Lecture 14 : Stochastic Variation Inference

Size: px
Start display at page:

Download "Lecture 14 : Stochastic Variation Inference"

Transcription

1 Lecture 14 : Stochastic Variation Inference I Scribes : Dat Jabien Ting

2 Recap : Vaniatianal Inference foal : Approximate Posterior Generative Model : plx z 13 ) pcx 1713 ) PHIPIB ) Variational Dist : q( 7:10 ) 9113 :D ) I p( Objective : Evidence Lower Bound ( ELBO ) L ( 1019 ) Etqlz PCX 713 ) :q)q( P :D ) leg got ;q)q( Bid ) log pcx ) KL( : 9 ) pct pl ) )

3 Latent Diniohlet Allocation : Generative Model Generative model : ~ Pu Dirichktlw ) xdn Bh dnl7dnh ~ Oa Dirichlet ( x K ) 2 dn~ Discrete ( Od ) on A Zan 9 d ~ Discrete ( Pa ) Nd D pcx 713 ) ( th pcxalza p ) Peta ) ) (thpl But) :O p(7a ) dod p(7a19d ) pl Odin

4 LDA Global vs Local Parameters Generative Model : plx z 13 ) pc Variational Approx : qc 7 ; ) qlp :D ) I l local 1713 ) ph )p( 137 pc global ( p( x 7 p ) p( Xdltd p)p(7d ) ) pl/3u)ql7:q)qlp:7)(jpfqc7aioa ) ) th 91Pa :%) local Variation ( only depend on doc d ) to purams global ( variational ) purms

5 Stochastic Variational Inference Problem : Wikipedia has 5Mt entries If we wanted to do VBEM then we need updates 7 anggnax 141 ) a Now each of these updates over the 5Mt documents argonanax LC old d D ) a requires full pass Solution ; Optimize I with stochastic gradient descent

6 Stochastic Gradient Ascent Idea : Optimize objective with estimate noisy of gradient gradient " It get 19 + ) Approximation Step sire J the of EHn ( g) ) VILLA ) ( Intuition : Random walk with drift in direction Requirement 2 Robbins Monro conditions oo It Descent Requirement I : Gradient estimate should be unbiased otsmaimt ) ft a ( Infinite ft ' < a ( Finite variance ) mean displacement I

7 Intuition : Choosing the Step She : Choose step size Intuition L 7 g inversely proportional t+gh" af amy#iionifiiitioi xt " Hi ; Hessian dxidxj

8 Stochastic Variation al Inference Approximation : Compute ELBO for batch of docs 17 ) mqax ) ( moya pc # &Jq( qa ; q( p ;D z # x 7137 ; )q( is ;D ) la?ifh " ] an ; a p lbspyy + is # up legfi l )

9 Stochastic Variation al Inference Approximation : Compute ELBO for batch of does ' ' ' D? ) by P mm { "gyiil!y KL(q( p :D ) H ( # my :# an Choose batch of does : b ~ D Unif( p ( p ) ) { 1 B iq#osb2paabmybi ( #aa my sfs ; b b p ( p ) ) 5[ I 19 ) ( KL(q( p :D ) H D } )

10 ' stl Stochastic Vaniatimal Inference TL ; DR ; For conditionally conjugate exponential family models we can compute a natural tlu ) ng( x 74 ( Eq ; [ ygk D 74 ) ] 4 ~ f PCO ;a7 I gradient Natural param "+gt LhY + 2 D tlxa ta ) x ) + de ' \ sufficient Stats This yields gradient updates It It It 'll 's ftpnlnslst

11 X Natural Gradients : Coordinate Transformations Llx Example : Suppose we have two equivalent sets at coordinates (X Xz ) and ( tkz ) Iz Xz Iz d ( LCI Il F) + x X ~ ~ X [ ( xt+ei )

12 ( o Gradient Values Change with Coordinates 4 I 4I 6 off L I I ' die Fx / 62 gz I ± Llx xd i+ ) LCI Ii kite ) 2 2g ZI % OX 8 ZXZ Iz Fe 62 dl dxi Fx

13 Coordinate Invariant Gradients Idea : Enforce requirement that the rate of change must old at must be invariant d1 d±t( DIT at at at ( OELCII ) LK ) T* i Jt(P L( Jacobian Matrix of partial derivatives : ' J 9 25 ' OF dxnz * a Chain ; Rule a)? 9Ei?5ii :

14 Coordinate Invariant Gradients Assumption : moves along k 7 41 d t day I LK J TELCE ) at TE DI at Tx Llx Lei ) EELKYTJ 's (0 21 1) 'It(be cx ( ) * VINET #Lies )

15 Coordinate Invariant Gradients ndi dx Solution : Define natural gradient at f [ 1 x By L (E) ( JTJJ ' VILII ) task ' " ) J ##P k ask ( a kilt ( ) at Cfe LWT # VILKI ( Fifa ) )t( En La ) TEETH

16 Coordinate Invariant Gradients Distance Metrics : 61 Ii ] I dxtdx dx? + dxzz JTGJ / JTJ E E I DET dettcdx ( JTJ ) DE DIT J : 6 6 a ] Isis de ~ ] E www?ii!infeeii?ki dxtdx 52 DE? t 63 DE } * ' ' '

17 Natural Gradients in Vaniational Inference Distance Metric ; Symmetric KL divergence KL "m( 97 ' ) Eap ; llg9qmp o;) Kllalrsilllqassi 'D + Ftaanoillggtfsfits ) 1<491BSIIHQCB ;D ) ) ddt 6C 7) di KL "m( di ) f 19 ) Gills ) tli/ ) Gt ) Otago )

Lecture 13 : Variational Inference: Mean Field Approximation

Lecture 13 : Variational Inference: Mean Field Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2017 Lecture 13 : Variational Inference: Mean Field Approximation Lecturer: Willie Neiswanger Scribes: Xupeng Tong, Minxing Liu 1 Problem Setup 1.1

More information

Policy Gradient. U(θ) = E[ R(s t,a t );π θ ] = E[R(τ);π θ ] (1) 1 + e θ φ(s t) E[R(τ);π θ ] (3) = max. θ P(τ;θ)R(τ) (6) P(τ;θ) θ log P(τ;θ)R(τ) (9)

Policy Gradient. U(θ) = E[ R(s t,a t );π θ ] = E[R(τ);π θ ] (1) 1 + e θ φ(s t) E[R(τ);π θ ] (3) = max. θ P(τ;θ)R(τ) (6) P(τ;θ) θ log P(τ;θ)R(τ) (9) CS294-40 Learning for Robotics and Control Lecture 16-10/20/2008 Lecturer: Pieter Abbeel Policy Gradient Scribe: Jan Biermeyer 1 Recap Recall: H U() = E[ R(s t,a ;π ] = E[R();π ] (1) Here is a sample path

More information

Stochastic Variational Inference

Stochastic Variational Inference Stochastic Variational Inference David M. Blei Princeton University (DRAFT: DO NOT CITE) December 8, 2011 We derive a stochastic optimization algorithm for mean field variational inference, which we call

More information

Probabilistic Graphical Models for Image Analysis - Lecture 4

Probabilistic Graphical Models for Image Analysis - Lecture 4 Probabilistic Graphical Models for Image Analysis - Lecture 4 Stefan Bauer 12 October 2018 Max Planck ETH Center for Learning Systems Overview 1. Repetition 2. α-divergence 3. Variational Inference 4.

More information

13: Variational inference II

13: Variational inference II 10-708: Probabilistic Graphical Models, Spring 2015 13: Variational inference II Lecturer: Eric P. Xing Scribes: Ronghuo Zheng, Zhiting Hu, Yuntian Deng 1 Introduction We started to talk about variational

More information

Approximate Bayesian inference

Approximate Bayesian inference Approximate Bayesian inference Variational and Monte Carlo methods Christian A. Naesseth 1 Exchange rate data 0 20 40 60 80 100 120 Month Image data 2 1 Bayesian inference 2 Variational inference 3 Stochastic

More information

Covariance Matrix Simplification For Efficient Uncertainty Management

Covariance Matrix Simplification For Efficient Uncertainty Management PASEO MaxEnt 2007 Covariance Matrix Simplification For Efficient Uncertainty Management André Jalobeanu, Jorge A. Gutiérrez PASEO Research Group LSIIT (CNRS/ Univ. Strasbourg) - Illkirch, France *part

More information

CSC2541 Lecture 5 Natural Gradient

CSC2541 Lecture 5 Natural Gradient CSC2541 Lecture 5 Natural Gradient Roger Grosse Roger Grosse CSC2541 Lecture 5 Natural Gradient 1 / 12 Motivation Two classes of optimization procedures used throughout ML (stochastic) gradient descent,

More information

Latent Variable Models

Latent Variable Models Latent Variable Models Stefano Ermon, Aditya Grover Stanford University Lecture 5 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 1 / 31 Recap of last lecture 1 Autoregressive models:

More information

Deep Variational Inference. FLARE Reading Group Presentation Wesley Tansey 9/28/2016

Deep Variational Inference. FLARE Reading Group Presentation Wesley Tansey 9/28/2016 Deep Variational Inference FLARE Reading Group Presentation Wesley Tansey 9/28/2016 What is Variational Inference? What is Variational Inference? Want to estimate some distribution, p*(x) p*(x) What is

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

13 : Variational Inference: Loopy Belief Propagation and Mean Field

13 : Variational Inference: Loopy Belief Propagation and Mean Field 10-708: Probabilistic Graphical Models 10-708, Spring 2012 13 : Variational Inference: Loopy Belief Propagation and Mean Field Lecturer: Eric P. Xing Scribes: Peter Schulam and William Wang 1 Introduction

More information

ECE 5984: Introduction to Machine Learning

ECE 5984: Introduction to Machine Learning ECE 5984: Introduction to Machine Learning Topics: (Finish) Expectation Maximization Principal Component Analysis (PCA) Readings: Barber 15.1-15.4 Dhruv Batra Virginia Tech Administrativia Poster Presentation:

More information

Streaming Variational Bayes

Streaming Variational Bayes Streaming Variational Bayes Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C. Wilson, Michael I. Jordan UC Berkeley Discussion led by Miao Liu September 13, 2013 Introduction The SDA-Bayes Framework

More information

16 : Approximate Inference: Markov Chain Monte Carlo

16 : Approximate Inference: Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models 10-708, Spring 2017 16 : Approximate Inference: Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Yuan Yang, Chao-Ming Yen 1 Introduction As the target distribution

More information

Variational Inference via Stochastic Backpropagation

Variational Inference via Stochastic Backpropagation Variational Inference via Stochastic Backpropagation Kai Fan February 27, 2016 Preliminaries Stochastic Backpropagation Variational Auto-Encoding Related Work Summary Outline Preliminaries Stochastic Backpropagation

More information

HOMEWORK #4: LOGISTIC REGRESSION

HOMEWORK #4: LOGISTIC REGRESSION HOMEWORK #4: LOGISTIC REGRESSION Probabilistic Learning: Theory and Algorithms CS 274A, Winter 2019 Due: 11am Monday, February 25th, 2019 Submit scan of plots/written responses to Gradebook; submit your

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Konstantin Tretyakov (kt@ut.ee) MTAT.03.227 Machine Learning So far Machine learning is important and interesting The general concept: Fitting models to data So far Machine

More information

Introduction to Bayesian inference

Introduction to Bayesian inference Introduction to Bayesian inference Thomas Alexander Brouwer University of Cambridge tab43@cam.ac.uk 17 November 2015 Probabilistic models Describe how data was generated using probability distributions

More information

Note 1: Varitional Methods for Latent Dirichlet Allocation

Note 1: Varitional Methods for Latent Dirichlet Allocation Technical Note Series Spring 2013 Note 1: Varitional Methods for Latent Dirichlet Allocation Version 1.0 Wayne Xin Zhao batmanfly@gmail.com Disclaimer: The focus of this note was to reorganie the content

More information

ECE521 lecture 4: 19 January Optimization, MLE, regularization

ECE521 lecture 4: 19 January Optimization, MLE, regularization ECE521 lecture 4: 19 January 2017 Optimization, MLE, regularization First four lectures Lectures 1 and 2: Intro to ML Probability review Types of loss functions and algorithms Lecture 3: KNN Convexity

More information

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015 Sequence Modelling with Features: Linear-Chain Conditional Random Fields COMP-599 Oct 6, 2015 Announcement A2 is out. Due Oct 20 at 1pm. 2 Outline Hidden Markov models: shortcomings Generative vs. discriminative

More information

Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron

Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron CS446: Machine Learning, Fall 2017 Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron Lecturer: Sanmi Koyejo Scribe: Ke Wang, Oct. 24th, 2017 Agenda Recap: SVM and Hinge loss, Representer

More information

Collapsed Gibbs and Variational Methods for LDA. Example Collapsed MoG Sampling

Collapsed Gibbs and Variational Methods for LDA. Example Collapsed MoG Sampling Case Stuy : Document Retrieval Collapse Gibbs an Variational Methos for LDA Machine Learning/Statistics for Big Data CSE599C/STAT59, University of Washington Emily Fox 0 Emily Fox February 7 th, 0 Example

More information

Lecture 23: Online convex optimization Online convex optimization: generalization of several algorithms

Lecture 23: Online convex optimization Online convex optimization: generalization of several algorithms EECS 598-005: heoretical Foundations of Machine Learning Fall 2015 Lecture 23: Online convex optimization Lecturer: Jacob Abernethy Scribes: Vikas Dhiman Disclaimer: hese notes have not been subjected

More information

Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions

Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions Mohammad Emtiyaz Khan, Reza Babanezhad, Wu Lin, Mark Schmidt, Masashi Sugiyama Conference on Uncertainty

More information

Approximate Bayesian Computation and Particle Filters

Approximate Bayesian Computation and Particle Filters Approximate Bayesian Computation and Particle Filters Dennis Prangle Reading University 5th February 2014 Introduction Talk is mostly a literature review A few comments on my own ongoing research See Jasra

More information

Linear Classification. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Linear Classification. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Linear Classification CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 Example of Linear Classification Red points: patterns belonging

More information

Regression with Numerical Optimization. Logistic

Regression with Numerical Optimization. Logistic CSG220 Machine Learning Fall 2008 Regression with Numerical Optimization. Logistic regression Regression with Numerical Optimization. Logistic regression based on a document by Andrew Ng October 3, 204

More information

Math 180C, Spring Supplement on the Renewal Equation

Math 180C, Spring Supplement on the Renewal Equation Math 18C Spring 218 Supplement on the Renewal Equation. These remarks supplement our text and set down some of the material discussed in my lectures. Unexplained notation is as in the text or in lecture.

More information

Why should you care about the solution strategies?

Why should you care about the solution strategies? Optimization Why should you care about the solution strategies? Understanding the optimization approaches behind the algorithms makes you more effectively choose which algorithm to run Understanding the

More information

Instructor: Dr. Volkan Cevher. 1. Background

Instructor: Dr. Volkan Cevher. 1. Background Instructor: Dr. Volkan Cevher Variational Bayes Approximation ice University STAT 631 / ELEC 639: Graphical Models Scribe: David Kahle eviewers: Konstantinos Tsianos and Tahira Saleem 1. Background These

More information

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu Logistic Regression Review 10-601 Fall 2012 Recitation September 25, 2012 TA: Selen Uguroglu!1 Outline Decision Theory Logistic regression Goal Loss function Inference Gradient Descent!2 Training Data

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

The connection of dropout and Bayesian statistics

The connection of dropout and Bayesian statistics The connection of dropout and Bayesian statistics Interpretation of dropout as approximate Bayesian modelling of NN http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf Dropout Geoffrey Hinton Google, University

More information

Lecture 4: Lower Bounds (ending); Thompson Sampling

Lecture 4: Lower Bounds (ending); Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/12/16 Lecture 4: Lower Bounds (ending); Thompson Sampling Instructor: Alex Slivkins Scribed by: Guowei Sun,Cheng Jie 1 Lower bounds on regret (ending) Recap from

More information

Case Study 1: Estimating Click Probabilities. Kakade Announcements: Project Proposals: due this Friday!

Case Study 1: Estimating Click Probabilities. Kakade Announcements: Project Proposals: due this Friday! Case Study 1: Estimating Click Probabilities Intro Logistic Regression Gradient Descent + SGD Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 4, 017 1 Announcements:

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Sequential Monte Carlo Methods for Bayesian Computation

Sequential Monte Carlo Methods for Bayesian Computation Sequential Monte Carlo Methods for Bayesian Computation A. Doucet Kyoto Sept. 2012 A. Doucet (MLSS Sept. 2012) Sept. 2012 1 / 136 Motivating Example 1: Generic Bayesian Model Let X be a vector parameter

More information

Stochastic Gradient Descent

Stochastic Gradient Descent Stochastic Gradient Descent Machine Learning CSE546 Carlos Guestrin University of Washington October 9, 2013 1 Logistic Regression Logistic function (or Sigmoid): Learn P(Y X) directly Assume a particular

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

ECE521 Lecture 19 HMM cont. Inference in HMM

ECE521 Lecture 19 HMM cont. Inference in HMM ECE521 Lecture 19 HMM cont. Inference in HMM Outline Hidden Markov models Model definitions and notations Inference in HMMs Learning in HMMs 2 Formally, a hidden Markov model defines a generative process

More information

Variational Autoencoder

Variational Autoencoder Variational Autoencoder Göker Erdo gan August 8, 2017 The variational autoencoder (VA) [1] is a nonlinear latent variable model with an efficient gradient-based training procedure based on variational

More information

Latent Dirichlet Allocation Introduction/Overview

Latent Dirichlet Allocation Introduction/Overview Latent Dirichlet Allocation Introduction/Overview David Meyer 03.10.2016 David Meyer http://www.1-4-5.net/~dmm/ml/lda_intro.pdf 03.10.2016 Agenda What is Topic Modeling? Parametric vs. Non-Parametric Models

More information

Online solution of the average cost Kullback-Leibler optimization problem

Online solution of the average cost Kullback-Leibler optimization problem Online solution of the average cost Kullback-Leibler optimization problem Joris Bierkens Radboud University Nijmegen j.bierkens@science.ru.nl Bert Kappen Radboud University Nijmegen b.kappen@science.ru.nl

More information

Lecture 15 Newton Method and Self-Concordance. October 23, 2008

Lecture 15 Newton Method and Self-Concordance. October 23, 2008 Newton Method and Self-Concordance October 23, 2008 Outline Lecture 15 Self-concordance Notion Self-concordant Functions Operations Preserving Self-concordance Properties of Self-concordant Functions Implications

More information

Introduction to Stochastic Gradient Markov Chain Monte Carlo Methods

Introduction to Stochastic Gradient Markov Chain Monte Carlo Methods Introduction to Stochastic Gradient Markov Chain Monte Carlo Methods Changyou Chen Department of Electrical and Computer Engineering, Duke University cc448@duke.edu Duke-Tsinghua Machine Learning Summer

More information

14 : Mean Field Assumption

14 : Mean Field Assumption 10-708: Probabilistic Graphical Models 10-708, Spring 2018 14 : Mean Field Assumption Lecturer: Kayhan Batmanghelich Scribes: Yao-Hung Hubert Tsai 1 Inferential Problems Can be categorized into three aspects:

More information

Variational Autoencoders

Variational Autoencoders Variational Autoencoders Recap: Story so far A classification MLP actually comprises two components A feature extraction network that converts the inputs into linearly separable features Or nearly linearly

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Feedforward Neural Networks. Michael Collins, Columbia University

Feedforward Neural Networks. Michael Collins, Columbia University Feedforward Neural Networks Michael Collins, Columbia University Recap: Log-linear Models A log-linear model takes the following form: p(y x; v) = exp (v f(x, y)) y Y exp (v f(x, y )) f(x, y) is the representation

More information

Variational inference

Variational inference Simon Leglaive Télécom ParisTech, CNRS LTCI, Université Paris Saclay November 18, 2016, Télécom ParisTech, Paris, France. Outline Introduction Probabilistic model Problem Log-likelihood decomposition EM

More information

Mathematical Economics: Lecture 9

Mathematical Economics: Lecture 9 Mathematical Economics: Lecture 9 Yu Ren WISE, Xiamen University October 17, 2011 Outline 1 Chapter 14: Calculus of Several Variables New Section Chapter 14: Calculus of Several Variables Partial Derivatives

More information

Tutorial: Statistical distance and Fisher information

Tutorial: Statistical distance and Fisher information Tutorial: Statistical distance and Fisher information Pieter Kok Department of Materials, Oxford University, Parks Road, Oxford OX1 3PH, UK Statistical distance We wish to construct a space of probability

More information

Variational Bayesian Logistic Regression

Variational Bayesian Logistic Regression Variational Bayesian Logistic Regression Sargur N. University at Buffalo, State University of New York USA Topics in Linear Models for Classification Overview 1. Discriminant Functions 2. Probabilistic

More information

Variational Inference: A Review for Statisticians

Variational Inference: A Review for Statisticians Variational Inference: A Review for Statisticians David M. Blei Department of Computer Science and Statistics Columbia University Alp Kucukelbir Department of Computer Science Columbia University Jon D.

More information

arxiv: v2 [stat.ml] 21 Jul 2015

arxiv: v2 [stat.ml] 21 Jul 2015 The Population Posterior and Bayesian Inference on Streams arxiv:1507.05253v2 [stat.ml] 21 Jul 2015 James McInerney Data Science Institute Columbia University New York, NY 10027 jm4181@columbia.edu Rajesh

More information

Spring 2014: Computational and Variational Methods for Inverse Problems CSE 397/GEO 391/ME 397/ORI 397 Assignment 4 (due 14 April 2014)

Spring 2014: Computational and Variational Methods for Inverse Problems CSE 397/GEO 391/ME 397/ORI 397 Assignment 4 (due 14 April 2014) Spring 2014: Computational and Variational Methods for Inverse Problems CSE 397/GEO 391/ME 397/ORI 397 Assignment 4 (due 14 April 2014) The first problem in this assignment is a paper-and-pencil exercise

More information

LINEAR EQUATIONS OF HIGHER ORDER. EXAMPLES. General framework

LINEAR EQUATIONS OF HIGHER ORDER. EXAMPLES. General framework Differential Equations Grinshpan LINEAR EQUATIONS OF HIGHER ORDER. EXAMPLES. We consider linear ODE of order n: General framework (1) x (n) (t) + P n 1 (t)x (n 1) (t) + + P 1 (t)x (t) + P 0 (t)x(t) = 0

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

COMS 4721: Machine Learning for Data Science Lecture 18, 4/4/2017

COMS 4721: Machine Learning for Data Science Lecture 18, 4/4/2017 COMS 4721: Machine Learning for Data Science Lecture 18, 4/4/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University TOPIC MODELING MODELS FOR TEXT DATA

More information

MCMC 2: Lecture 3 SIR models - more topics. Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham

MCMC 2: Lecture 3 SIR models - more topics. Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham MCMC 2: Lecture 3 SIR models - more topics Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham Contents 1. What can be estimated? 2. Reparameterisation 3. Marginalisation

More information

CLASS NOTES Computational Methods for Engineering Applications I Spring 2015

CLASS NOTES Computational Methods for Engineering Applications I Spring 2015 CLASS NOTES Computational Methods for Engineering Applications I Spring 2015 Petros Koumoutsakos Gerardo Tauriello (Last update: July 27, 2015) IMPORTANT DISCLAIMERS 1. REFERENCES: Much of the material

More information

Lecture 13 - Wednesday April 29th

Lecture 13 - Wednesday April 29th Lecture 13 - Wednesday April 29th jacques@ucsdedu Key words: Systems of equations, Implicit differentiation Know how to do implicit differentiation, how to use implicit and inverse function theorems 131

More information

2.1 Optimization formulation of k-means

2.1 Optimization formulation of k-means MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016 Lecture 2: k-means Clustering Lecturer: Jiaming Xu Scribe: Jiaming Xu, September 2, 2016 Outline Optimization formulation of k-means Convergence

More information

Matrix differential calculus Optimization Geoff Gordon Ryan Tibshirani

Matrix differential calculus Optimization Geoff Gordon Ryan Tibshirani Matrix differential calculus 10-725 Optimization Geoff Gordon Ryan Tibshirani Review Matrix differentials: sol n to matrix calculus pain compact way of writing Taylor expansions, or definition: df = a(x;

More information

Lecture 4: Types of errors. Bayesian regression models. Logistic regression

Lecture 4: Types of errors. Bayesian regression models. Logistic regression Lecture 4: Types of errors. Bayesian regression models. Logistic regression A Bayesian interpretation of regularization Bayesian vs maximum likelihood fitting more generally COMP-652 and ECSE-68, Lecture

More information

Variational Inference in TensorFlow. Danijar Hafner Stanford CS University College London, Google Brain

Variational Inference in TensorFlow. Danijar Hafner Stanford CS University College London, Google Brain Variational Inference in TensorFlow Danijar Hafner Stanford CS 20 2018-02-16 University College London, Google Brain Outline Variational Inference Tensorflow Distributions VAE in TensorFlow Variational

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College Distributed Estimation, Information Loss and Exponential Families Qiang Liu Department of Computer Science Dartmouth College Statistical Learning / Estimation Learning generative models from data Topic

More information

Electrical Circuits I

Electrical Circuits I Electrical Circuits I This lecture discusses the mathematical modeling of simple electrical linear circuits. When modeling a circuit, one ends up with a set of implicitly formulated algebraic and differential

More information

Variance Reduction in Black-box Variational Inference by Adaptive Importance Sampling

Variance Reduction in Black-box Variational Inference by Adaptive Importance Sampling Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence IJCAI-18 Variance Reduction in Black-box Variational Inference by Adaptive Importance Sampling Ximing Li, Changchun

More information

Unconstrained minimization of smooth functions

Unconstrained minimization of smooth functions Unconstrained minimization of smooth functions We want to solve min x R N f(x), where f is convex. In this section, we will assume that f is differentiable (so its gradient exists at every point), and

More information

Smoothed Gradients for Stochastic Variational Inference

Smoothed Gradients for Stochastic Variational Inference Smoothed Gradients for Stochastic Variational Inference Stephan Mandt Department of Physics Princeton University smandt@princeton.edu David Blei Department of Computer Science Department of Statistics

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning First-Order Methods, L1-Regularization, Coordinate Descent Winter 2016 Some images from this lecture are taken from Google Image Search. Admin Room: We ll count final numbers

More information

Gradient Descent. Mohammad Emtiyaz Khan EPFL Sep 22, 2015

Gradient Descent. Mohammad Emtiyaz Khan EPFL Sep 22, 2015 Gradient Descent Mohammad Emtiyaz Khan EPFL Sep 22, 201 Mohammad Emtiyaz Khan 2014 1 Learning/estimation/fitting Given a cost function L(β), we wish to find β that minimizes the cost: min β L(β), subject

More information

Lecture 9. Systems of Two First Order Linear ODEs

Lecture 9. Systems of Two First Order Linear ODEs Math 245 - Mathematics of Physics and Engineering I Lecture 9. Systems of Two First Order Linear ODEs January 30, 2012 Konstantin Zuev (USC) Math 245, Lecture 9 January 30, 2012 1 / 15 Agenda General Form

More information

Second Order ODEs. Second Order ODEs. In general second order ODEs contain terms involving y, dy But here only consider equations of the form

Second Order ODEs. Second Order ODEs. In general second order ODEs contain terms involving y, dy But here only consider equations of the form Second Order ODEs Second Order ODEs In general second order ODEs contain terms involving y, dy But here only consider equations of the form A d2 y dx 2 + B dy dx + Cy = 0 dx, d2 y dx 2 and F(x). where

More information

STAT 730 Chapter 4: Estimation

STAT 730 Chapter 4: Estimation STAT 730 Chapter 4: Estimation Timothy Hanson Department of Statistics, University of South Carolina Stat 730: Multivariate Analysis 1 / 23 The likelihood We have iid data, at least initially. Each datum

More information

HOMEWORK #4: LOGISTIC REGRESSION

HOMEWORK #4: LOGISTIC REGRESSION HOMEWORK #4: LOGISTIC REGRESSION Probabilistic Learning: Theory and Algorithms CS 274A, Winter 2018 Due: Friday, February 23rd, 2018, 11:55 PM Submit code and report via EEE Dropbox You should submit a

More information

Laplace Transforms and use in Automatic Control

Laplace Transforms and use in Automatic Control Laplace Transforms and use in Automatic Control P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: P.Santosh Krishna, SYSCON Recap Fourier series Fourier transform: aperiodic Convolution integral

More information

Distributions. Pcx ) P(X=x ) probabilities. P(X=x ) = 116. Commonly. distribution. maps. outcomes. used ( or abused ) shorthand ;

Distributions. Pcx ) P(X=x ) probabilities. P(X=x ) = 116. Commonly. distribution. maps. outcomes. used ( or abused ) shorthand ; Random Variables Random Variable : A variable with a stochastic outcome E { 1 23 45 63 : A set of outcomes Event X 73 { 3 s 56 } Probability : The chance that an event occurs PCX > 3) 4/6 Distributions

More information

AMS 147 Computational Methods and Applications Lecture 13 Copyright by Hongyun Wang, UCSC

AMS 147 Computational Methods and Applications Lecture 13 Copyright by Hongyun Wang, UCSC Lecture 13 Copyright y Hongyun Wang, UCSC Recap: Fitting to exact data *) Data: ( x j, y j ), j = 1,,, N y j = f x j *) Polynomial fitting Gis phenomenon *) Cuic spline Convergence of cuic spline *) Application

More information

MA102: Multivariable Calculus

MA102: Multivariable Calculus MA102: Multivariable Calculus Rupam Barman and Shreemayee Bora Department of Mathematics IIT Guwahati Differentiability of f : U R n R m Definition: Let U R n be open. Then f : U R n R m is differentiable

More information

Numerical computation II. Reprojection error Bundle adjustment Family of Newtonʼs methods Statistical background Maximum likelihood estimation

Numerical computation II. Reprojection error Bundle adjustment Family of Newtonʼs methods Statistical background Maximum likelihood estimation Numerical computation II Reprojection error Bundle adjustment Family of Newtonʼs methods Statistical background Maximum likelihood estimation Reprojection error Reprojection error = Distance between the

More information

LDA Collapsed Gibbs Sampler, VariaNonal Inference. Task 3: Mixed Membership Models. Case Study 5: Mixed Membership Modeling

LDA Collapsed Gibbs Sampler, VariaNonal Inference. Task 3: Mixed Membership Models. Case Study 5: Mixed Membership Modeling Case Stuy 5: Mixe Membership Moeling LDA Collapse Gibbs Sampler, VariaNonal Inference Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox May 8 th, 05 Emily Fox 05 Task : Mixe

More information

Online Bayesian Passive-Aggressive Learning

Online Bayesian Passive-Aggressive Learning Online Bayesian Passive-Aggressive Learning Full Journal Version: http://qr.net/b1rd Tianlin Shi Jun Zhu ICML 2014 T. Shi, J. Zhu (Tsinghua) BayesPA ICML 2014 1 / 35 Outline Introduction Motivation Framework

More information

Deep Poisson Factorization Machines: a factor analysis model for mapping behaviors in journalist ecosystem

Deep Poisson Factorization Machines: a factor analysis model for mapping behaviors in journalist ecosystem 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Lecture 9: Policy Gradient II 1

Lecture 9: Policy Gradient II 1 Lecture 9: Policy Gradient II 1 Emma Brunskill CS234 Reinforcement Learning. Winter 2019 Additional reading: Sutton and Barto 2018 Chp. 13 1 With many slides from or derived from David Silver and John

More information

Stat 451 Lecture Notes Monte Carlo Integration

Stat 451 Lecture Notes Monte Carlo Integration Stat 451 Lecture Notes 06 12 Monte Carlo Integration Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapter 6 in Givens & Hoeting, Chapter 23 in Lange, and Chapters 3 4 in Robert & Casella 2 Updated:

More information

Mixed-membership Models (and an introduction to variational inference)

Mixed-membership Models (and an introduction to variational inference) Mixed-membership Models (and an introduction to variational inference) David M. Blei Columbia University November 24, 2015 Introduction We studied mixture models in detail, models that partition data into

More information

Lecture 6: Graphical Models: Learning

Lecture 6: Graphical Models: Learning Lecture 6: Graphical Models: Learning 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering, University of Cambridge February 3rd, 2010 Ghahramani & Rasmussen (CUED)

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Variational Inference II: Mean Field Method and Variational Principle Junming Yin Lecture 15, March 7, 2012 X 1 X 1 X 1 X 1 X 2 X 3 X 2 X 2 X 3

More information

Gradient-based Adaptive Stochastic Search

Gradient-based Adaptive Stochastic Search 1 / 41 Gradient-based Adaptive Stochastic Search Enlu Zhou H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology November 5, 2014 Outline 2 / 41 1 Introduction

More information

EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6)

EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6) EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6) Gordon Wetzstein gordon.wetzstein@stanford.edu This document serves as a supplement to the material discussed in

More information

Outline Lecture 2 2(32)

Outline Lecture 2 2(32) Outline Lecture (3), Lecture Linear Regression and Classification it is our firm belief that an understanding of linear models is essential for understanding nonlinear ones Thomas Schön Division of Automatic

More information

STATS 306B: Unsupervised Learning Spring Lecture 2 April 2

STATS 306B: Unsupervised Learning Spring Lecture 2 April 2 STATS 306B: Unsupervised Learning Spring 2014 Lecture 2 April 2 Lecturer: Lester Mackey Scribe: Junyang Qian, Minzhe Wang 2.1 Recap In the last lecture, we formulated our working definition of unsupervised

More information

Advances in Variational Inference

Advances in Variational Inference 1 Advances in Variational Inference Cheng Zhang Judith Bütepage Hedvig Kjellström Stephan Mandt arxiv:1711.05597v1 [cs.lg] 15 Nov 2017 Abstract Many modern unsupervised or semi-supervised machine learning

More information

Lecture 21: Convergence of transformations and generating a random variable

Lecture 21: Convergence of transformations and generating a random variable Lecture 21: Convergence of transformations and generating a random variable If Z n converges to Z in some sense, we often need to check whether h(z n ) converges to h(z ) in the same sense. Continuous

More information

Riemannian Stein Variational Gradient Descent for Bayesian Inference

Riemannian Stein Variational Gradient Descent for Bayesian Inference Riemannian Stein Variational Gradient Descent for Bayesian Inference Chang Liu, Jun Zhu 1 Dept. of Comp. Sci. & Tech., TNList Lab; Center for Bio-Inspired Computing Research State Key Lab for Intell. Tech.

More information