Matrix differential calculus Optimization Geoff Gordon Ryan Tibshirani

Size: px
Start display at page:

Download "Matrix differential calculus Optimization Geoff Gordon Ryan Tibshirani"

Transcription

1 Matrix differential calculus Optimization Geoff Gordon Ryan Tibshirani

2 Review Matrix differentials: sol n to matrix calculus pain compact way of writing Taylor expansions, or definition: df = a(x; dx) [+ r(dx)] a(x;.) linear in 2nd arg r(dx)/ dx 0 as dx 0 d( ) is linear: passes thru +, scalar * Generalizes Jacobian, Hessian, gradient, velocity 2

3 Review Chain rule Product rule Bilinear functions: cross product, Kronecker, Frobenius, Hadamard, Khatri-Rao, Identities rules for working with, tr() trace rotation Identification theorems 3

4 Finding a maximum or minimum, or saddle point ID for df(x) scalar x vector x matrix X scalar f df = a dx df = a T dx df = tr(a T dx)

5 Finding a maximum or minimum, or saddle point ID for df(x) scalar x vector x matrix X scalar f df = a dx df = a T dx df = tr(a T dx) 5

6 And so forth Can t draw it for X a matrix, tensor, But same principle holds: set coefficient of dx to 0 to find min, max, or saddle point: if df = c(a; dx) [+ r(dx)] then so: max/min/sp iff for c(.;.) any product, 6

7 10 Ex: Infomax ICA Training examples xi R d, i = 1:n Transformation yi = g(wxi) W R d!d g(z) = Want: Wxi xi yi 23

8 Volume rule 8

9 10 Ex: Infomax ICA yi = g(wxi) dyi = xi 5 Method: maxw!i ln(p(yi)) where P(yi) = 0 5 Wxi yi 24

10 Gradient L = ln det Ji yi = g(wxi) dyi = Ji dxi i 10

11 Gradient Ji = diag(ui) W dji = diag(ui) dw + diag(vi) diag(dw xi) W dl = 11

12 Natural gradient L(W): R d d R dl = tr(g T dw) step S = arg maxs M(S) = tr(g T S) SW -1 2 /2 F scalar case: M = gs s 2 / 2w 2 M = dm = 12

13 ICA natural gradient [W -T + C] W T W = yi Wxi start with W0 = I 13

14 ICA natural gradient [W -T + C] W T W = yi Wxi start with W0 = I 13

15 ICA on natural image patches 14

16 ICA on natural image patches 15

17 More info Minka s cheat sheet: papers/matrix/ Magnus & Neudecker. Matrix Differential Calculus. Wiley, nd ed. Applications-Statistics-Econometrics/dp/ X Bell & Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, v7,

18 Newton s method Optimization Geoff Gordon Ryan Tibshirani

19 Nonlinear equations x R d solve: Taylor: J: Newton: f: R d R d, diff ble

20 Error analysis 19

21 dx = x*(1-x*phi) 0: : : : : : : : : *:

22 Bad initialization

23 Minimization x R d f: R d R, twice diff ble find: Newton: 22

24 Descent Newton step: d = (f (x)) -1 f (x) Gradient step: g = f (x) Taylor: df = Let t > 0, set dx = df = So: 23

25 Steepest descent g = f (x) H = f (x) d H = x x + x nsd x + x nt nts 24

26 Newton w/ line search Pick x1 For k = 1, 2, gk = f (xk); Hk = f (xk) dk = Hk \ gk tk = 1 while f(xk + tk dk) > f(xk) + t gk T dk / 2 gradient & Hessian Newton direction backtracking line search tk = β tk xk+1 = xk + tk dk β<1 step 25

27 Properties of damped Newton Affine invariant: suppose g(x) = f(ax+b) x1, x2, from Newton on g() y1, y2, from Newton on f() If y1 = Ax1 + b, then: Convergent: if f bounded below, f(xk) converges if f strictly convex, bounded level sets, xk converges typically quadratic rate in neighborhood of x* 26

28 Equality constraints min f(x) s.t. h(x) =

29 Optimality w/ equality min f(x) s.t. h(x) = 0 f: R d R, h: R d R k (k d) g: R d R d (gradient of f) Useful special case: min f(x) s.t. Ax = 0 28

30 Picture max c x y s.t. z x 2 + y 2 + z 2 =1 a x = b 29

31 Optimality w/ equality min f(x) s.t. h(x) = 0 f: R d R, h: R d R k (k d) g: R d R d (gradient of f) Now suppose: dg = dh = Optimality: 30

32 Example: bundle adjustment Latent: 3 Robot positions xt, θt 2 Landmark positions yk 1 Observed: odometry, landmark vectors 0 1 vt = Rθt[xt+1 xt] + noise 2 wt = [θt+1 θt + noise]π 3 dkt = Rθt[yk xt] + noise 4 O = {observed kt pairs}

33 Example: bundle adjustment Latent: Robot positions xt, θt Landmark positions yk Observed: odometry, landmark vectors vt = Rθt[xt+1 xt] + noise wt = [θt+1 θt + noise]π dkt = Rθt[yk xt] + noise 32

34 Bundle adjustment min x t,u t,y t v t R(u t )[x t+1 x t ] 2 + t R w u t t u t k (t,k) O d k,t R(u t )[y k x t ] 2 s.t. u t u t =1 33

35 Ex: MLE in exponential family L = ln k P (x k θ) P (x k θ) = g(θ) = 34

36 MLE Newton interpretation 35

37 Comparison of methods for minimizing a convex function Newton FISTA (sub)grad stoch. (sub)grad. convergence cost/iter smoothness 36

38 Variations Trust region [H(x) + ti]dx = g(x) [H(x) + td]dx = g(x) Quasi-Newton use only gradients, but build estimate of Hessian in R d, d gradient estimates at nearby points determine approx. Hessian (think finite differences) can often get good enough estimate w/ fewer can even forget old info to save memory (L-BFGS) 37

39 Variations: Gauss-Newton L =min θ k 1 2 y k f(x k,θ) 2 38

40 Variations: Fisher scoring Recall Newton in exponential family E[xx θ]dθ = x E[x θ] Can use this formula in place of Newton, even if not an exponential family descent direction, even w/ no regularization Hessian is independent of data often a wider radius of convergence than Newton can be superlinearly convergent 39

Optimization for well-behaved problems

Optimization for well-behaved problems Optimization for well-behaved problems For statistical learning problems, well-behaved means: signal to noise ratio is decently high correlations between predictor variables are under control number of

More information

Lecture 11: October 2

Lecture 11: October 2 10-725: Optimization Fall 2012 Lecture 11: October 2 Lecturer: Geoff Gordon/Ryan Tibshirani Scribes: Tongbo Huang, Shoou-I Yu Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes

More information

14. Nonlinear equations

14. Nonlinear equations L. Vandenberghe ECE133A (Winter 2018) 14. Nonlinear equations Newton method for nonlinear equations damped Newton method for unconstrained minimization Newton method for nonlinear least squares 14-1 Set

More information

Convex Optimization. Problem set 2. Due Monday April 26th

Convex Optimization. Problem set 2. Due Monday April 26th Convex Optimization Problem set 2 Due Monday April 26th 1 Gradient Decent without Line-search In this problem we will consider gradient descent with predetermined step sizes. That is, instead of determining

More information

Unconstrained minimization of smooth functions

Unconstrained minimization of smooth functions Unconstrained minimization of smooth functions We want to solve min x R N f(x), where f is convex. In this section, we will assume that f is differentiable (so its gradient exists at every point), and

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

Nonlinear equations and optimization

Nonlinear equations and optimization Notes for 2017-03-29 Nonlinear equations and optimization For the next month or so, we will be discussing methods for solving nonlinear systems of equations and multivariate optimization problems. We will

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

Unconstrained Optimization

Unconstrained Optimization 1 / 36 Unconstrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University February 2, 2015 2 / 36 3 / 36 4 / 36 5 / 36 1. preliminaries 1.1 local approximation

More information

ECE 680 Modern Automatic Control. Gradient and Newton s Methods A Review

ECE 680 Modern Automatic Control. Gradient and Newton s Methods A Review ECE 680Modern Automatic Control p. 1/1 ECE 680 Modern Automatic Control Gradient and Newton s Methods A Review Stan Żak October 25, 2011 ECE 680Modern Automatic Control p. 2/1 Review of the Gradient Properties

More information

Vector Derivatives and the Gradient

Vector Derivatives and the Gradient ECE 275AB Lecture 10 Fall 2008 V1.1 c K. Kreutz-Delgado, UC San Diego p. 1/1 Lecture 10 ECE 275A Vector Derivatives and the Gradient ECE 275AB Lecture 10 Fall 2008 V1.1 c K. Kreutz-Delgado, UC San Diego

More information

Conditional Gradient (Frank-Wolfe) Method

Conditional Gradient (Frank-Wolfe) Method Conditional Gradient (Frank-Wolfe) Method Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 1 Outline Today: Conditional gradient method Convergence analysis Properties

More information

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by:

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by: Newton s Method Suppose we want to solve: (P:) min f (x) At x = x, f (x) can be approximated by: n x R. f (x) h(x) := f ( x)+ f ( x) T (x x)+ (x x) t H ( x)(x x), 2 which is the quadratic Taylor expansion

More information

Numerical solutions of nonlinear systems of equations

Numerical solutions of nonlinear systems of equations Numerical solutions of nonlinear systems of equations Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan E-mail: min@math.ntnu.edu.tw August 28, 2011 Outline 1 Fixed points

More information

ORIE 6326: Convex Optimization. Quasi-Newton Methods

ORIE 6326: Convex Optimization. Quasi-Newton Methods ORIE 6326: Convex Optimization Quasi-Newton Methods Professor Udell Operations Research and Information Engineering Cornell April 10, 2017 Slides on steepest descent and analysis of Newton s method adapted

More information

Matrix Derivatives and Descent Optimization Methods

Matrix Derivatives and Descent Optimization Methods Matrix Derivatives and Descent Optimization Methods 1 Qiang Ning Department of Electrical and Computer Engineering Beckman Institute for Advanced Science and Techonology University of Illinois at Urbana-Champaign

More information

Proximal Newton Method. Ryan Tibshirani Convex Optimization /36-725

Proximal Newton Method. Ryan Tibshirani Convex Optimization /36-725 Proximal Newton Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: primal-dual interior-point method Given the problem min x subject to f(x) h i (x) 0, i = 1,... m Ax = b where f, h

More information

Newton s Method. Ryan Tibshirani Convex Optimization /36-725

Newton s Method. Ryan Tibshirani Convex Optimization /36-725 Newton s Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, Properties and examples: f (y) = max x

More information

10. Unconstrained minimization

10. Unconstrained minimization Convex Optimization Boyd & Vandenberghe 10. Unconstrained minimization terminology and assumptions gradient descent method steepest descent method Newton s method self-concordant functions implementation

More information

Lecture 14: October 17

Lecture 14: October 17 1-725/36-725: Convex Optimization Fall 218 Lecture 14: October 17 Lecturer: Lecturer: Ryan Tibshirani Scribes: Pengsheng Guo, Xian Zhou Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

REVIEW OF DIFFERENTIAL CALCULUS

REVIEW OF DIFFERENTIAL CALCULUS REVIEW OF DIFFERENTIAL CALCULUS DONU ARAPURA 1. Limits and continuity To simplify the statements, we will often stick to two variables, but everything holds with any number of variables. Let f(x, y) be

More information

The Steepest Descent Algorithm for Unconstrained Optimization

The Steepest Descent Algorithm for Unconstrained Optimization The Steepest Descent Algorithm for Unconstrained Optimization Robert M. Freund February, 2014 c 2014 Massachusetts Institute of Technology. All rights reserved. 1 1 Steepest Descent Algorithm The problem

More information

Mathematical Economics: Lecture 9

Mathematical Economics: Lecture 9 Mathematical Economics: Lecture 9 Yu Ren WISE, Xiamen University October 17, 2011 Outline 1 Chapter 14: Calculus of Several Variables New Section Chapter 14: Calculus of Several Variables Partial Derivatives

More information

Introduction to gradient descent

Introduction to gradient descent 6-1: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction to gradient descent Derivation and intuitions Hessian 6-2: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction Our

More information

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Unit 2: Multivariable optimization problems Che-Rung Lee Scribe: February 28, 2011 (UNIT 2) Numerical Optimization February 28, 2011 1 / 17 Partial derivative of a two variable function

More information

Lecture 4: Types of errors. Bayesian regression models. Logistic regression

Lecture 4: Types of errors. Bayesian regression models. Logistic regression Lecture 4: Types of errors. Bayesian regression models. Logistic regression A Bayesian interpretation of regularization Bayesian vs maximum likelihood fitting more generally COMP-652 and ECSE-68, Lecture

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 3. Gradient Method

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 3. Gradient Method Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 3 Gradient Method Shiqian Ma, MAT-258A: Numerical Optimization 2 3.1. Gradient method Classical gradient method: to minimize a differentiable convex

More information

g(t) = f(x 1 (t),..., x n (t)).

g(t) = f(x 1 (t),..., x n (t)). Reading: [Simon] p. 313-333, 833-836. 0.1 The Chain Rule Partial derivatives describe how a function changes in directions parallel to the coordinate axes. Now we shall demonstrate how the partial derivatives

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23 Optimization: Nonlinear Optimization without Constraints Nonlinear Optimization without Constraints 1 / 23 Nonlinear optimization without constraints Unconstrained minimization min x f(x) where f(x) is

More information

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization Proximal Newton Method Zico Kolter (notes by Ryan Tibshirani) Convex Optimization 10-725 Consider the problem Last time: quasi-newton methods min x f(x) with f convex, twice differentiable, dom(f) = R

More information

MATH 4211/6211 Optimization Quasi-Newton Method

MATH 4211/6211 Optimization Quasi-Newton Method MATH 4211/6211 Optimization Quasi-Newton Method Xiaojing Ye Department of Mathematics & Statistics Georgia State University Xiaojing Ye, Math & Stat, Georgia State University 0 Quasi-Newton Method Motivation:

More information

Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2

Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2 Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2 Coralia Cartis, University of Oxford INFOMM CDT: Modelling, Analysis and Computation of Continuous Real-World Problems Methods

More information

MA102: Multivariable Calculus

MA102: Multivariable Calculus MA102: Multivariable Calculus Rupam Barman and Shreemayee Bora Department of Mathematics IIT Guwahati Differentiability of f : U R n R m Definition: Let U R n be open. Then f : U R n R m is differentiable

More information

Nonlinear Optimization

Nonlinear Optimization Nonlinear Optimization (Com S 477/577 Notes) Yan-Bin Jia Nov 7, 2017 1 Introduction Given a single function f that depends on one or more independent variable, we want to find the values of those variables

More information

Unconstrained optimization

Unconstrained optimization Chapter 4 Unconstrained optimization An unconstrained optimization problem takes the form min x Rnf(x) (4.1) for a target functional (also called objective function) f : R n R. In this chapter and throughout

More information

Note: Every graph is a level set (why?). But not every level set is a graph. Graphs must pass the vertical line test. (Level sets may or may not.

Note: Every graph is a level set (why?). But not every level set is a graph. Graphs must pass the vertical line test. (Level sets may or may not. Curves in R : Graphs vs Level Sets Graphs (y = f(x)): The graph of f : R R is {(x, y) R y = f(x)} Example: When we say the curve y = x, we really mean: The graph of the function f(x) = x That is, we mean

More information

MATHEMATICAL ECONOMICS: OPTIMIZATION. Contents

MATHEMATICAL ECONOMICS: OPTIMIZATION. Contents MATHEMATICAL ECONOMICS: OPTIMIZATION JOÃO LOPES DIAS Contents 1. Introduction 2 1.1. Preliminaries 2 1.2. Optimal points and values 2 1.3. The optimization problems 3 1.4. Existence of optimal points 4

More information

Descent methods. min x. f(x)

Descent methods. min x. f(x) Gradient Descent Descent methods min x f(x) 5 / 34 Descent methods min x f(x) x k x k+1... x f(x ) = 0 5 / 34 Gradient methods Unconstrained optimization min f(x) x R n. 6 / 34 Gradient methods Unconstrained

More information

University of Houston, Department of Mathematics Numerical Analysis, Fall 2005

University of Houston, Department of Mathematics Numerical Analysis, Fall 2005 3 Numerical Solution of Nonlinear Equations and Systems 3.1 Fixed point iteration Reamrk 3.1 Problem Given a function F : lr n lr n, compute x lr n such that ( ) F(x ) = 0. In this chapter, we consider

More information

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method.

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method. Optimization Unconstrained optimization One-dimensional Multi-dimensional Newton s method Basic Newton Gauss- Newton Quasi- Newton Descent methods Gradient descent Conjugate gradient Constrained optimization

More information

8 Numerical methods for unconstrained problems

8 Numerical methods for unconstrained problems 8 Numerical methods for unconstrained problems Optimization is one of the important fields in numerical computation, beside solving differential equations and linear systems. We can see that these fields

More information

Optimization Tutorial 1. Basic Gradient Descent

Optimization Tutorial 1. Basic Gradient Descent E0 270 Machine Learning Jan 16, 2015 Optimization Tutorial 1 Basic Gradient Descent Lecture by Harikrishna Narasimhan Note: This tutorial shall assume background in elementary calculus and linear algebra.

More information

Unconstrained minimization

Unconstrained minimization CSCI5254: Convex Optimization & Its Applications Unconstrained minimization terminology and assumptions gradient descent method steepest descent method Newton s method self-concordant functions 1 Unconstrained

More information

Lecture 17: October 27

Lecture 17: October 27 0-725/36-725: Convex Optimiation Fall 205 Lecturer: Ryan Tibshirani Lecture 7: October 27 Scribes: Brandon Amos, Gines Hidalgo Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These

More information

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Optimization Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Unconstrained optimization Outline 1 Unconstrained optimization 2 Constrained

More information

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly.

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly. C PROPERTIES OF MATRICES 697 to whether the permutation i 1 i 2 i N is even or odd, respectively Note that I =1 Thus, for a 2 2 matrix, the determinant takes the form A = a 11 a 12 = a a 21 a 11 a 22 a

More information

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares Robert Bridson October 29, 2008 1 Hessian Problems in Newton Last time we fixed one of plain Newton s problems by introducing line search

More information

Machine Learning Brett Bernstein. Recitation 1: Gradients and Directional Derivatives

Machine Learning Brett Bernstein. Recitation 1: Gradients and Directional Derivatives Machine Learning Brett Bernstein Recitation 1: Gradients and Directional Derivatives Intro Question 1 We are given the data set (x 1, y 1 ),, (x n, y n ) where x i R d and y i R We want to fit a linear

More information

Scientific Computing: Optimization

Scientific Computing: Optimization Scientific Computing: Optimization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 March 8th, 2011 A. Donev (Courant Institute) Lecture

More information

Second-order approximation of dynamic models without the use of tensors

Second-order approximation of dynamic models without the use of tensors Second-order approximation of dynamic models without the use of tensors Paul Klein a, a University of Western Ontario First draft: May 17, 2005 This version: January 24, 2006 Abstract Several approaches

More information

Nonlinear Optimization for Optimal Control

Nonlinear Optimization for Optimal Control Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]

More information

Newton s Method. Javier Peña Convex Optimization /36-725

Newton s Method. Javier Peña Convex Optimization /36-725 Newton s Method Javier Peña Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, f ( (y) = max y T x f(x) ) x Properties and

More information

5 Handling Constraints

5 Handling Constraints 5 Handling Constraints Engineering design optimization problems are very rarely unconstrained. Moreover, the constraints that appear in these problems are typically nonlinear. This motivates our interest

More information

Lecture 15 Newton Method and Self-Concordance. October 23, 2008

Lecture 15 Newton Method and Self-Concordance. October 23, 2008 Newton Method and Self-Concordance October 23, 2008 Outline Lecture 15 Self-concordance Notion Self-concordant Functions Operations Preserving Self-concordance Properties of Self-concordant Functions Implications

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725 Gradient Descent Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: canonical convex programs Linear program (LP): takes the form min x subject to c T x Gx h Ax = b Quadratic program (QP): like

More information

8. Constrained Optimization

8. Constrained Optimization 8. Constrained Optimization Daisuke Oyama Mathematics II May 11, 2018 Unconstrained Maximization Problem Let X R N be a nonempty set. Definition 8.1 For a function f : X R, x X is a (strict) local maximizer

More information

10.34 Numerical Methods Applied to Chemical Engineering Fall Quiz #1 Review

10.34 Numerical Methods Applied to Chemical Engineering Fall Quiz #1 Review 10.34 Numerical Methods Applied to Chemical Engineering Fall 2015 Quiz #1 Review Study guide based on notes developed by J.A. Paulson, modified by K. Severson Linear Algebra We ve covered three major topics

More information

WHY DUALITY? Gradient descent Newton s method Quasi-newton Conjugate gradients. No constraints. Non-differentiable ???? Constrained problems? ????

WHY DUALITY? Gradient descent Newton s method Quasi-newton Conjugate gradients. No constraints. Non-differentiable ???? Constrained problems? ???? DUALITY WHY DUALITY? No constraints f(x) Non-differentiable f(x) Gradient descent Newton s method Quasi-newton Conjugate gradients etc???? Constrained problems? f(x) subject to g(x) apple 0???? h(x) =0

More information

ECE580 Partial Solution to Problem Set 3

ECE580 Partial Solution to Problem Set 3 ECE580 Fall 2015 Solution to Problem Set 3 October 23, 2015 1 ECE580 Partial Solution to Problem Set 3 These problems are from the textbook by Chong and Zak, 4th edition, which is the textbook for the

More information

ECE580 Exam 1 October 4, Please do not write on the back of the exam pages. Extra paper is available from the instructor.

ECE580 Exam 1 October 4, Please do not write on the back of the exam pages. Extra paper is available from the instructor. ECE580 Exam 1 October 4, 2012 1 Name: Solution Score: /100 You must show ALL of your work for full credit. This exam is closed-book. Calculators may NOT be used. Please leave fractions as fractions, etc.

More information

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014 Convex Optimization Dani Yogatama School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA February 12, 2014 Dani Yogatama (Carnegie Mellon University) Convex Optimization February 12,

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Lecture 5, Continuous Optimisation Oxford University Computing Laboratory, HT 2006 Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The notion of complexity (per iteration)

More information

SIAM Conference on Imaging Science, Bologna, Italy, Adaptive FISTA. Peter Ochs Saarland University

SIAM Conference on Imaging Science, Bologna, Italy, Adaptive FISTA. Peter Ochs Saarland University SIAM Conference on Imaging Science, Bologna, Italy, 2018 Adaptive FISTA Peter Ochs Saarland University 07.06.2018 joint work with Thomas Pock, TU Graz, Austria c 2018 Peter Ochs Adaptive FISTA 1 / 16 Some

More information

Matrix Differential Calculus with Applications in Statistics and Econometrics

Matrix Differential Calculus with Applications in Statistics and Econometrics Matrix Differential Calculus with Applications in Statistics and Econometrics Revised Edition JAN. R. MAGNUS CentERjor Economic Research, Tilburg University and HEINZ NEUDECKER Cesaro, Schagen JOHN WILEY

More information

1 Numerical optimization

1 Numerical optimization Contents 1 Numerical optimization 5 1.1 Optimization of single-variable functions............ 5 1.1.1 Golden Section Search................... 6 1.1. Fibonacci Search...................... 8 1. Algorithms

More information

Subgradient Method. Ryan Tibshirani Convex Optimization

Subgradient Method. Ryan Tibshirani Convex Optimization Subgradient Method Ryan Tibshirani Convex Optimization 10-725 Consider the problem Last last time: gradient descent min x f(x) for f convex and differentiable, dom(f) = R n. Gradient descent: choose initial

More information

IPAM Summer School Optimization methods for machine learning. Jorge Nocedal

IPAM Summer School Optimization methods for machine learning. Jorge Nocedal IPAM Summer School 2012 Tutorial on Optimization methods for machine learning Jorge Nocedal Northwestern University Overview 1. We discuss some characteristics of optimization problems arising in deep

More information

Differentiable Functions

Differentiable Functions Differentiable Functions Let S R n be open and let f : R n R. We recall that, for x o = (x o 1, x o,, x o n S the partial derivative of f at the point x o with respect to the component x j is defined as

More information

5 Quasi-Newton Methods

5 Quasi-Newton Methods Unconstrained Convex Optimization 26 5 Quasi-Newton Methods If the Hessian is unavailable... Notation: H = Hessian matrix. B is the approximation of H. C is the approximation of H 1. Problem: Solve min

More information

MATH The Chain Rule Fall 2016 A vector function of a vector variable is a function F: R n R m. In practice, if x 1, x n is the input,

MATH The Chain Rule Fall 2016 A vector function of a vector variable is a function F: R n R m. In practice, if x 1, x n is the input, MATH 20550 The Chain Rule Fall 2016 A vector function of a vector variable is a function F: R n R m. In practice, if x 1, x n is the input, F(x 1,, x n ) F 1 (x 1,, x n ),, F m (x 1,, x n ) where each

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming Kees Roos e-mail: C.Roos@ewi.tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos LNMB Course De Uithof, Utrecht February 6 - May 8, A.D. 2006 Optimization Group 1 Outline for week

More information

Interior-point methods Optimization Geoff Gordon Ryan Tibshirani

Interior-point methods Optimization Geoff Gordon Ryan Tibshirani Interior-point methods 10-725 Optimization Geoff Gordon Ryan Tibshirani SVM duality Review min v T v/2 + 1 T s s.t. Av yd + s 1 0 s 0 max 1 T α α T Kα/2 s.t. y T α = 0 0 α 1 Gram matrix K Interpretation

More information

Lecture 3. Optimization Problems and Iterative Algorithms

Lecture 3. Optimization Problems and Iterative Algorithms Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex

More information

Line Search Methods for Unconstrained Optimisation

Line Search Methods for Unconstrained Optimisation Line Search Methods for Unconstrained Optimisation Lecture 8, Numerical Linear Algebra and Optimisation Oxford University Computing Laboratory, MT 2007 Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The Generic

More information

Selected Topics in Optimization. Some slides borrowed from

Selected Topics in Optimization. Some slides borrowed from Selected Topics in Optimization Some slides borrowed from http://www.stat.cmu.edu/~ryantibs/convexopt/ Overview Optimization problems are almost everywhere in statistics and machine learning. Input Model

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 8. Smooth convex unconstrained and equality-constrained minimization

E5295/5B5749 Convex optimization with engineering applications. Lecture 8. Smooth convex unconstrained and equality-constrained minimization E5295/5B5749 Convex optimization with engineering applications Lecture 8 Smooth convex unconstrained and equality-constrained minimization A. Forsgren, KTH 1 Lecture 8 Convex optimization 2006/2007 Unconstrained

More information

Lecture 7. Logistic Regression. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. December 11, 2016

Lecture 7. Logistic Regression. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. December 11, 2016 Lecture 7 Logistic Regression Luigi Freda ALCOR Lab DIAG University of Rome La Sapienza December 11, 2016 Luigi Freda ( La Sapienza University) Lecture 7 December 11, 2016 1 / 39 Outline 1 Intro Logistic

More information

A function(al) f is convex if dom f is a convex set, and. f(θx + (1 θ)y) < θf(x) + (1 θ)f(y) f(x) = x 3

A function(al) f is convex if dom f is a convex set, and. f(θx + (1 θ)y) < θf(x) + (1 θ)f(y) f(x) = x 3 Convex functions The domain dom f of a functional f : R N R is the subset of R N where f is well-defined. A function(al) f is convex if dom f is a convex set, and f(θx + (1 θ)y) θf(x) + (1 θ)f(y) for all

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 2 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization 1 Outline 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization Summary 2 Outline 3.2

More information

Frank-Wolfe Method. Ryan Tibshirani Convex Optimization

Frank-Wolfe Method. Ryan Tibshirani Convex Optimization Frank-Wolfe Method Ryan Tibshirani Convex Optimization 10-725 Last time: ADMM For the problem min x,z f(x) + g(z) subject to Ax + Bz = c we form augmented Lagrangian (scaled form): L ρ (x, z, w) = f(x)

More information

1. Nonlinear Equations. This lecture note excerpted parts from Michael Heath and Max Gunzburger. f(x) = 0

1. Nonlinear Equations. This lecture note excerpted parts from Michael Heath and Max Gunzburger. f(x) = 0 Numerical Analysis 1 1. Nonlinear Equations This lecture note excerpted parts from Michael Heath and Max Gunzburger. Given function f, we seek value x for which where f : D R n R n is nonlinear. f(x) =

More information

Numerical Methods. V. Leclère May 15, x R n

Numerical Methods. V. Leclère May 15, x R n Numerical Methods V. Leclère May 15, 2018 1 Some optimization algorithms Consider the unconstrained optimization problem min f(x). (1) x R n A descent direction algorithm is an algorithm that construct

More information

Interior-point methods Optimization Geoff Gordon Ryan Tibshirani

Interior-point methods Optimization Geoff Gordon Ryan Tibshirani Interior-point methods 10-725 Optimization Geoff Gordon Ryan Tibshirani SVM duality Review min v T v/2 + 1 T s s.t. Av yd + s 1! 0 s! 0 max 1 T α α T Kα/2 s.t. y T α = 0 0 " α " 1 Gram matrix K Interpretation

More information

Math 273a: Optimization Netwon s methods

Math 273a: Optimization Netwon s methods Math 273a: Optimization Netwon s methods Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 some material taken from Chong-Zak, 4th Ed. Main features of Newton s method Uses both first derivatives

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning First-Order Methods, L1-Regularization, Coordinate Descent Winter 2016 Some images from this lecture are taken from Google Image Search. Admin Room: We ll count final numbers

More information

Unconstrained minimization: assumptions

Unconstrained minimization: assumptions Unconstrained minimization I terminology and assumptions I gradient descent method I steepest descent method I Newton s method I self-concordant functions I implementation IOE 611: Nonlinear Programming,

More information

Generalized Gradient Descent Algorithms

Generalized Gradient Descent Algorithms ECE 275AB Lecture 11 Fall 2008 V1.1 c K. Kreutz-Delgado, UC San Diego p. 1/1 Lecture 11 ECE 275A Generalized Gradient Descent Algorithms ECE 275AB Lecture 11 Fall 2008 V1.1 c K. Kreutz-Delgado, UC San

More information

Mathematical optimization

Mathematical optimization Optimization Mathematical optimization Determine the best solutions to certain mathematically defined problems that are under constrained determine optimality criteria determine the convergence of the

More information

Automatic Differentiation and Neural Networks

Automatic Differentiation and Neural Networks Statistical Machine Learning Notes 7 Automatic Differentiation and Neural Networks Instructor: Justin Domke 1 Introduction The name neural network is sometimes used to refer to many things (e.g. Hopfield

More information

Lecture 5: September 15

Lecture 5: September 15 10-725/36-725: Convex Optimization Fall 2015 Lecture 5: September 15 Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Di Jin, Mengdi Wang, Bin Deng Note: LaTeX template courtesy of UC Berkeley EECS

More information

Multivariate Newton Minimanization

Multivariate Newton Minimanization Multivariate Newton Minimanization Optymalizacja syntezy biosurfaktantu Rhamnolipid Rhamnolipids are naturally occuring glycolipid produced commercially by the Pseudomonas aeruginosa species of bacteria.

More information

6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE. Three Alternatives/Remedies for Gradient Projection

6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE. Three Alternatives/Remedies for Gradient Projection 6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE Three Alternatives/Remedies for Gradient Projection Two-Metric Projection Methods Manifold Suboptimization Methods

More information

Lecture Notes: Geometric Considerations in Unconstrained Optimization

Lecture Notes: Geometric Considerations in Unconstrained Optimization Lecture Notes: Geometric Considerations in Unconstrained Optimization James T. Allison February 15, 2006 The primary objectives of this lecture on unconstrained optimization are to: Establish connections

More information

Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March 22, 2018

Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March 22, 2018 1 Linear Systems Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March, 018 Consider the system 4x y + z = 7 4x 8y + z = 1 x + y + 5z = 15. We then obtain x = 1 4 (7 + y z)

More information

GRADIENT = STEEPEST DESCENT

GRADIENT = STEEPEST DESCENT GRADIENT METHODS GRADIENT = STEEPEST DESCENT Convex Function Iso-contours gradient 0.5 0.4 4 2 0 8 0.3 0.2 0. 0 0. negative gradient 6 0.2 4 0.3 2.5 0.5 0 0.5 0.5 0 0.5 0.4 0.5.5 0.5 0 0.5 GRADIENT DESCENT

More information

Nonlinear equations. Norms for R n. Convergence orders for iterative methods

Nonlinear equations. Norms for R n. Convergence orders for iterative methods Nonlinear equations Norms for R n Assume that X is a vector space. A norm is a mapping X R with x such that for all x, y X, α R x = = x = αx = α x x + y x + y We define the following norms on the vector

More information