D m a x Ectopic expression recommendations: 2.5 E n d o g e n o u s E n d o g e n o u s Express at low levels T ra n s ie n t 5. T ra n s ie n t MZ DC 5 Endogenous = 8nM Transient = 85nM Use only qualitatively (yes or no for degradation). Stable cell line if possible for more uniform expression. M M Z M M Z

11 Monitoring PROTAC permeability and target engagement Target Engagement PROTAC NanoBRET Target engagement Drug Tracer Nano Luc Target Nano Luc Target Intracellular binding Intracellular affinity Target Binary Complexes E3 Recruiter Bioluminescence Resonance Energy Transfer to monitor protein:small molecule interactions Highly specific, biophysical measurement Monitor binding affinity, residence time and rank order compounds NanoBRET target engagement assays can be performed using: Transient, stable or CRISPR endogenously tagged NanoLuc or HiBiT fusions Target specific or E3 ligase fluorescent tracers Compatible with lytic or live-cell formats to assess cellular permeability.

12 N o r m a liz e d B R E T N o r m a liz e d B R E T Comparing lytic versus live cell to assess permeability NanoBRET TE E3 Competitive Displacement PROTAC V H L, L y s a te V H L, L iv e C e ll V H V H M Z M Z OR E3 Ligase Tracer NanoLuc-E3 Ligase Parental M C o m p o u n d M C o m p o u n d Compound Target IC 5 (nm, Lysate) IC 5 (nm, Live Cell) VH298 VHL MZ VHL No difference in VHL binding affinities observed in lytic format between parental (VH298) and MZ PROTAC. NanoBRET target engagement in live cells shows binding affinity shift, indicating reduced permeability of MZ. 2

13 N o r m a liz e d B R E T IC 5 ( M ) Measuring intracellular binding to target BRD4 protein NanoBRET TE Target Competitive Displacement PROTAC B R D 4, L iv e C e ll J Q B R D 4 E n g a g e m e n t d B E T d B E T J Q - BET Tracer OR M Z M Z NanoLuc-BRD4 Parental M C o m p o u n d T im e (m in.) Compound Target IC 5 (nm, Live Cell) MZ BRD4 432 dbet BRD4 747 JQ BRD4 54 Significant shift in intracellular binding affinities for BRD4 by MZ and dbet as compared to parental JQ. Kinetic binding analysis showed slow intracellular engagement, suggesting reduced permeability of PROTACs. 3

14 Monitoring Interactions within the Degradation Pathway by NanoBRET NanoBRET Ternary Complex Assay HaloTag -Ub Acceptor Two NanoBRET Ubiquitination Assays Alexa594-Antibody Acceptor NanoBRET Proteasome Assay HaloTag-E3 Ligase Ub Ub Ub Ub HaloTag- Ubiquitin Ub Ub Ub Ub Alexa594 Ab HaloTag- Proteasome Subunit NanoLuc or HiBiT Fusion Protein NanoLuc or HiBiT Fusion Protein NanoLuc or HiBiT Fusion Protein NanoLuc or HiBiT Fusion Protein NanoBRET protein:protein interaction assays can be performed using: Transient, stable or CRISPR endogenously tagged NanoLuc or HiBiT fusions as energy donor. Transient or stable HaloTag fusions as energy acceptors 4

15 F o ld in c re a s e in B R E T F o ld in c re a s e in B R E T F o ld in c re a s e in B R E T Kinetic monitoring of ternary complexes NanoBRET Assay HiBiT BET-PROTAC-E3 B R D 2 B R D 3 B R D 4 5 C R B N / d B e t ( u M ) 8 V H L / M Z ( u M ) T im e (h r s ) T im e (h r s ) T im e (h r s ) Kinetic patterns are different with each PROTAC. Faster complex formation with dbet/crbn, but more stable formation with MZ/VHL 5

16 F o ld in c re a s e in B R E T F o ld in c re a s e in B R E T F o ld in c re a s e in B R E T Kinetic monitoring of BET family ubiquitination NanoBRET Assay HiBiT BET-HaloTag -Ub Ub Ub Ub B R D B R D B R D 4 D M S O d B e t ( u M ) Ub M Z ( u M ).5 2. T im e (h r).5 2. T im e (h r).5 2. T im e (h r) Robust ubiquitination of BRD2 and BRD4 treated with MZ The different E3 ternary complexes recruited by dbet and MZ show differential ubiquitination on respective targets. 6

17 F o ld in c re a s e in B R E T D e g ra d a tio n R a te Endogenous ubiquitination patterns and correlation with degradation rate NanoBRET Assay HiBiT BET-Polyclonal Ub A n ti-u b iq u itin B R D 2 d B E T 2.5 C o r r e la tio n o f D e g r a d a tio n R a te w ith U b iq u itin a tio n B R D 2 d B E T Ub Ub Ub B R D 3 d B E T B R D 4 d B E T 2. B R D 3 d B E T B R D 4 d B E T Ub 5 B R D 2 M Z B R D 3 M Z B R D 4 M Z.5 B R D 2 M Z B R D 3 M Z B R D 4 M Z T im e (h r s ) U b iq u itin a tio n F o ld In c re a s e in B R E T Relative intensity differences and patterns similar to HaloTag -Ub NanoBRET Assay. Anti-Ubiquitin measurements are done using lytic, endpoint measurements. Level of ubiquitination shows linear relationship, high correlation with calculated degradation rate. 7

18 B R E T R a tio (m B U ) B R E T R a tio (m B U ) Kinetic trafficking of BRD4 to the Proteasome N L -B R D 4 & H T -P S M D 3 NanoLuc-BRD4:HaloTag-PSMD N L -B R D 4 & H T -P S M D 3 V e h ic le C o n tro l M Z V ( e huic M le ) C/ Vo nh tro 2 9l 8 (. 2 u M ) 4 M Z ( ( u M ) / V H (..327 u M )) 3 MZ Z ( ( u M ) / V H ( (.3.7 u M )) 3 2 M Z Z ( ( u M ) / V H ( ( u M ) ) 2 M Z ( u M ) / V H (3.3 3 u M ) M Z ( u M ) / V H ( ) M Z ( u M ) / V H ( u M ) T im e (m in ) 5 2 T im e (m in ) Detect increase in trafficking of BRD4 to proteasome in the presence of PROTAC. Parental compounds can be used as controls. Can simultaneously monitor loss of target (NanoLuc-BRD4) in proteasome assay. 8

19 Targeted degradation phenotype using HaloTag PROTACs HaloPROTAC Study phenotype of degraded targets HaloPROTAC targets HaloTag fusion proteins for degradation through VHL recruitment ACS Chem Biol, 25,, 83 Help define targets important for PROTAC development VHL E3 Ligase HaloTag Fusion Cl Degradation Goals: Generate endogenously tagged HaloTag fusions Pair with HiBiT (HiBiT-HaloTag) for easy detection Characterize kinetics of degradation for variety of proteins Proprietary Information. Not for further distribution.

20 Kinetic degradation profiles of HiBiT-HaloTag-BRD4 with HaloPROTAC H ib it -H a lo T a g -B R D 4 H T P R O T A C.5 u M u M. u M u M u M 4 5 u M 2 3 T im e (h r) u M u M Efficient loss of endogenous HiBiT-HaloTag-BRD4 using HaloPROTAC, even at nm concentration HaloPROTAC also demonstrates burst/rapid degradation loss HiBiT could be appended to any fusion tag PROTAC to enable live-cell kinetic detection Proprietary Information. Not for further distribution.

21 Summary Differentiating cellular technologies are available to study key processes in PROTAC-mediated degradation. HiBiT and NanoLuc technology Measure kinetics of degradation in live cells. Can be used with CRISPR to study endogenous proteins. Able to quantitate key degradation parameters. NanoBRET technology HiBiT- Fusion HiBiT or NanoLuc technology aa HiBiT + LgBiT LgBiT OR NanoLuc Fusion NanoLuc NanoBRET Bioluminescence Resonance Energy Transfer Monitor dynamic pathway interactions and signaling mechanisms in live cells. Luminescent Donor Fluorescent Acceptor Donor:Acceptor Complex Can assess PROTAC cellular permeability. Follow induced interactions with E3 ligase components, Ubiquitin and subsequent trafficking to proteasome. OR + NanoBiT or NanoLuc Fusion HaloTag Fusion Energy Transfer 2

BET PROTACs Are More Broadly Effective Than BET Inhibitors. Dr. Kevin Coleman Arvinas, LLC New Haven, CT

BET PROTACs Are More Broadly Effective Than BET Inhibitors. Dr. Kevin Coleman Arvinas, LLC New Haven, CT BET PROTACs Are More Broadly Effective Than BET Inhibitors Dr. Kevin Coleman Arvinas, LLC New Haven, CT 1 Disclosures I am an employee of and have an equity stake in Arvinas 2 Arvinas: The Protein Degradation

More information

The Institute of Cancer Research PHD STUDENTSHIP PROJECT PROPOSAL

The Institute of Cancer Research PHD STUDENTSHIP PROJECT PROPOSAL The Institute of Cancer Research PHD STUDENTSHIP PROJECT PROPOSAL PROJECT DETAILS Project Title: Design and synthesis of libraries of bifunctional degraders for the discovery of new cancer targets SUPERVISORY

More information

A Next-Generation Dual-Luciferase Reporter Assay Using Firefly and NanoLuc Luciferases

A Next-Generation Dual-Luciferase Reporter Assay Using Firefly and NanoLuc Luciferases A Next-Generation Dual-Luciferase Reporter Assay Using Firefly and NanoLuc Luciferases Christopher Eggers, Ph.D., Sr. Research Scientist 2015 Presentation Outline Luciferases in Reporter Gene Assays NanoLuc

More information

Biochemical / Biophysical Kinetics Made Easy

Biochemical / Biophysical Kinetics Made Easy Biochemical / Biophysical Kinetics Made Easy Software DYNAFIT in drug discovery research Petr Kuzmič, Ph.D. BioKin, Ltd. 1. Theory: differential equation models - DYNAFIT software 2. Example: lanthascreen

More information

Structural basis of PROTAC cooperative recognition for selective protein degradation

Structural basis of PROTAC cooperative recognition for selective protein degradation SUPPLEMENTARY INFORMATION Structural basis of PROTAC cooperative recognition for selective protein degradation Morgan S. Gadd 1, Andrea Testa 1, Xavier Lucas 1, Kwok-Ho Chan, Wenzhang Chen, Douglas J.

More information

LanthaScreen Eu Kinase Binding Assay Validation Packet. Optimization of a LanthaScreen Eu Kinase Binding Assay for AURKB

LanthaScreen Eu Kinase Binding Assay Validation Packet. Optimization of a LanthaScreen Eu Kinase Binding Assay for AURKB Page 1 of 18 LanthaScreen Eu Kinase Binding Assay for AURKB Overview This protocol describes how to perform a LanthaScreen Eu Kinase Binding Assay designed to detect and characterize kinase inhibitors.

More information

LanthaScreen Eu Kinase Binding Assay Validation Packet. Optimization of a LanthaScreen Eu Kinase Binding Assay for RPS6KA1

LanthaScreen Eu Kinase Binding Assay Validation Packet. Optimization of a LanthaScreen Eu Kinase Binding Assay for RPS6KA1 Page 1 of 18 Optimization of a Assay for RPS6KA1 Assay for RPS6KA1 Overview This protocol describes how to perform a Assay designed to detect and characterize kinase inhibitors. Procedure 1 describes an

More information

FRAGMENT SCREENING IN LEAD DISCOVERY BY WEAK AFFINITY CHROMATOGRAPHY (WAC )

FRAGMENT SCREENING IN LEAD DISCOVERY BY WEAK AFFINITY CHROMATOGRAPHY (WAC ) FRAGMENT SCREENING IN LEAD DISCOVERY BY WEAK AFFINITY CHROMATOGRAPHY (WAC ) SARomics Biostructures AB & Red Glead Discovery AB Medicon Village, Lund, Sweden Fragment-based lead discovery The basic idea:

More information

Current Literature. Development of Highly Potent and Selective Steroidal Inhibitors and Degraders of CDK8

Current Literature. Development of Highly Potent and Selective Steroidal Inhibitors and Degraders of CDK8 Current Literature Development of ighly Potent and Selective Steroidal Inhibitors and Degraders of CDK8 ACS Med. Chem. Lett. 2018, ASAP Rational Drug Development simplification Cortistatin A 16-30 steps;

More information

Microplate-Based Measurements of Target Engagement in Live Cells With CETSA - a Reflection on Screen Results and Quantitative Interpretations

Microplate-Based Measurements of Target Engagement in Live Cells With CETSA - a Reflection on Screen Results and Quantitative Interpretations Microplate-Based Measurements of Target Engagement in Live Cells With CETSA - a Reflection on Screen Results and Quantitative Interpretations Thomas Lundbäck Karolinska Institutet ELRIG Drug Discovery

More information

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on Regulation and signaling Overview Cells need to regulate the amounts of different proteins they express, depending on cell development (skin vs liver cell) cell stage environmental conditions (food, temperature,

More information

Preparation of Tritium Labeled Compounds and Their Scintillation Proximity Assays

Preparation of Tritium Labeled Compounds and Their Scintillation Proximity Assays Preparation of Tritium Labeled Compounds and Their Scintillation Proximity Assays Michael P. O'Malley*, Yui S. Tang, and Nadine M. Gan PerkinElmer Health Sciences, Inc. * Main author: e-mail Mike.O Malley@Perkinelmer.com

More information

Characterization of Reversible Kinase Inhibitors using Microfluidic Mobility-Shift Assays

Characterization of Reversible Kinase Inhibitors using Microfluidic Mobility-Shift Assays Application Note 211 Characterization of Reversible Kinase Inhibitors using Microfluidic Mobility-Shift Assays Introduction Current drug discovery efforts typically focus on developing small molecule inhibitors

More information

MOLECULAR DRUG TARGETS

MOLECULAR DRUG TARGETS MOLECULAR DRUG TARGETS LEARNING OUTCOMES At the end of this session student shall be able to: List different types of druggable targets Describe forces involved in drug-receptor interactions Describe theories

More information

13-3. Synthesis-Secretory pathway: Sort lumenal proteins, Secrete proteins, Sort membrane proteins

13-3. Synthesis-Secretory pathway: Sort lumenal proteins, Secrete proteins, Sort membrane proteins 13-3. Synthesis-Secretory pathway: Sort lumenal proteins, Secrete proteins, Sort membrane proteins Molecular sorting: specific budding, vesicular transport, fusion 1. Why is this important? A. Form and

More information

LanthaScreen Eu Kinase Binding Assay Validation Packet. Optimization of a LanthaScreen Eu Kinase Binding Assay for STK33

LanthaScreen Eu Kinase Binding Assay Validation Packet. Optimization of a LanthaScreen Eu Kinase Binding Assay for STK33 Page of 7 Optimization of a ssay for STK33 ssay for STK33 Overview This protocol describes how to perform a ssay designed to detect and characterize kinase inhibitors. Procedure describes an experiment

More information

Introduction to FBDD Fragment screening methods and library design

Introduction to FBDD Fragment screening methods and library design Introduction to FBDD Fragment screening methods and library design Samantha Hughes, PhD Fragments 2013 RSC BMCS Workshop 3 rd March 2013 Copyright 2013 Galapagos NV Why fragment screening methods? Guess

More information

LanthaScreen Eu Kinase Binding Assay Validation Packet

LanthaScreen Eu Kinase Binding Assay Validation Packet Page of 7 LanthaScreen Eu kinase binding assay for RF Overview This protocol describes how to perform a LanthaScreen Eu Kinase indng ssay designed to detect and characterize kinase inhibitors. Procedure

More information

4) Please cite Dagda et al J Biol Chem 284: , for any publications or presentations resulting from use or modification of the macro.

4) Please cite Dagda et al J Biol Chem 284: , for any publications or presentations resulting from use or modification of the macro. Supplement Figure S1. Algorithmic quantification of mitochondrial morphology in SH- SY5Y cells treated with known fission/fusion mediators. Parental SH-SY5Y cells were transiently transfected with an empty

More information

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution. The AP Biology course is designed to enable you to develop advanced inquiry and reasoning skills, such as designing a plan for collecting data, analyzing data, applying mathematical routines, and connecting

More information

FSC-W FSC-H CD4 CD62-L

FSC-W FSC-H CD4 CD62-L Supplementary Fig. 1 a SSC-A FSC-A FSC-W FSC-H SSC-W SSC-H CD4 CD62-L b SSC-A FSC-A FSC-W FSC-A FSC-A 7-AAD FSC-A CD4 IL-9 CD4 c SSC-A FSC-A FSC-W FSC-H SSC-W SSC-H 7-AAD KI67 Annexin-V 7-AAD d I L -5

More information

Big Idea 1: The process of evolution drives the diversity and unity of life.

Big Idea 1: The process of evolution drives the diversity and unity of life. Big Idea 1: The process of evolution drives the diversity and unity of life. understanding 1.A: Change in the genetic makeup of a population over time is evolution. 1.A.1: Natural selection is a major

More information

AP Curriculum Framework with Learning Objectives

AP Curriculum Framework with Learning Objectives Big Ideas Big Idea 1: The process of evolution drives the diversity and unity of life. AP Curriculum Framework with Learning Objectives Understanding 1.A: Change in the genetic makeup of a population over

More information

Homework for Chapter 7 Chem 2310

Homework for Chapter 7 Chem 2310 omework for Chapter 7 Chem 2310 Name I. Introduction to Reactions 1. Explain why the following fits the definition of a chemical reaction. C 3 Na C 3 Na 2. Using the chemical reaction above, give all compounds

More information

Supporting information

Supporting information Supporting information Fluorescent derivatives of AC-42 to probe bitopic orthosteric/allosteric binding mechanisms on muscarinic M1 receptors Sandrine B. Daval, Céline Valant, Dominique Bonnet, Esther

More information

Department of Chemistry and Biochemistry University of Lethbridge. Biochemistry II. Bioenergetics

Department of Chemistry and Biochemistry University of Lethbridge. Biochemistry II. Bioenergetics Department of Chemistry and Biochemistry University of Lethbridge II. Bioenergetics Slide 1 Bioenergetics Bioenergetics is the quantitative study of energy relationships and energy conversion in biological

More information

Enzyme Kinetics: The study of reaction rates. For each very short segment dt of the reaction: V k 1 [S]

Enzyme Kinetics: The study of reaction rates. For each very short segment dt of the reaction: V k 1 [S] Enzyme Kinetics: The study of reaction rates. For the one-way st -order reaction: S the rate of reaction (V) is: V P [ P] moles / L t sec For each very short segment dt of the reaction: d[ P] d[ S] V dt

More information

Problem Set 5 Question 1

Problem Set 5 Question 1 2.32 Problem Set 5 Question As discussed in class, drug discovery often involves screening large libraries of small molecules to identify those that have favorable interactions with a certain druggable

More information

Advanced Fluorescence Microscopy I: Fluorescence (Foster) Resonance Energy Transfer

Advanced Fluorescence Microscopy I: Fluorescence (Foster) Resonance Energy Transfer Advanced Fluorescence Microscopy I: Fluorescence (Foster) Resonance Energy Transfer 3.0 Pax 2.5 2.0 1200 800 400 GFP- Pax GFP-Pax + FATmCherry FAT FAT 1.5 Lifetime (ns) 0 1500 2000 2500 3000 Average lifetime

More information

Peptide-derived Inhibitors of Protein-Protein Interactions

Peptide-derived Inhibitors of Protein-Protein Interactions Peptide-derived Inhibitors of Protein-Protein Interactions Sven Hennig Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit Amsterdam 1 Biomolecular recognitions Classification via interaction

More information

2054, Chap. 8, page 1

2054, Chap. 8, page 1 2054, Chap. 8, page 1 I. Metabolism: Energetics, Enzymes, and Regulation (Chapter 8) A. Energetics and work 1. overview a. energy = ability to do work (1) chemical, transport, mechanical (2) ultimate source

More information

Fluorescence (Notes 16)

Fluorescence (Notes 16) Fluorescence - 2014 (Notes 16) XV 74 Jablonski diagram Where does the energy go? Can be viewed like multistep kinetic pathway 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet

More information

CHEM 4170 Problem Set #1

CHEM 4170 Problem Set #1 CHEM 4170 Problem Set #1 0. Work problems 1-7 at the end of Chapter ne and problems 1, 3, 4, 5, 8, 10, 12, 17, 18, 19, 22, 24, and 25 at the end of Chapter Two and problem 1 at the end of Chapter Three

More information

Essential knowledge 1.A.2: Natural selection

Essential knowledge 1.A.2: Natural selection Appendix C AP Biology Concepts at a Glance Big Idea 1: The process of evolution drives the diversity and unity of life. Enduring understanding 1.A: Change in the genetic makeup of a population over time

More information

Unlocking the potential of your drug discovery programme

Unlocking the potential of your drug discovery programme Unlocking the potential of your drug discovery programme Innovative screening The leading fragment screening platform with MicroScale Thermophoresis at its core Domainex expertise High quality results

More information

schematic diagram; EGF binding, dimerization, phosphorylation, Grb2 binding, etc.

schematic diagram; EGF binding, dimerization, phosphorylation, Grb2 binding, etc. Lecture 1: Noncovalent Biomolecular Interactions Bioengineering and Modeling of biological processes -e.g. tissue engineering, cancer, autoimmune disease Example: RTK signaling, e.g. EGFR Growth responses

More information

Biochemistry. Lecture 8

Biochemistry. Lecture 8 Biochemistry Lecture 8 Why Enzymes? igher reaction rates Greater reaction specificity Milder reaction conditions Capacity for regulation C - - C N 2 - C N 2 - C - C Chorismate mutase - C - C - C Metabolites

More information

Ligand screening system using fusion proteins of G protein coupled receptors with G protein α subunits

Ligand screening system using fusion proteins of G protein coupled receptors with G protein α subunits 2 Ligand screening system using fusion proteins of G protein coupled receptors with G protein α subunits G protein coupled receptors A key player of signaling transduction. Cell membranes are packed with

More information

Metabolite Identification and Characterization by Mining Mass Spectrometry Data with SAS and Python

Metabolite Identification and Characterization by Mining Mass Spectrometry Data with SAS and Python PharmaSUG 2018 - Paper AD34 Metabolite Identification and Characterization by Mining Mass Spectrometry Data with SAS and Python Kristen Cardinal, Colorado Springs, Colorado, United States Hao Sun, Sun

More information

Richik N. Ghosh, Linnette Grove, and Oleg Lapets ASSAY and Drug Development Technologies 2004, 2:

Richik N. Ghosh, Linnette Grove, and Oleg Lapets ASSAY and Drug Development Technologies 2004, 2: 1 3/1/2005 A Quantitative Cell-Based High-Content Screening Assay for the Epidermal Growth Factor Receptor-Specific Activation of Mitogen-Activated Protein Kinase Richik N. Ghosh, Linnette Grove, and Oleg

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11085 Supplementary Tables: Supplementary Table 1. Summary of crystallographic and structure refinement data Structure BRIL-NOP receptor Data collection Number of crystals 23 Space group

More information

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f Essential Skills Chapter f ( x + h) f ( x ). Simplifying the difference quotient Section. h f ( x + h) f ( x ) Example: For f ( x) = 4x 4 x, find and simplify completely. h Answer: 4 8x 4 h. Finding the

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Key Concepts 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 8.2 The free-energy change of a reaction tells us

More information

Electrophoresis and Electroosmosis in the Intracellular Transport of Macromolecules

Electrophoresis and Electroosmosis in the Intracellular Transport of Macromolecules Electrophoresis and Electroosmosis in the Intracellular Transport of Macromolecules Victor Andreev University of Miami COMSOL Conference Boston, 2011 Electroosmotic flow results from the action of electric

More information

Class Diagrams. CSC 440/540: Software Engineering Slide #1

Class Diagrams. CSC 440/540: Software Engineering Slide #1 Class Diagrams CSC 440/540: Software Engineering Slide # Topics. Design class diagrams (DCDs) 2. DCD development process 3. Associations and Attributes 4. Dependencies 5. Composition and Constraints 6.

More information

Supplementary Information

Supplementary Information Supplementary Information MAP2/Hoechst Hyp.-AP ph 6.5 Hyp.-SD ph 7.2 Norm.-SD ph 7.2 Supplementary Figure 1. Mitochondrial elongation in cortical neurons by acidosis. Representative images of neuronal

More information

Optimization of a LanthaScreen Eu Kinase Binding Assay for PIK3CA/PIK3R1

Optimization of a LanthaScreen Eu Kinase Binding Assay for PIK3CA/PIK3R1 Page 1 of 18 LanthaScreen Eu Kinase Binding Assay for PIK3CA/PIK3R1 (p110α/p85α) Overview This protocol describes how to perform a LanthaScreen Eu Kinase Binding Assay designed to detect and characterize

More information

- Basic understandings: - Mapping interactions:

- Basic understandings: - Mapping interactions: NMR-lecture April 6th, 2009, FMP Berlin Outline: Christian Freund - Basic understandings: Relaxation Chemical exchange - Mapping interactions: -Chemical shift mapping (fast exchange) Linewidth analysis

More information

Using Bayesian Statistics to Predict Water Affinity and Behavior in Protein Binding Sites. J. Andrew Surface

Using Bayesian Statistics to Predict Water Affinity and Behavior in Protein Binding Sites. J. Andrew Surface Using Bayesian Statistics to Predict Water Affinity and Behavior in Protein Binding Sites Introduction J. Andrew Surface Hampden-Sydney College / Virginia Commonwealth University In the past several decades

More information

Protein Structure Determination using NMR Spectroscopy. Cesar Trinidad

Protein Structure Determination using NMR Spectroscopy. Cesar Trinidad Protein Structure Determination using NMR Spectroscopy Cesar Trinidad Introduction Protein NMR Involves the analysis and calculation of data collected from multiple NMR techniques Utilizes Nuclear Magnetic

More information

Isothermal Titration Calorimetry in Drug Discovery. Geoff Holdgate Structure & Biophysics, Discovery Sciences, AstraZeneca October 2017

Isothermal Titration Calorimetry in Drug Discovery. Geoff Holdgate Structure & Biophysics, Discovery Sciences, AstraZeneca October 2017 Isothermal Titration Calorimetry in Drug Discovery Geoff Holdgate Structure & Biophysics, Discovery Sciences, AstraZeneca October 217 Introduction Introduction to ITC Strengths / weaknesses & what is required

More information

C a h p a t p e t r e r 6 E z n y z m y e m s

C a h p a t p e t r e r 6 E z n y z m y e m s Chapter 6 Enzymes 4. Examples of enzymatic reactions acid-base catalysis: give and take protons covalent catalysis: a transient covalent bond is formed between the enzyme and the substrate metal ion catalysis:

More information

Measure mass, thickness and structural properties of molecular layers Automated and fully integrated turn-key system

Measure mass, thickness and structural properties of molecular layers Automated and fully integrated turn-key system Product Information Q-Sense Omega Auto Real-time interface characterization Measure mass, thickness and structural properties of molecular layers Automated and fully integrated turn-key system 30 µl sample

More information

Polymer-Caged Nanobins for Synergistic Cisplatin-Doxorubicin Combination Chemotherapy

Polymer-Caged Nanobins for Synergistic Cisplatin-Doxorubicin Combination Chemotherapy S1 Polymer-Caged Nanobins for Synergistic Cisplatin-Doxorubicin Combination Chemotherapy Sang-Min Lee, Thomas V. O Halloran,* and SonBinh T. Nguyen* Department of Chemistry and the Center of Cancer Nanotechnology

More information

Evidence for the Existence of Non-monotonic Dose-response: Does it or Doesn t it?

Evidence for the Existence of Non-monotonic Dose-response: Does it or Doesn t it? Evidence for the Existence of Non-monotonic Dose-response: Does it or Doesn t it? Scott M. Belcher, PhD University of Cincinnati Department of Pharmacology and Cell Biophysics Evidence for the Existence

More information

Supplementary Information

Supplementary Information Supplementary Information An engineered protein antagonist of K-Ras/B-Raf interaction Monique J. Kauke, 1,2 Michael W. Traxlmayr 1,2, Jillian A. Parker 3, Jonathan D. Kiefer 4, Ryan Knihtila 3, John McGee

More information

Measuring (bio)luminescence and fluorescence

Measuring (bio)luminescence and fluorescence igem TU/e 2015 Biomedical Engineering Eindhoven University of Technology Room: Ceres 0.04 Den Dolech 2, 5612 AZ Eindhoven The Netherlands Tel. no. +31 50 247 55 59 2015.igem.org/Team:TU_Eindhoven Measuring

More information

COMPUTER SIMULATION OF DIFFERENTIAL KINETICS OF MAPK ACTIVATION UPON EGF RECEPTOR OVEREXPRESSION

COMPUTER SIMULATION OF DIFFERENTIAL KINETICS OF MAPK ACTIVATION UPON EGF RECEPTOR OVEREXPRESSION COMPUTER SIMULATION OF DIFFERENTIAL KINETICS OF MAPK ACTIVATION UPON EGF RECEPTOR OVEREXPRESSION I. Aksan 1, M. Sen 2, M. K. Araz 3, and M. L. Kurnaz 3 1 School of Biological Sciences, University of Manchester,

More information

BIOCHEMISTRY - CLUTCH REVIEW 2.

BIOCHEMISTRY - CLUTCH REVIEW 2. !! www.clutchprep.com CONCEPT: BINDING AFFINITY Protein-ligand binding is reversible, like a chemical equilibrium [S] substrate concentration [E] enzyme concentration Ligands bind to proteins via the same

More information

Saba Al Fayoumi. Tamer Barakat. Dr. Mamoun Ahram + Dr. Diala Abu-Hassan

Saba Al Fayoumi. Tamer Barakat. Dr. Mamoun Ahram + Dr. Diala Abu-Hassan 1 Saba Al Fayoumi Tamer Barakat Dr. Mamoun Ahram + Dr. Diala Abu-Hassan What is BIOCHEMISTRY??? Biochemistry = understanding life Chemical reactions are what makes an organism (An organism is simply atoms

More information

Enzyme Nomenclature Provides a Systematic Way of Naming Metabolic Reactions

Enzyme Nomenclature Provides a Systematic Way of Naming Metabolic Reactions Enzyme Kinetics Virtually All Reactions in Cells Are Mediated by Enzymes Enzymes catalyze thermodynamically favorable reactions, causing them to proceed at extraordinarily rapid rates Enzymes provide cells

More information

Expanded View Figures

Expanded View Figures The EMBO Journal Structure of a Dm peptide bound to the OT module Tobias Raisch et al Expanded View Figures A Hs Dm 262 297 685 8 HEAT HEAT MIF4G 9BD 1SHD 761 91 193 169 1152 1317 16 1376 1467 HEAT HEAT

More information

LanthaScreen Eu Kinase Binding Assay for GAK

LanthaScreen Eu Kinase Binding Assay for GAK LanthaScreen Eu Kinase Binding Assay for GAK Catalog Number: A30973 Size: 10 µg Storage: 80 C, immediately upon receipt A32891 100 µg A33376 1 mg Pub. No. MAN0017224 Rev. A.0 Overview This user guide describes

More information

BIOLOGY 10/11/2014. An Introduction to Metabolism. Outline. Overview: The Energy of Life

BIOLOGY 10/11/2014. An Introduction to Metabolism. Outline. Overview: The Energy of Life 8 An Introduction to Metabolism CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Outline I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V. Enzymes

More information

camp Direct Immunoassay Kit

camp Direct Immunoassay Kit camp Direct Immunoassay Kit Catalog Number KA0886 100 assays Version: 05 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Background... 3 General Information... 4 Materials

More information

Molecular Cell Biology 5068 In Class Exam 2 November 8, 2016

Molecular Cell Biology 5068 In Class Exam 2 November 8, 2016 Molecular Cell Biology 5068 In Class Exam 2 November 8, 2016 Exam Number: Please print your name: Instructions: Please write only on these pages, in the spaces allotted and not on the back. Write your

More information

Ground Rules of Metabolism CHAPTER 6

Ground Rules of Metabolism CHAPTER 6 Ground Rules of Metabolism CHAPTER 6 Antioxidants You ve heard the term. What s the big deal? Found naturally in many fruits and vegetables Added to many products What do they actually do? Antioxidants

More information

Isothermal experiments characterize time-dependent aggregation and unfolding

Isothermal experiments characterize time-dependent aggregation and unfolding 1 Energy Isothermal experiments characterize time-dependent aggregation and unfolding Technical ote Introduction Kinetic measurements have, for decades, given protein scientists insight into the mechanisms

More information

The Chemistry department approved by the American Chemical Society offers a Chemistry degree in the following concentrations:

The Chemistry department approved by the American Chemical Society offers a Chemistry degree in the following concentrations: Chemistry 1 Chemistry 203-C Materials Science Building Telephone: 256.824.6153 Email: chem.admin@uah.edu (chem@uah.edu) The Chemistry department approved by the American Chemical Society offers a Chemistry

More information

targets. clustering show that different complex pathway

targets. clustering show that different complex pathway Supplementary Figure 1. CLICR allows clustering and activation of cytoplasmic protein targets. (a, b) Upon light activation, the Cry2 (red) and LRP6c (green) components co-cluster due to the heterodimeric

More information

Irreversible Inhibition Kinetics

Irreversible Inhibition Kinetics 1 Irreversible Inhibition Kinetics Automation and Simulation Petr Kuzmič, Ph.D. BioKin, Ltd. 1. Automate the determination of biochemical parameters 2. PK/PD simulations with multiple injections Irreversible

More information

Supplementary Figure 1.

Supplementary Figure 1. Supplementary Figure 1. Characterisation of IHG-1 overexpressing and knockdown cell lines. (A) Total cellular RNA was prepared from HeLa cells stably overexpressing IHG-1 or mts-ihg-1. IHG-1 mrna was quantified

More information

MEDICINAL CHEMISTRY Homework 2 - ANSWERS

MEDICINAL CHEMISTRY Homework 2 - ANSWERS MEDICIAL CEMISTY omework 2 - ASWES 1. eceptor binding curves. Make a plot of %drug-bound versus -log[drug] for a drug whose K D is 5 x 10-6 M. Make a plot of %drug-bound vs [drug] for this same system.

More information

ENZYME KINETICS AND INHIBITION

ENZYME KINETICS AND INHIBITION ENZYME KINETICS AND INHIBITION The kinetics of reactions involving enzymes are a little bit different from other reactions. First of all, there are sometimes lots of steps involved. Also, the reaction

More information

ENZYME KINETICS. Medical Biochemistry, Lecture 24

ENZYME KINETICS. Medical Biochemistry, Lecture 24 ENZYME KINETICS Medical Biochemistry, Lecture 24 Lecture 24, Outline Michaelis-Menten kinetics Interpretations and uses of the Michaelis- Menten equation Enzyme inhibitors: types and kinetics Enzyme Kinetics

More information

Acids Bases and Salts Acid

Acids Bases and Salts Acid Acids Bases and Salts Acid ph less than 7.0 Sour taste Electrolyte Names of Acids Binary acids Contain only 2 elements Begin with hydro; end with ic Ternary acids Ex: H 2 S = hydrosulfuric Contain a polyatomic

More information

Receptor Based Drug Design (1)

Receptor Based Drug Design (1) Induced Fit Model For more than 100 years, the behaviour of enzymes had been explained by the "lock-and-key" mechanism developed by pioneering German chemist Emil Fischer. Fischer thought that the chemicals

More information

Introduction to Hidden Markov Modeling (HMM) Daniel S. Terry Scott Blanchard and Harel Weinstein labs

Introduction to Hidden Markov Modeling (HMM) Daniel S. Terry Scott Blanchard and Harel Weinstein labs Introduction to Hidden Markov Modeling (HMM) Daniel S. Terry Scott Blanchard and Harel Weinstein labs 1 HMM is useful for many, many problems. Speech Recognition and Translation Weather Modeling Sequence

More information

André Schleife Department of Materials Science and Engineering

André Schleife Department of Materials Science and Engineering André Schleife Department of Materials Science and Engineering Length Scales (c) ICAMS: http://www.icams.de/cms/upload/01_home/01_research_at_icams/length_scales_1024x780.png Goals for today: Background

More information

Section A: The Principles of Energy Harvest

Section A: The Principles of Energy Harvest CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY Section A: The Principles of Energy Harvest 1. Cellular respiration and fermentation are catabolic, energy-yielding pathways 2. Cells recycle

More information

Study of Non-Covalent Complexes by ESI-MS. By Quinn Tays

Study of Non-Covalent Complexes by ESI-MS. By Quinn Tays Study of Non-Covalent Complexes by ESI-MS By Quinn Tays History Overview Background Electrospray Ionization How it is used in study of noncovalent interactions Uses of the Technique Types of molecules

More information

Advanced Medicinal Chemistry SLIDES B

Advanced Medicinal Chemistry SLIDES B Advanced Medicinal Chemistry Filippo Minutolo CFU 3 (21 hours) SLIDES B Drug likeness - ADME two contradictory physico-chemical parameters to balance: 1) aqueous solubility 2) lipid membrane permeability

More information

Principles of Bioenergetics. Lehninger 3 rd ed. Chapter 14

Principles of Bioenergetics. Lehninger 3 rd ed. Chapter 14 1 Principles of Bioenergetics Lehninger 3 rd ed. Chapter 14 2 Metabolism A highly coordinated cellular activity aimed at achieving the following goals: Obtain chemical energy. Convert nutrient molecules

More information

The general concept of pharmacokinetics

The general concept of pharmacokinetics The general concept of pharmacokinetics Hartmut Derendorf, PhD University of Florida Pharmacokinetics the time course of drug and metabolite concentrations in the body Pharmacokinetics helps to optimize

More information

The Ability C ongress held at the Shoreham Hotel Decem ber 29 to 31, was a reco rd breaker for winter C ongresses.

The Ability C ongress held at the Shoreham Hotel Decem ber 29 to 31, was a reco rd breaker for winter C ongresses. The Ability C ongress held at the Shoreham Hotel Decem ber 29 to 31, was a reco rd breaker for winter C ongresses. Attended by m ore than 3 00 people, all seem ed delighted, with the lectu res and sem

More information

Monolith NT.Automated Product Information

Monolith NT.Automated Product Information Monolith NT.Automated Product Information Monolith Instruments for MicroScale Thermophoresis www.nanotemper-technologies.com Monolith NT.Automated Product Information 2 www.nanotemper-technologies.com

More information

ENZYMES. by: Dr. Hadi Mozafari

ENZYMES. by: Dr. Hadi Mozafari ENZYMES by: Dr. Hadi Mozafari 1 Specifications Often are Polymers Have a protein structures Enzymes are the biochemical reactions Katalyzers Enzymes are Simple & Complex compounds 2 Enzymatic Reactions

More information

Nature Structural and Molecular Biology: doi: /nsmb Supplementary Figure 1. Definition and assessment of ciap1 constructs.

Nature Structural and Molecular Biology: doi: /nsmb Supplementary Figure 1. Definition and assessment of ciap1 constructs. Supplementary Figure 1 Definition and assessment of ciap1 constructs. (a) ciap1 constructs used in this study are shown as primary structure schematics with domains colored as in the main text. Mutations

More information

Chapter 14: Chemical Kinetics II. Chem 102 Dr. Eloranta

Chapter 14: Chemical Kinetics II. Chem 102 Dr. Eloranta Chapter 14: Chemical Kinetics II Chem 102 Dr. Eloranta Rate Laws If you are familiar with calculus Experiments would allow you to determine the reaction order and rate constant, but what if you wanted

More information

Acids and Bases. Chapters 20 and 21

Acids and Bases. Chapters 20 and 21 Acids and Bases Chapters 20 and 21 Acid and Bases Have a sour taste. Vinegar is a solution of acetic acid. Citrus fruits contain citric acid. React with certain metals to produce hydrogen gas. React with

More information

Lecture 10: Cyclins, cyclin kinases and cell division

Lecture 10: Cyclins, cyclin kinases and cell division Chem*3560 Lecture 10: Cyclins, cyclin kinases and cell division The eukaryotic cell cycle Actively growing mammalian cells divide roughly every 24 hours, and follow a precise sequence of events know as

More information

Recommended Reading: 23, 29 (3rd edition); 22, 29 (4th edition) Ch 102 Problem Set 7 Due: Thursday, June 1 Before Class. Problem 1 (1 points) Part A

Recommended Reading: 23, 29 (3rd edition); 22, 29 (4th edition) Ch 102 Problem Set 7 Due: Thursday, June 1 Before Class. Problem 1 (1 points) Part A Recommended Reading: 23, 29 (3rd edition); 22, 29 (4th edition) Ch 102 Problem Set 7 Due: Thursday, June 1 Before Class Problem 1 (1 points) Part A Kinetics experiments studying the above reaction determined

More information

Tag lite: assessment of compound dissociation from GPCRs. Israel Ramos Villullas Group leader of GPCRs and Ion Channels unit BRADS Department

Tag lite: assessment of compound dissociation from GPCRs. Israel Ramos Villullas Group leader of GPCRs and Ion Channels unit BRADS Department Tag lite: assessment of compound dissociation from GPCRs Israel Ramos Villullas Group leader of GPCRs and Ion Channels unit BRADS Department 1 INTRODUCTION Compound residence time at protein targets is

More information

Under the Radar Screen: How Bugs Trick Our Immune Defenses

Under the Radar Screen: How Bugs Trick Our Immune Defenses Under the Radar Screen: How Bugs Trick Our Immune Defenses Session 2: Phagocytosis Marie-Eve Paquet and Gijsbert Grotenbreg Whitehead Institute for Biomedical Research Salmonella Gram negative bacteria

More information

Protein-Ligand Interactions Are Responsible for Signal Transduction

Protein-Ligand Interactions Are Responsible for Signal Transduction Proteinigand Interactions Are Responsible for Signal ransduction ypes of Interactions: 1. ProteinProtein 2. ProteinDNA (RNA) 3. Proteinsmall molecule Dynamic Proteinigand Interaction Dynamic interaction

More information

Alkaline Phosphatase Labeling Kit-NH2

Alkaline Phosphatase Labeling Kit-NH2 Alkaline Phosphatase Labeling Kit-NH2 Catalog Number KA0001 1 Kit Version: 02 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Background... 3 Principle of the Assay...

More information

Map of AP-Aligned Bio-Rad Kits with Learning Objectives

Map of AP-Aligned Bio-Rad Kits with Learning Objectives Map of AP-Aligned Bio-Rad Kits with Learning Objectives Cover more than one AP Biology Big Idea with these AP-aligned Bio-Rad kits. Big Idea 1 Big Idea 2 Big Idea 3 Big Idea 4 ThINQ! pglo Transformation

More information

Activation of a receptor. Assembly of the complex

Activation of a receptor. Assembly of the complex Activation of a receptor ligand inactive, monomeric active, dimeric When activated by growth factor binding, the growth factor receptor tyrosine kinase phosphorylates the neighboring receptor. Assembly

More information

Systems II. Metabolic Cycles

Systems II. Metabolic Cycles Systems II Metabolic Cycles Overview Metabolism is central to cellular functioning Maintenance of mass and energy requirements for the cell Breakdown of toxic compounds Consists of a number of major pathways

More information

Reviewers' comments: Reviewer #1, an expert on cell adhesion and AFM (Remarks to the Author):

Reviewers' comments: Reviewer #1, an expert on cell adhesion and AFM (Remarks to the Author): Reviewers' comments: Reviewer #1, an expert on cell adhesion and AFM (Remarks to the Author): Understanding how cells adhere to extracellular matrix proteins is a very important, yet not fully understood

More information