How does 4D-Var handle Nonlinearity and non-gaussianity?

Size: px
Start display at page:

Download "How does 4D-Var handle Nonlinearity and non-gaussianity?"

Transcription

1 How does 4D-Var handle Nonlinearity and non-gaussianity? Mike Fisher Acknowledgements: Christina Tavolato, Elias Holm, Lars Isaksen, Tavolato, Yannick Tremolet Slide 1

2 Outline of Talk Non-Gaussian pdf s in the 4d-Var cost function - Variational quality control - Non-Gaussian background errors for humidity Can we use 4D-Var analysis windows that are longer than the timescale over which non-linear effects dominate? - Long-window, weak constraint 4D-Var Slide 2

3 Non-Gaussian pdf s in the 4D-Var cost function The 3D/4D-Var cost function is simply the log of the pdf: J ( x) log( p( x y, x ) log( p( y x) ) log( p( x x) ) K Non-Gaussian pdf s of observation error and background error result in non-quadratic cost functions. In principle, this has the potential to produce multiple minima and difficulties in minimization. In practice, there are many cases where the ability to specify non-gaussian pdf s is very useful, and does not give rise to significant minimization problems. - Directionally-ambiguous scatterometer winds - Variational quality control b - Bounded variables: humidity, trace gasses, rain rate, etc. b Slide 3

4 Variational quality control and robust estimation Variational quality control has been used in the analysis for the past 10 years. Observation errors are modelled as a combination of a Gaussian and a flat (boxcar) distribution: ( ) p y x = (1 P ) N + P G, where P = p(gross error), and: G G G y H( x) N = exp σ 2 2 o π σ o 1 G = if y H( x) < D/ 2, zero otherwise D With this pdf, observations close to x are treated as if Gaussian, whereas those far from x are effectively ignored. Slide 4

5 Variational quality control and robust estimation An alternative treatment is the Huber metric: ( ) 2 1 a exp aδ if a< δ σ 2 2 o π 1 1 exp δ δ σ 2 2 o π 2 1 b exp bδ if δ > b σ 2 2 o π 2 p y x = a b where δ = y H( x) σ Equivalent to L 1 metric far from x, L 2 metric close to x. With this pdf, observations far from x are given less weight than observations close to x, but can still influence the analysis. Many observations have errors that are well described by the Huber metric. o Slide 5

6 Variational quality control and robust estimation 18 months of conventional data -Feb 2006 Sep 2007 Normalised fit of PDF to data - Best Gaussian fit - Best Huber norm fit Slide 6

7 Variational quality control and robust estimation Gaussian Huber Gaussian + flat Slide 7

8 Comparing optimal observation weights Huber-norm (red) vs. Gaussian+flat (blue) More weight in the middle of the distribution Weight relative to gaussian (no VarQC) case -σ o was retuned More weight on the edges of the distribution More influence of data with large departures 25% -Weights: 0 25% Slide 8

9 Test Configuration Huber norm parameters for - SYNOP, METAR, DRIBU: surface pressure, 10m wind - TEMP, AIREP: temperature, wind - PILOT: wind Relaxation of the fg-check - Relaxed first guess checks when Huber VarQC is done - First Guess rejection limit set to 20σ Retuning of the observation error - Smaller observation errors for Huber VarQC Slide 9

10 French storm Surface pressure: -Model (ERA interim T255): 970hPa -Observations: 963.5hPa -Observation are supported by neighbouring stations! Slide 10

11 Data rejection and VarQC weights Era interim UTC +60min fg rejected used VarQC weight = 50-75% VarQC weight = 25-50% VarQC weight = 0-25% Slide 11

12 Data rejection and VarQC weights Huber exp. VarQC weight = 50-75% VarQC weight = 25-50% VarQC weight = 0-25% Slide 12

13 MSL Analysis differences: Huber Era Diff AN = 5.6 hpa New min 968 hpa Low shifted towards the lowest surface pressure observations Slide 13

14 Humidity control variable b b b b ( ) b P( δrh 2rh1 δrh) P rh rh rh rh = + Joint pdf: ( b b P rh ) 1, rh2 for two members of an ensemble of 4D-Var analyses. δ rh = rh rh b b 2 1 is representative of background error rh 1 (%) rh 2 (%) The pdf of background error is asymmetric when stratified by The pdf of background error is symmetric when stratified by Slide 14 b b ( 2 rh1 ) b b P( δ rh rh1 rh1 ) P rh = + 5.9E E E E E E E E E-06 b rh b 1 rh + δ rh 2

15 Humidity control variable Probability density function Lowest RH+dRH/2 Median RH+dRH/2 Highest RH+dRH/2 Gaussian Standard deviation Bias Standard deviation δrh RH + drh/2 The symmetric pdf b 1 P δrh rh + δrh can be modelled by a normal distribution. 2 b 1 The variance changes with rh + δ rh and the bias is zero. 2 A control variable with an approximately unit normal distribution is obtained by a nonlinear normalization: δ rh δ rh = b 1 σ rh + δrh 2 Slide 15

16 Humidity control variable The background error cost function J b is now nonlinear. Our implementation requires linear inner loops (so that we can use efficient, conjugate-gradient minimization). - Inner loops: use T 1 ( δ ) ( δ ) where ( δ ) Jb = f rh B f rh f rh = b ( ) δrh = δrh σ rh δ rh δ rh b 1 σ rh + δrh 2 - Outer loops: solve for from the nonlinear equation: δ rh = δ rh b 1 σ rh + δrh 2 Slide 16

17 What about Multiple Minima? Example: strong-constraint 4D-Var for the Lorenz threevariable model: from: Roulstone, 1999 Figure 1: The MSE cost function in the Lorenz model as a function of error in the initial value of the Y coordinate. The function becomes increasingly pathological as the assimilation perio d is increased. Slide 17

18 What about Multiple Minima? In strong-constraint 4D-Var, the control variable is x 0. K T 1 J = y H M ( x ) R y H M x We rely on the model to propagate the state from initial time to observation time. For long windows, this results in a highly nonlinear J o. In weak-constraint 4D-Var, the control variable is (x 0,x 1,,x K ), and (for linear observation operators) J o is quadratic. K T 1 J = y H ( x ) R y H ( x ) J q is close to quadratic if the TL approximation is accurate over the sub-interval [t k-1, t k ]. K ( 0 ) ( ( 0) ) 0 k 0 k o k k t t k k t t k = 0 o k k k k k k k = 0 T 1 ( ) ( ) k 1 k 1 k 1 k 1 J = x M x R x M x q k t t k k t t k k = 1 Slide 18

19 Cross-section of the cost function for a random perturbation to the control vector Cost Lorenz 1995 model. 20-day analysis window. J o + J q (weak constraint) J o (weak constraint) J o (strong constraint) ε / σ o Slide 19

20 Long-window, weak-constraint 4D-Var 0.4 RMS Analysis Error RMS error for 4dVar dx dt i Lorenz 95 model = x x + x x x + F i 2 i 1 i 1 i+ 1 i with i = 1, 2K40 x x x 0 40 x 1 39 x = = = x 41 1 F = 8 RMS error for OI 0.1 RMS error for EKF Length of Analysis Window (days) Slide 20

21 What about multiple minima? 20 GRD: Estimate dotted=truth solid=analysis diamonds=obs time t From: Evensen (MWR 1997 pp : Advanced Data Assimilation for Strongly Nonlinear Dynamics). - Weak constraint 4dVar for the Lorenz 3-variable system. - ~50 orbits of the lobes of the attractor, and 15 lobe transitions. Slide 21

22 What about multiple minima? The abstract from Evensen s 1997 paper is interesting: - This paper examines the properties of three advanced data assimilation methods when used with the highly nonlinear Lorenz equations. The ensemble Kalman filter is used for sequential data assimilation and the recently proposed ensemble smoother method and a gradient descent method * are used to minimize two different weak constraint formulations. - The problems associated with the use of an approximate tangent linear model when solving the Euler-Lagrange equations, or when the extended Kalman filter is used, are eliminated when using these methods. All three methods give reasonable consistent results with the data coverage and quality of measurements that are used here and overcome the traditional problems reported in many of the previous papers involving data assimilation with highly nonlinear dynamics. *i.e. weak-constraint 4D-Var Slide 22

23 Weak Constraint 4D-Var in a QG model The model: - Two-level quasi-geosptrophic model on a cyclic channel - Solved on a domain with Δx=Δy=300km - Layer depths D 1 =6000m, D 2 =4000m - R o = 0.1 Dq i Dt = 0 (for i = 1, 2) ( ) q = ψ F ψ ψ + βy q2 = ψ2 F2( ψ2 ψ1) + βy + Rs - Very simple numerics: first order semi-lagrangian advection with cubic interpolation, and 5-point stencil for the Laplacian. Slide 23

24 Weak Constraint 4D-Var in a QG model dt = 3600s dx = dy = 300km f = 10-4 s -1 β = s -1 m -1 D1 = 6000m D2 = 4000m Orography: - Gaussian hill m high, 1000km wide at i=0, j=15 Domain: 12000km 6000km Perturbation doubling time is ~30 hours Slide 24

25 Weak Constraint 4D-Var in a QG model One analysis is produced every 6 hours, irrespective of window length: Analysis Forecast Linearisation Trajectory Analysis The analysis is incremental, weak-constraint 4D-Var, with a linear inner-loop, and a single iteration of the outer loop. Inner and outer loop resolutions are identical. Forecast Linearisation Trajectory Analysis Background Slide 25

26 Weak Constraint 4D-Var in a QG model Observations: observing points, randomly distributed between levels, and at randomly chosen gridpoints. - For each observing point, an observation of streamfunction is made every 3 hours. - Observation error: σ o =1.0 (in units of non-dimensional streamfunction) Obs at level 1 Obs at level 2 Slide 26

27 Weak Constraint 4D-Var in a QG model Initial perturbation drawn from N(0,Q) Nonlinearity Index model T159 L31 Θ () t = where: + δψ () t + δψ () t + ( δψ t + δψ t ) () () /2 + δψ ( t) = difference from control of integration with positive initial perturbation. δψ ( t) = difference from control of Nonlinearity dominates for Θ>0.7 (Gilmour et al., 2001) integration with negative initial perturbation Time (hours) Slide 27

28 Weak Constraint 4D-Var in a QG model Long-Window 4D-Var in a Two-Level QG Model Mean Analysis and First-Guess Error for Different Window Lengths 1.2 RMS Error for Non-dimensional Streamfunction According to Gilmour Thin lines et = al. s first guess criterion, nonlinearity Thick lines dominates, = analysis for windows longer than 60 hours. Weak constraint 4D-Var allows windows that are much longer than the timescale for nonlinearity Time Within Analysis Window (hours) Slide 28

29 Summary The relationship: J=-log(pdf) makes it straightforward to include a wide range of non-gaussian effects. - VarQC - Non-gaussian bakground errors for humidity,etc. - nonlinear balances - nonlinear observation operators (e.g. scatterometer) - etc. In weak-constraint 4D-Var, the tangent-linear approximation applies over sub-windows, not over the full analysis window. - The model appears in J q as t k 1 t k Window lengths >> nonlinearity time scale are possible. M Slide 29

30 How does 4D-Var handle Nonlinearity and non-gaussianity? Surprisingly Well! Thank you for your attention. Acknowledgements: Christina Tavolato, Elias Holm, Lars Isaksen, Tavolato, Yannick Tremolet Slide 30

Accounting for non-gaussian observation error

Accounting for non-gaussian observation error Accounting for non-gaussian observation error Lars Isaksen & Christina Tavolato ECMWF Royal Meteorological Society Meeting Comparing observations with models 5 May 2009, ECMWF Acknowledgements to Erik

More information

Revision of the ECMWF humidity analysis: Construction of a gaussian control variable

Revision of the ECMWF humidity analysis: Construction of a gaussian control variable Revision of the ECMWF humidity analysis: Construction of a gaussian control variable Elías Valur Hólm ECMWF, Shinfield Park, Reading GR2 9AX, United Kingdom 1 Introduction In the ECMWF analysis specific

More information

Variational Data Assimilation Current Status

Variational Data Assimilation Current Status Variational Data Assimilation Current Status Eĺıas Valur Hólm with contributions from Mike Fisher and Yannick Trémolet ECMWF NORDITA Solar and stellar dynamos and cycles October 2009 Eĺıas Valur Hólm (ECMWF)

More information

Weak Constraints 4D-Var

Weak Constraints 4D-Var Weak Constraints 4D-Var Yannick Trémolet ECMWF Training Course - Data Assimilation May 1, 2012 Yannick Trémolet Weak Constraints 4D-Var May 1, 2012 1 / 30 Outline 1 Introduction 2 The Maximum Likelihood

More information

The ECMWF Hybrid 4D-Var and Ensemble of Data Assimilations

The ECMWF Hybrid 4D-Var and Ensemble of Data Assimilations The Hybrid 4D-Var and Ensemble of Data Assimilations Lars Isaksen, Massimo Bonavita and Elias Holm Data Assimilation Section lars.isaksen@ecmwf.int Acknowledgements to: Mike Fisher and Marta Janiskova

More information

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Eugenia Kalnay and Shu-Chih Yang with Alberto Carrasi, Matteo Corazza and Takemasa Miyoshi 4th EnKF Workshop, April 2010 Relationship

More information

ECMWF Data Assimilation. Contribution from many people

ECMWF Data Assimilation. Contribution from many people Data Assimilation Contribution from many people DA System&Observations DA School Buenos Aires 2008 1 Fundamental challenges of 4D-Var Assimilation System Incremental 4D-Var Linearized Physics Observation

More information

Data assimilation; comparison of 4D-Var and LETKF smoothers

Data assimilation; comparison of 4D-Var and LETKF smoothers Data assimilation; comparison of 4D-Var and LETKF smoothers Eugenia Kalnay and many friends University of Maryland CSCAMM DAS13 June 2013 Contents First part: Forecasting the weather - we are really getting

More information

Tangent-linear and adjoint models in data assimilation

Tangent-linear and adjoint models in data assimilation Tangent-linear and adjoint models in data assimilation Marta Janisková and Philippe Lopez ECMWF Thanks to: F. Váňa, M.Fielding 2018 Annual Seminar: Earth system assimilation 10-13 September 2018 Tangent-linear

More information

On the use of a Huber norm for observation quality control in the ECMWF 4D-Var

On the use of a Huber norm for observation quality control in the ECMWF 4D-Var 744 On the use of a Huber norm for observation quality control in the ECMWF 4D-Var Christina Tavolato,2 and Lars Isaksen Research Department ECMWF 2 Department of Meteorology and Geophysics, University

More information

Inter-comparison of 4D-Var and EnKF systems for operational deterministic NWP

Inter-comparison of 4D-Var and EnKF systems for operational deterministic NWP Inter-comparison of 4D-Var and EnKF systems for operational deterministic NWP Project eam: Mark Buehner Cecilien Charette Bin He Peter Houtekamer Herschel Mitchell WWRP/HORPEX Workshop on 4D-VAR and Ensemble

More information

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Eugenia Kalnay and Shu-Chih Yang with Alberto Carrasi, Matteo Corazza and Takemasa Miyoshi ECODYC10, Dresden 28 January 2010 Relationship

More information

E. Andersson, M. Fisher, E. Hólm, L. Isaksen, G. Radnóti, and Y. Trémolet. Research Department

E. Andersson, M. Fisher, E. Hólm, L. Isaksen, G. Radnóti, and Y. Trémolet. Research Department E. Andersson, M. Fisher, E. Hólm, L. Isaksen, G. Radnóti, and Y. Trémolet Research Department September 2005 Series: ECMWF Technical Memoranda A full list of ECMWF Publications can be found on our web

More information

Model error and parameter estimation

Model error and parameter estimation Model error and parameter estimation Chiara Piccolo and Mike Cullen ECMWF Annual Seminar, 11 September 2018 Summary The application of interest is atmospheric data assimilation focus on EDA; A good ensemble

More information

Direct assimilation of all-sky microwave radiances at ECMWF

Direct assimilation of all-sky microwave radiances at ECMWF Direct assimilation of all-sky microwave radiances at ECMWF Peter Bauer, Alan Geer, Philippe Lopez, Deborah Salmond European Centre for Medium-Range Weather Forecasts Reading, Berkshire, UK Slide 1 17

More information

Numerical Weather prediction at the European Centre for Medium-Range Weather Forecasts

Numerical Weather prediction at the European Centre for Medium-Range Weather Forecasts Numerical Weather prediction at the European Centre for Medium-Range Weather Forecasts Time series curves 500hPa geopotential Correlation coefficent of forecast anomaly N Hemisphere Lat 20.0 to 90.0 Lon

More information

Lecture notes on assimilation algorithms

Lecture notes on assimilation algorithms Lecture notes on assimilation algorithms Elías alur Hólm European Centre for Medium-Range Weather Forecasts Reading, UK April 18, 28 1 Basic concepts 1.1 The analysis In meteorology and other branches

More information

Some ideas for Ensemble Kalman Filter

Some ideas for Ensemble Kalman Filter Some ideas for Ensemble Kalman Filter Former students and Eugenia Kalnay UMCP Acknowledgements: UMD Chaos-Weather Group: Brian Hunt, Istvan Szunyogh, Ed Ott and Jim Yorke, Kayo Ide, and students Former

More information

Scatterometer winds in rapidly developing storms (SCARASTO) First experiments on data assimilation of scatterometer winds

Scatterometer winds in rapidly developing storms (SCARASTO) First experiments on data assimilation of scatterometer winds Scatterometer winds in rapidly developing storms (SCARASTO) First experiments on data assimilation of scatterometer winds Teresa Valkonen, EUMETSAT fellow Norwegian Meteorological Institute MET Norway,Oslo

More information

The University of Reading

The University of Reading The University of Reading Radial Velocity Assimilation and Experiments with a Simple Shallow Water Model S.J. Rennie 2 and S.L. Dance 1,2 NUMERICAL ANALYSIS REPORT 1/2008 1 Department of Mathematics 2

More information

Can hybrid-4denvar match hybrid-4dvar?

Can hybrid-4denvar match hybrid-4dvar? Comparing ensemble-variational assimilation methods for NWP: Can hybrid-4denvar match hybrid-4dvar? WWOSC, Montreal, August 2014. Andrew Lorenc, Neill Bowler, Adam Clayton, David Fairbairn and Stephen

More information

Current Limited Area Applications

Current Limited Area Applications Current Limited Area Applications Nils Gustafsson SMHI Norrköping, Sweden nils.gustafsson@smhi.se Outline of talk (contributions from many HIRLAM staff members) Specific problems of Limited Area Model

More information

Introduction to Data Assimilation. Reima Eresmaa Finnish Meteorological Institute

Introduction to Data Assimilation. Reima Eresmaa Finnish Meteorological Institute Introduction to Data Assimilation Reima Eresmaa Finnish Meteorological Institute 15 June 2006 Outline 1) The purpose of data assimilation 2) The inputs for data assimilation 3) Analysis methods Theoretical

More information

On the use of a Huber norm for observation quality control in the ECMWF 4D-Var

On the use of a Huber norm for observation quality control in the ECMWF 4D-Var Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 4: 54 527, July 205 A DOI:.2/qj.2440 On the use of a uber norm for observation quality control in the ECMWF 4D-Var Christina

More information

Ensemble forecasting and flow-dependent estimates of initial uncertainty. Martin Leutbecher

Ensemble forecasting and flow-dependent estimates of initial uncertainty. Martin Leutbecher Ensemble forecasting and flow-dependent estimates of initial uncertainty Martin Leutbecher acknowledgements: Roberto Buizza, Lars Isaksen Flow-dependent aspects of data assimilation, ECMWF 11 13 June 2007

More information

Ting Lei, Xuguang Wang University of Oklahoma, Norman, OK, USA. Wang and Lei, MWR, Daryl Kleist (NCEP): dual resolution 4DEnsVar

Ting Lei, Xuguang Wang University of Oklahoma, Norman, OK, USA. Wang and Lei, MWR, Daryl Kleist (NCEP): dual resolution 4DEnsVar GSI-based four dimensional ensemble-variational (4DEnsVar) data assimilation: formulation and single resolution experiments with real data for NCEP GFS Ting Lei, Xuguang Wang University of Oklahoma, Norman,

More information

DEVELOPMENT OF THE ECMWF FORECASTING SYSTEM

DEVELOPMENT OF THE ECMWF FORECASTING SYSTEM DEVELOPMENT OF THE ECMWF FORECASTING SYSTEM Jean-Noël Thépaut European Centre for Medium Range Weather Forecasts ECMWF Acknowledgements: Lars Isaksen, Mike Fisher, Yannick Trémolet, Peter Bauer, Adrian

More information

Variational data assimilation

Variational data assimilation Background and methods NCEO, Dept. of Meteorology, Univ. of Reading 710 March 2018, Univ. of Reading Bayes' Theorem Bayes' Theorem p(x y) = posterior distribution = p(x) p(y x) p(y) prior distribution

More information

4. DATA ASSIMILATION FUNDAMENTALS

4. DATA ASSIMILATION FUNDAMENTALS 4. DATA ASSIMILATION FUNDAMENTALS... [the atmosphere] "is a chaotic system in which errors introduced into the system can grow with time... As a consequence, data assimilation is a struggle between chaotic

More information

In the derivation of Optimal Interpolation, we found the optimal weight matrix W that minimizes the total analysis error variance.

In the derivation of Optimal Interpolation, we found the optimal weight matrix W that minimizes the total analysis error variance. hree-dimensional variational assimilation (3D-Var) In the derivation of Optimal Interpolation, we found the optimal weight matrix W that minimizes the total analysis error variance. Lorenc (1986) showed

More information

All-sky observations: errors, biases, representativeness and gaussianity

All-sky observations: errors, biases, representativeness and gaussianity All-sky observations: errors, biases, representativeness and gaussianity Alan Geer, Peter Bauer, Philippe Lopez Thanks to: Bill Bell, Niels Bormann, Anne Foullioux, Jan Haseler, Tony McNally Slide 1 ECMWF-JCSDA

More information

Assimilating only surface pressure observations in 3D and 4DVAR

Assimilating only surface pressure observations in 3D and 4DVAR Assimilating only surface pressure observations in 3D and 4DVAR (and other observing system impact studies) Jean-Noël Thépaut ECMWF Acknowledgements: Graeme Kelly Workshop on atmospheric reanalysis, 19

More information

Parallel Algorithms for Four-Dimensional Variational Data Assimilation

Parallel Algorithms for Four-Dimensional Variational Data Assimilation Parallel Algorithms for Four-Dimensional Variational Data Assimilation Mie Fisher ECMWF October 24, 2011 Mie Fisher (ECMWF) Parallel 4D-Var October 24, 2011 1 / 37 Brief Introduction to 4D-Var Four-Dimensional

More information

Relative Merits of 4D-Var and Ensemble Kalman Filter

Relative Merits of 4D-Var and Ensemble Kalman Filter Relative Merits of 4D-Var and Ensemble Kalman Filter Andrew Lorenc Met Office, Exeter International summer school on Atmospheric and Oceanic Sciences (ISSAOS) "Atmospheric Data Assimilation". August 29

More information

Accounting for Atmospheric motion Vector Error Correlations in the ECMWF 4D-Var and Ensembles of Data Assimilations

Accounting for Atmospheric motion Vector Error Correlations in the ECMWF 4D-Var and Ensembles of Data Assimilations Accounting for Atmospheric motion Vector Error Correlations in the 4D-Var and Ensembles of Data Assimilations Lars Isaksen and Gábor Radnóti, Reading, UK Isaksen The 10 th International Winds Workshop,

More information

Comparisons between 4DEnVar and 4DVar on the Met Office global model

Comparisons between 4DEnVar and 4DVar on the Met Office global model Comparisons between 4DEnVar and 4DVar on the Met Office global model David Fairbairn University of Surrey/Met Office 26 th June 2013 Joint project by David Fairbairn, Stephen Pring, Andrew Lorenc, Neill

More information

GSI Tutorial Background and Observation Errors: Estimation and Tuning. Daryl Kleist NCEP/EMC June 2011 GSI Tutorial

GSI Tutorial Background and Observation Errors: Estimation and Tuning. Daryl Kleist NCEP/EMC June 2011 GSI Tutorial GSI Tutorial 2011 Background and Observation Errors: Estimation and Tuning Daryl Kleist NCEP/EMC 29-30 June 2011 GSI Tutorial 1 Background Errors 1. Background error covariance 2. Multivariate relationships

More information

Fundamentals of Data Assimilation

Fundamentals of Data Assimilation National Center for Atmospheric Research, Boulder, CO USA GSI Data Assimilation Tutorial - June 28-30, 2010 Acknowledgments and References WRFDA Overview (WRF Tutorial Lectures, H. Huang and D. Barker)

More information

Satellite Observations of Greenhouse Gases

Satellite Observations of Greenhouse Gases Satellite Observations of Greenhouse Gases Richard Engelen European Centre for Medium-Range Weather Forecasts Outline Introduction Data assimilation vs. retrievals 4D-Var data assimilation Observations

More information

Changes in the Arpège 4D-VAR and LAM 3D-VAR. C. Fischer With contributions by P. Brousseau, G. Kerdraon, J.-F. Mahfouf, T.

Changes in the Arpège 4D-VAR and LAM 3D-VAR. C. Fischer With contributions by P. Brousseau, G. Kerdraon, J.-F. Mahfouf, T. Changes in the Arpège 4D-VAR and LAM 3D-VAR C. Fischer With contributions by P. Brousseau, G. Kerdraon, J.-F. Mahfouf, T. Montmerle Content Arpège 4D-VAR Arome-France Other applications: Aladin Overseas,

More information

Coupled atmosphere-ocean data assimilation in the presence of model error. Alison Fowler and Amos Lawless (University of Reading)

Coupled atmosphere-ocean data assimilation in the presence of model error. Alison Fowler and Amos Lawless (University of Reading) Coupled atmosphere-ocean data assimilation in the presence of model error Alison Fowler and Amos Lawless (University of Reading) Introduction Coupled DA methods are being developed to initialise forecasts

More information

How 4DVAR can benefit from or contribute to EnKF (a 4DVAR perspective)

How 4DVAR can benefit from or contribute to EnKF (a 4DVAR perspective) How 4DVAR can benefit from or contribute to EnKF (a 4DVAR perspective) Dale Barker WWRP/THORPEX Workshop on 4D-Var and Ensemble Kalman Filter Intercomparisons Sociedad Cientifica Argentina, Buenos Aires,

More information

Background Error Covariance Modelling

Background Error Covariance Modelling Background Error Covariance Modelling Mike Fisher Slide 1 Outline Diagnosing the Statistics of Background Error using Ensembles of Analyses Modelling the Statistics in Spectral Space - Relaxing constraints

More information

Numerical Weather prediction at the European Centre for Medium-Range Weather Forecasts (2)

Numerical Weather prediction at the European Centre for Medium-Range Weather Forecasts (2) Numerical Weather prediction at the European Centre for Medium-Range Weather Forecasts (2) Time series curves 500hPa geopotential Correlation coefficent of forecast anomaly N Hemisphere Lat 20.0 to 90.0

More information

Data assimilation in mesoscale modeling and numerical weather prediction Nils Gustafsson

Data assimilation in mesoscale modeling and numerical weather prediction Nils Gustafsson Data assimilation in mesoscale modeling and numerical weather prediction Nils Gustafsson Croatian USA Workshop on Mesometeorology June 2012 Perspective: What are the important issues for development of

More information

Recent Data Assimilation Activities at Environment Canada

Recent Data Assimilation Activities at Environment Canada Recent Data Assimilation Activities at Environment Canada Major upgrade to global and regional deterministic prediction systems (now in parallel run) Sea ice data assimilation Mark Buehner Data Assimilation

More information

Operational Use of Scatterometer Winds at JMA

Operational Use of Scatterometer Winds at JMA Operational Use of Scatterometer Winds at JMA Masaya Takahashi Numerical Prediction Division, Japan Meteorological Agency (JMA) 10 th International Winds Workshop, Tokyo, 26 February 2010 JMA Outline JMA

More information

Diagnostics of linear and incremental approximations in 4D-Var

Diagnostics of linear and incremental approximations in 4D-Var 399 Diagnostics of linear and incremental approximations in 4D-Var Yannick Trémolet Research Department February 03 Submitted to Q. J. R. Meteorol. Soc. For additional copies please contact The Library

More information

Update on the KENDA project

Update on the KENDA project Christoph Schraff Deutscher Wetterdienst, Offenbach, Germany and many colleagues from CH, D, I, ROM, RU Km-scale ENsemble-based Data Assimilation : COSMO priority project Local Ensemble Transform Kalman

More information

Wind tracing from SEVIRI clear and overcast radiance assimilation

Wind tracing from SEVIRI clear and overcast radiance assimilation Wind tracing from SEVIRI clear and overcast radiance assimilation Cristina Lupu and Tony McNally ECMWF, Reading, UK Slide 1 Outline Motivation & Objective Analysis impact of SEVIRI radiances and cloudy

More information

Assimilation of the IASI data in the HARMONIE data assimilation system

Assimilation of the IASI data in the HARMONIE data assimilation system Assimilation of the IASI data in the HARMONIE data assimilation system Roger Randriamampianina Acknowledgement: Andrea Storto (met.no), Andrew Collard (ECMWF), Fiona Hilton (MetOffice) and Vincent Guidard

More information

Met Office convective-scale 4DVAR system, tests and improvement

Met Office convective-scale 4DVAR system, tests and improvement Met Office convective-scale 4DVAR system, tests and improvement Marco Milan*, Marek Wlasak, Stefano Migliorini, Bruce Macpherson Acknowledgment: Inverarity Gordon, Gareth Dow, Mike Thurlow, Mike Cullen

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 014 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO July 14-16, 014 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

Masahiro Kazumori, Takashi Kadowaki Numerical Prediction Division Japan Meteorological Agency

Masahiro Kazumori, Takashi Kadowaki Numerical Prediction Division Japan Meteorological Agency Development of an all-sky assimilation of microwave imager and sounder radiances for the Japan Meteorological Agency global numerical weather prediction system Masahiro Kazumori, Takashi Kadowaki Numerical

More information

The Impact of Observational data on Numerical Weather Prediction. Hirokatsu Onoda Numerical Prediction Division, JMA

The Impact of Observational data on Numerical Weather Prediction. Hirokatsu Onoda Numerical Prediction Division, JMA The Impact of Observational data on Numerical Weather Prediction Hirokatsu Onoda Numerical Prediction Division, JMA Outline Data Analysis system of JMA in Global Spectral Model (GSM) and Meso-Scale Model

More information

Recent developments for CNMCA LETKF

Recent developments for CNMCA LETKF Recent developments for CNMCA LETKF Lucio Torrisi and Francesca Marcucci CNMCA, Italian National Met Center Outline Implementation of the LETKF at CNMCA Treatment of model error in the CNMCA-LETKF The

More information

Overview of the Numerics of the ECMWF. Atmospheric Forecast Model

Overview of the Numerics of the ECMWF. Atmospheric Forecast Model Overview of the Numerics of the Atmospheric Forecast Model M. Hortal Seminar 6 Sept 2004 Slide 1 Characteristics of the model Hydrostatic shallow-atmosphere approimation Pressure-based hybrid vertical

More information

Assimilation Techniques (4): 4dVar April 2001

Assimilation Techniques (4): 4dVar April 2001 Assimilation echniques (4): 4dVar April By Mike Fisher European Centre for Medium-Range Weather Forecasts. able of contents. Introduction. Comparison between the ECMWF 3dVar and 4dVar systems 3. he current

More information

Variational ensemble DA at Météo-France Cliquez pour modifier le style des sous-titres du masque

Variational ensemble DA at Météo-France Cliquez pour modifier le style des sous-titres du masque Cliquez pour modifier le style du titre Variational ensemble DA at Météo-France Cliquez pour modifier le style des sous-titres du masque L. Berre, G. Desroziers, H. Varella, L. Raynaud, C. Labadie and

More information

Weak constraint 4D-Var at ECMWF

Weak constraint 4D-Var at ECMWF Weak constraint 4D-Var at ECMWF How to deal with model error in data assimilation Patrick Laloyaux - Earth System Assimilation Section Acknowledgement: Jacky Goddard, Mike Fisher, Yannick Tremolet, Massimo

More information

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm Overview 1 2 3 Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation 6th EnKF Purpose EnKF equations localization After the 6th EnKF (2014), I decided with Prof. Zhang to summarize progress

More information

11 days (00, 12 UTC) 132 hours (06, 18 UTC) One unperturbed control forecast and 26 perturbed ensemble members. --

11 days (00, 12 UTC) 132 hours (06, 18 UTC) One unperturbed control forecast and 26 perturbed ensemble members. -- APPENDIX 2.2.6. CHARACTERISTICS OF GLOBAL EPS 1. Ensemble system Ensemble (version) Global EPS (GEPS1701) Date of implementation 19 January 2017 2. EPS configuration Model (version) Global Spectral Model

More information

1. Current atmospheric DA systems 2. Coupling surface/atmospheric DA 3. Trends & ideas

1. Current atmospheric DA systems 2. Coupling surface/atmospheric DA 3. Trends & ideas 1 Current issues in atmospheric data assimilation and its relationship with surfaces François Bouttier GAME/CNRM Météo-France 2nd workshop on remote sensing and modeling of surface properties, Toulouse,

More information

Progress towards better representation of observation and background errors in 4DVAR

Progress towards better representation of observation and background errors in 4DVAR Progress towards better representation of observation and background errors in 4DVAR Niels Bormann 1, Massimo Bonavita 1, Peter Weston 2, Cristina Lupu 1, Carla Cardinali 1, Tony McNally 1, Kirsti Salonen

More information

Assimilation of Geostationary WV Radiances within the 4DVAR at ECMWF

Assimilation of Geostationary WV Radiances within the 4DVAR at ECMWF Assimilation of Geostationary WV Radiances within the 4DVAR at ECMWF Christina Köpken Graeme Kelly, Jean-Noël Thépaut ECMWF EUMETSAT Fellowship ITSC-XII Lorne, Australia, 27 February - 5 March 2002 Assimilation

More information

Model-error estimation in 4D-Var

Model-error estimation in 4D-Var QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Q. J. R. Meteorol. Soc. 33: 67 80 (007) Published online 3 July 007 in Wiley InterScience (www.interscience.wiley.com) DOI: 0.00/qj.94 Model-error

More information

Cross-validation methods for quality control, cloud screening, etc.

Cross-validation methods for quality control, cloud screening, etc. Cross-validation methods for quality control, cloud screening, etc. Olaf Stiller, Deutscher Wetterdienst Are observations consistent Sensitivity functions with the other observations? given the background

More information

Validation of Complex Data Assimilation Methods

Validation of Complex Data Assimilation Methods Fairmode Technical Meeting 24.-25.6.2015, DAO, Univ. Aveiro Validation of Complex Data Assimilation Methods Hendrik Elbern, Elmar Friese, Nadine Goris, Lars Nieradzik and many others Rhenish Institute

More information

Snow Analysis for Numerical Weather prediction at ECMWF

Snow Analysis for Numerical Weather prediction at ECMWF Snow Analysis for Numerical Weather prediction at ECMWF Patricia de Rosnay, Gianpaolo Balsamo, Lars Isaksen European Centre for Medium-Range Weather Forecasts IGARSS 2011, Vancouver, 25-29 July 2011 Slide

More information

Observation impact on data assimilation with dynamic background error formulation

Observation impact on data assimilation with dynamic background error formulation Observation impact on data assimilation with dynamic background error formulation ALEXANDER BECK alexander.beck@univie.ac.at Department of, Univ. Vienna, Austria Thanks to: Martin Ehrendorfer, Patrick

More information

The Canadian approach to ensemble prediction

The Canadian approach to ensemble prediction The Canadian approach to ensemble prediction ECMWF 2017 Annual seminar: Ensemble prediction : past, present and future. Pieter Houtekamer Montreal, Canada Overview. The Canadian approach. What are the

More information

HIRLAM Regional 3D-VAR and MESAN downscaling re-analysis for the recent. 20 year period in the FP7 EURO4M project SMHI

HIRLAM Regional 3D-VAR and MESAN downscaling re-analysis for the recent. 20 year period in the FP7 EURO4M project SMHI HIRLAM Regional 3D-VAR and MESAN downscaling re-analysis for the recent 20 year period in the FP7 EURO4M project Per Undén, Tomas Landelius Per Dahlgren, Per Kållberg Stefan Gollvik, Sébastien Villaume

More information

Comparing Variational, Ensemble-based and Hybrid Data Assimilations at Regional Scales

Comparing Variational, Ensemble-based and Hybrid Data Assimilations at Regional Scales Comparing Variational, Ensemble-based and Hybrid Data Assimilations at Regional Scales Meng Zhang and Fuqing Zhang Penn State University Xiang-Yu Huang and Xin Zhang NCAR 4 th EnDA Workshop, Albany, NY

More information

The Ensemble Kalman Filter:

The Ensemble Kalman Filter: p.1 The Ensemble Kalman Filter: Theoretical formulation and practical implementation Geir Evensen Norsk Hydro Research Centre, Bergen, Norway Based on Evensen 23, Ocean Dynamics, Vol 53, No 4 p.2 The Ensemble

More information

Smoothers: Types and Benchmarks

Smoothers: Types and Benchmarks Smoothers: Types and Benchmarks Patrick N. Raanes Oxford University, NERSC 8th International EnKF Workshop May 27, 2013 Chris Farmer, Irene Moroz Laurent Bertino NERSC Geir Evensen Abstract Talk builds

More information

The satellite winds in the operational NWP system at Météo-France

The satellite winds in the operational NWP system at Météo-France The satellite winds in the operational NWP system at Météo-France Christophe Payan CNRM UMR 3589, Météo-France/CNRS 13th International Winds Workshop, Monterey, USA, 27 June 1st July 2016 Outline Operational

More information

Tangent linear and adjoint models for variational data assimilation

Tangent linear and adjoint models for variational data assimilation Data Assimilation Training Course, Reading, -4 arch 4 Tangent linear and adjoint models for variational data assimilation Angela Benedetti with contributions from: arta Janisková, Philippe Lopez, Lars

More information

Assimilation of GNSS Radio Occultation Data at JMA. Hiromi Owada, Yoichi Hirahara and Masami Moriya Japan Meteorological Agency

Assimilation of GNSS Radio Occultation Data at JMA. Hiromi Owada, Yoichi Hirahara and Masami Moriya Japan Meteorological Agency Assimilation of GNSS Radio Occultation Data at JMA Hiromi Owada, Yoichi Hirahara and Masami Moriya Japan Meteorological Agency COSMIC-IROWG 2017, 21-27 September 2017 1 Outline Current RO data utilization

More information

Status and Plans of using the scatterometer winds in JMA's Data Assimilation and Forecast System

Status and Plans of using the scatterometer winds in JMA's Data Assimilation and Forecast System Status and Plans of using the scatterometer winds in 's Data Assimilation and Forecast System Masaya Takahashi¹ and Yoshihiko Tahara² 1- Numerical Prediction Division, Japan Meteorological Agency () 2-

More information

Coupled data assimilation for climate reanalysis

Coupled data assimilation for climate reanalysis Coupled data assimilation for climate reanalysis Dick Dee Climate reanalysis Coupled data assimilation CERA: Incremental 4D-Var ECMWF June 26, 2015 Tools from numerical weather prediction Weather prediction

More information

DATA ASSIMILATION FOR FLOOD FORECASTING

DATA ASSIMILATION FOR FLOOD FORECASTING DATA ASSIMILATION FOR FLOOD FORECASTING Arnold Heemin Delft University of Technology 09/16/14 1 Data assimilation is the incorporation of measurement into a numerical model to improve the model results

More information

GSI Tutorial Background and Observation Error Estimation and Tuning. 8/6/2013 Wan-Shu Wu 1

GSI Tutorial Background and Observation Error Estimation and Tuning. 8/6/2013 Wan-Shu Wu 1 GSI Tutorial 2013 Background and Observation Error Estimation and Tuning 8/6/2013 Wan-Shu Wu 1 Analysis system produces an analysis through the minimization of an objective function given by J = x T B

More information

Land surface data assimilation for Numerical Weather Prediction

Land surface data assimilation for Numerical Weather Prediction Sixth WMO Symposium on Data Assimilation, University of Maryland, 7-11 October 2013 Land surface data assimilation for Numerical Weather Prediction P. de Rosnay, J. Muñoz Sabater, C. Albergel, G. Balsamo,

More information

Ensemble Kalman Filter

Ensemble Kalman Filter Ensemble Kalman Filter Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway, Nansen Environmental and Remote Sensing Center, Bergen, Norway The Ensemble Kalman Filter (EnKF) Represents

More information

Spatial and inter-channel observation error characteristics for AMSU-A and IASI and applications in the ECMWF system

Spatial and inter-channel observation error characteristics for AMSU-A and IASI and applications in the ECMWF system Spatial and inter-channel observation error characteristics for AMSU-A and IASI and applications in the system Niels Bormann, Andrew Collard, Peter Bauer Outline 1) Estimation of observation errors AMSU-A

More information

The Use of a Self-Evolving Additive Inflation in the CNMCA Ensemble Data Assimilation System

The Use of a Self-Evolving Additive Inflation in the CNMCA Ensemble Data Assimilation System The Use of a Self-Evolving Additive Inflation in the CNMCA Ensemble Data Assimilation System Lucio Torrisi and Francesca Marcucci CNMCA, Italian National Met Center Outline Implementation of the LETKF

More information

Numerical Weather Prediction at high latitudes. Nils Gustafsson, SMHI

Numerical Weather Prediction at high latitudes. Nils Gustafsson, SMHI Numerical Weather Prediction at high latitudes Nils Gustafsson, SMHI High latitude NWP - outline of talk The HIRLAM-A program The reference HIRLAM forecasting system Verification scores The Nordic temperature

More information

Data Assimilation Research Testbed Tutorial

Data Assimilation Research Testbed Tutorial Data Assimilation Research Testbed Tutorial Section 2: How should observations of a state variable impact an unobserved state variable? Multivariate assimilation. Single observed variable, single unobserved

More information

4D-Var or Ensemble Kalman Filter? TELLUS A, in press

4D-Var or Ensemble Kalman Filter? TELLUS A, in press 4D-Var or Ensemble Kalman Filter? Eugenia Kalnay 1 *, Hong Li 1, Takemasa Miyoshi 2, Shu-Chih Yang 1, and Joaquim Ballabrera-Poy 3 1 University of Maryland, College Park, MD, 20742-2425 2 Numerical Prediction

More information

Hybrid Variational Ensemble Data Assimilation for Tropical Cyclone

Hybrid Variational Ensemble Data Assimilation for Tropical Cyclone Hybrid Variational Ensemble Data Assimilation for Tropical Cyclone Forecasts Xuguang Wang School of Meteorology University of Oklahoma, Norman, OK Acknowledgement: OU: Ting Lei, Yongzuo Li, Kefeng Zhu,

More information

Ergodicity in data assimilation methods

Ergodicity in data assimilation methods Ergodicity in data assimilation methods David Kelly Andy Majda Xin Tong Courant Institute New York University New York NY www.dtbkelly.com April 15, 2016 ETH Zurich David Kelly (CIMS) Data assimilation

More information

Re-analysis activities at SMHI

Re-analysis activities at SMHI Re-analysis activities at SMHI by: Anna Jansson and Per Kållberg Contents Variational data assimilation at SMHI Operational MESAN Applications of MESAN MESAN used for a long time period Variational data

More information

Scatterometer Wind Assimilation at the Met Office

Scatterometer Wind Assimilation at the Met Office Scatterometer Wind Assimilation at the Met Office James Cotton International Ocean Vector Winds Science Team (IOVWST) meeting, Brest, June 2014 Outline Assimilation status Global updates: Metop-B and spatial

More information

Data Short description Parameters to be used for analysis SYNOP. Surface observations by ships, oil rigs and moored buoys

Data Short description Parameters to be used for analysis SYNOP. Surface observations by ships, oil rigs and moored buoys 3.2 Observational Data 3.2.1 Data used in the analysis Data Short description Parameters to be used for analysis SYNOP Surface observations at fixed stations over land P,, T, Rh SHIP BUOY TEMP PILOT Aircraft

More information

Forecast and analysis sensitivity to in situ observations

Forecast and analysis sensitivity to in situ observations Forecast and analysis sensitivity to in situ observations Study partly funded by EUMETNET Bruce Ingleby, Lars Isaksen, acknowledgement to Mohamed Dahoui ECMWF Bruce.Ingleby@ecmwf.int ECMWF August 8, 2016

More information

Doppler radial wind spatially correlated observation error: operational implementation and initial results

Doppler radial wind spatially correlated observation error: operational implementation and initial results Doppler radial wind spatially correlated observation error: operational implementation and initial results D. Simonin, J. Waller, G. Kelly, S. Ballard,, S. Dance, N. Nichols (Met Office, University of

More information

On the initialization of Tropical Cyclones

On the initialization of Tropical Cyclones 810 On the initialization of Tropical Cyclones M. Bonavita, M. Dahoui, P. Lopez, F. Prates, E. Hólm, G. De Chiara, A. Geer, L. Isaksen, B. Ingleby Research Department September 2017 Series: ECMWF Technical

More information

Variational data assimilation of lightning with WRFDA system using nonlinear observation operators

Variational data assimilation of lightning with WRFDA system using nonlinear observation operators Variational data assimilation of lightning with WRFDA system using nonlinear observation operators Virginia Tech, Blacksburg, Virginia Florida State University, Tallahassee, Florida rstefane@vt.edu, inavon@fsu.edu

More information

Kalman Filter and Ensemble Kalman Filter

Kalman Filter and Ensemble Kalman Filter Kalman Filter and Ensemble Kalman Filter 1 Motivation Ensemble forecasting : Provides flow-dependent estimate of uncertainty of the forecast. Data assimilation : requires information about uncertainty

More information

Introduction to Data Assimilation

Introduction to Data Assimilation Introduction to Data Assimilation Alan O Neill Data Assimilation Research Centre University of Reading What is data assimilation? Data assimilation is the technique whereby observational data are combined

More information