Parallel Newtonian Optimization without Hessian Approximation. Khalil K. Abbo College of Computer sciences and Mathematics University of Mosul

Size: px
Start display at page:

Download "Parallel Newtonian Optimization without Hessian Approximation. Khalil K. Abbo College of Computer sciences and Mathematics University of Mosul"

Transcription

1 f. J. of Comp. & Mth s., Vol., No., 6 Pllel Newto Optmzto wthout ess Appomto Collee of Compute sceces d Mthemtcs Uvesty of Mosul eceved o: /9/5 Accepted o: 6//5 الملخص الغرض من هذا البحث هو اقتراح خوارزمية تعتمد على طريقة التوازي تستند ا لى طريقة نيوتن لحل مساي ل الامثلية اللاخطية باستخدام حاسبات متوازية من النوع (MIMD) وذلك بحل نظام معادلات خطية بطريقة الحذف لكاوس بشكل متواز بدلا من ا يجاد معكوس مصفوفة هيسيان لكي نتجنب الخطا الناتج من حساب معكوس المصفوفة ولتزيد من قوة العمليات الحسابية وكذلك لتقليل الزمن اللازم لحل المسالة. ABSAC he pupose of ths ppe s to toduce pllel lothms bsed o the Newto method fo solv o-le ucosted optmzto poblem (MIMD) pllel computes by solv le system pllel us Guss Elmto method the th fd vese ess mt to vod the eos cused by evlut the vese mt d lso to cese comput powe d educe u tme..itoducto: hs ppe s coceed wth fd locl mmum * of the ucosted optmzto poblem m f () whee d the objectve f: s twce cotuously dffeetble. Methods fo ucosted optmzto e eelly tetve methods whch the use typclly povdes tl estmte of *, d possbly some ddtol fomto. A sequece of tetes { } s the eeted ccod to some lothm. Usully the lothm s such tht the sequece of fucto vlues f s mootoclly deces (f deotes f( )). Due to pctcl pplctos of the ucosted optmzto poblem, cosdeble mout of effot hs bee epded o the developmet of effcet sequetl lothms fo the soluto of ths poblems. ecet dvces pllel comput techoloy hve mde t 69

2 possble to solve the optmzto poblem moe effectvely d ces comput powe fo ths eso t s tul tht thee s cesed teest des pllel lothms fo vous types of pplctos. I ths ppe, we wll dscuss pllel umecl lothm mely Newto lothm fo the eel ucosted optmzto poblem us multpocessos o (MIMD) pllel mches whch cosst of umbe of fully pommble pocessos cpble of smulteously pefom etely dffeet opetos o dffeet dt, whee ech pocesso hs ts ow locl memoy. Cocuet computto c be doe t dffeet levels. Ou focus s o us (MIMD) computes whee umbe of pocessos commucte d coopete to solve commo computtol poblem. Multpocesso pllel computto volves thee key edets hdwe, softwe (pomm lue, opet system d comple) d pllel lothms (See [8] o []). A popul clss of methods fo solv poblem s the Qus- Newto (QN) methods. Assume tht t the th teto, ppomto pot d mt e vlble, the the methods poceed by eet sequece of ppomto pots v the equto α d whee α > s the step- sze whch s clculted to stsfy cet le sech codtos d d s -dmesol el vecto epeset the sech decto. Fo QN methods, d s defed by : d whee f ) s the det vecto of f() evluted t pot ( d s ppomto of () G ( whee G f ( ) ) whch s coected o updted fom teto to teto eel s symmetc d postve defte, thee e dffeet choces of, we lst hee some must popul foms (See [5],[6]o[4]). ( )( ) (4) ( ) Whee d s clled k- oe fomul, the othe foms e BFGS d DFP whee BFGS (5) 7

3 Pllel Newto Optmzto DFP (6) QN methods metoed bove hve two dsdvtes: oe of whch QN lothms eque le sech whch s epesve pctce d he secod s the ccumulto of eo evlut the ppomte usse mt t ech teto. o ovecome these dsdvtes we use pllel Newto method wthout ppomt usse mt d elect le sech -Newto Method Newto method uses fst d secod devtves, the de behd ths method s s follows: Gve stt pot, we costuct qudtc ppomto to the objectve fucto tht mtches the fst d the secod devtve vlues t the pot. We the mmze the ppomte (qudtc) fucto sted of the ol objectve fucto. We use the mmze of the objectve fucto s the stt pot the et step d we epet the pocedue tetvely. If the objectve fucto s qudtc, the the ppomto s ect, d the method yelds the tue mmze oe step. If o the othe hd, the objectve fucto s ot qudtc the the ppomto wll povde oly estmte fo the posto of the tue mmze. We c obt qudtc ppomto to the ve twce cotuously dffeetble fucto f() us the ylo sees epso of f bout the cuet pot, elect tems of ode thee d hhe fo smplcty we let f ( ) q( ) f G (7) whee, d the mt G usully postve defte whe s some ehbohood of *. A uque mmze of q( ) ests f d oly f G s postve d Newto method s oly well defed ths cse. (See [5]). he ( ) s obted by fd the sttoy pot t q( ), whch eques the soluto of the le system G (8) the et step s the defed by (9) 7

4 We the pove tht the sequece { } coveece d the ode of coveece s two (See []). hese locl coveece popetes epeset the del locl behvo whch othe lothms m be evluted s f s possble (See [6]). I fct, supe le coveece of y lothm s obted f d oly f the step s symptotclly equl to the step ve by solv (8). hs fudmetl esults due to Des d Moe (974) emphses the mpotce of the Newto step fo locl coveece. wo qute dffeet clsses of methods fo solv the le system (8) e t teest: dect methods d tetve methods. I dect method, the system s tsfomed to system of smple fom e.. tul o dol fom, whch c be solved elemety wy. he most mpott dect method s the Guss elmto, we wll use t to solve the le system (8).. Guss Elmto Method A fudmetl obsevto Guss elmto s the elemety ow opetos, whch c be pefomed o the system wthout ch the set of soluto. hese opetos e: - dd multple of the th equto to the jth equto - Iteche two equtos. he de behd Guss elmto s to use such elemety opetos to elmte the ukows the system (8) symmetc wy, so tht t the ed equvlet uppe tul system s poduced, whch s the solved by bck substtuto. If. (whee G j ). he the fst step we elmte fom the lst (-) equto by subtct the multple L,,..., of the fst equto fom the th equto. hs poduces educes system of (-) equtos the (-) ukows,,...,, whee the ew coeffcets e ve by : ~ j j L ~ j ; L,,,..., If, we c elmte fom the lst (-) equtos. Afte m- steps, m of Guss elmto the mt G hs bee educed to the fom: 7

5 Pllel Newto Optmzto ( m) G M Whee (m) K K O j steps m,,,. ; M ( m) M ( m) ( m) s the educed elemet poduced fom ow opeto t ( ) he elemets m (,..., ) e clled pvotl elemets. hee e two dffcultes the Guss elmto method. he fst f zeo ( m) pvotl elemet s ecouteed.e fo some m, the we cot poceed. But ths cse does ot occu ou poblem, whch s stted (8). Sce G s sque mt d postve defte, ths mes tht ll dol elemets of G e o-zeo. Secod zeo pvot ect thmetc wll lmost vbly be polluted by oud eos such wy tht t equls some smll o-zeo umbe, ufotutely, thee s o eel ule whch c be used to decde whe pvot should be tke to be zeo. Wht tolece to use such test should deped o the cotet. hs questo d the stblty (wthout these two dffcultes) of Guss method teted [Lus, ] Guss Elmto Alothm Gve mt G G d vecto the follow lothm educes the system G to uppe tul fom,,,..,, sce G s postve d symmetc) Fo k:- Fo k: L k fo jk: ed ed ed ( k) k ( k) kk L ( k ) ( k) ( k) j j k kj L ( k ) ( k) ( k) k k ; 7

6 4- Pllel lothms fo fd Newto decto: I ode fo the lothm to be s effcet s possble, we must be ble to eplot the memoy hechy of the chtectue we e u o. he memoy hechy efes to dffeet kds of memoes sde compute. hese e fom vey fst, epesve d theefoe smll memoy t the top of the hechy, dow to slow. Chep d vey le memoy t the bottom (fo moe detl see []). Useful flot pot opetos c oly be doe t the top of hechy, the estes. Sce ete le mt cot ft sde the estes, t must be moved up d dow thouh the hechy. hs tkes tme d fo mmum pefomce should be optmzed fo ech chtectue. he Bsc le Aleb Subpoms BLAS e hh pefomce outes fo pefom bsc vecto d mt opetos. he BLAS e specfclly mche optmzed to eplot the memoy hechy. Level BLAS does vecto-vecto opeto, Level BLAS does mt-vecto opetos d Level BLAS does mt-mt opetos (see [7]). I ode to speed up Guss elmto, we wsh to use s hh level of BLAS s possble. hee e dffeet wys to pllelze the Guss elmto method. I ths ppe, we cosde two types of pllel Guss elmto, the fst s bsed o the ows of the mt G d the secod uses colums of G. 4-: Pllel Guss Elmto Bsed o ows (PGE) he most popul fom of Guss elmto s defed by subtct multple of ow of the mt G fom othe ows ode to educe (8) to uppe tul system, whch s the solved dectly by bck substtuto. We ssume tht the comput system cossts of (whee s the dmeso of the poblem) detcl depedet pocessos lso ssume tht the th ow of G s ssed to pocessos. At the fst ste, the fst ow of G s set to ll pocessos d the the elmto of the fst elemets of ows to c be doe pllel the pocessos P,,P. he computto s cotued by sed the ew secod ow of the educed mt fom pocessos P,,P, the do the clcultos pllel ; d so o [see fue, ] 74

7 Pllel Newto Optmzto P P P - sve,, G - sve secod ow -sve d eceve.fd ( ) j l j, j,..., d sed l j to p j - eceve d to fd L fom p s follows d L - do fo,, to fd the educed fom L sed fst to p,..., p - 4.,..., do fo - do fo,, L -eceve,..., fom pocessos P... P L d sed the vecto to P 5..eceve L j fom p d epet (4) fo 6.eceve the vecto to fd d fd ew fom 4. eceve L (,..., ) d fd sed t to P,,P G 4- If G uppe tul use bck substtuto to fd, ( ) ( ),..., d 5- sed ( ) to P fom d G G 6.- f < ε stop, othewse ;Go to Fue tsks of pocessos PGE hs ppoch hs two mjo dwbcks (See [9]) () thee s cosdeble commucto of dt betwee the pocessos t ech ste () the umbe of ctve pocessos deceses by oe t ech ste. 4-: Pllel Guss Elmto Bsed o Colums (PGEC) Let ( ), d G G e ve d ssume tht the comput system cossts of detcl depedet pocessos d fully commucted pocessos, lso ssume tht the jth colum (C j ). of the 75

8 mt G s ssed to pocesso j d colum he fst step s to fd L ;,... ssed to P. P the the vlues of L c be set to pocesso P j (j,..,), the the computto c be doe pllel ll pocessos s follows : fo ech pocessos j,, j L jj j ;,..., d pocesso compute the vecto fom m Lm m ; m,..., fo et step (see fue we c fd L ;,... p d the sed to pocessos P,,P d the pocess s epeted utl the mt G s tsfomed to uppe tul mt, we deote t G (k) ltte k steps d the bcksubsttuto s used to fd the vecto. k he ew pot s foud fom equto (9). A ths lothm the umbe of ctve pocessos deceses by oe t ech ste. he m dvte of ths lothm s tht we optmzed dt tsfe betwee pocessos sce we eed oly tsfe elemets sted of vectos, ths wll educe the tme equed to complete the computtos. 76

9 Pllel Newto Optmzto p p p p Step.sve,, C - fd L ;,..., d sed t to P,,P - do fo,., L ; ; C 4.step (k): - eceve fom C (,..., ) k P,,P ; s - sve C - eceve L fom P - do L C,..., step - fd L ;,..., d epet the pocess - sed L to P,,P - epet () fo C - sve C - eceve L fom P - do fo,, L C sed t to P - step - eceve L fom P - epet () fo d L C - the pocess epeted utl G (k) tul ( ) 4- sed C k to P - sve ; - eceve L,, - fom P - do fo.,,- L : : step (k) - ( k) k C,..., ( k) - sed C to P k k G C C C tul? d L to fd [ ] () L - use bck substtuto to fd C to P 4- sed ; to fd ew t stop othewse < ε.if 4-,,, ; G G epet fom step ( k) Fue tsks of pocessos PGEBC Numecl Emple: 77

10 78 We ve emple fom [] to llustte the tsks of pocessos the lothms PGE d PGEC -Mmze the fucto (). 4 ),, ( f ] [ ; ] [ whee ; ) ( G. Us PGE: We eed pocessos, see fue ()

11 Pllel Newto Optmzto P P P - sve - fd,, G 4 L d L vlue to P, P - sed, sed these [ 4 ] to P, P 4- do fo,, --(-)(/)-4 --(-/)(/)5/4 5 [ 4 ] 4 5-eceve L fom P 6- do (5/4)-(-)(-4)-7/4 / 4 d 7 / 4 sed to P 7- / / 8- < ε stop - sve - eceve [ 4 4 ] [ 4 ] d L - - do,, -4 (-) -(-)()8 [ 4 8] 4 sed to P -sve - eceve [ ] - do fo,, -(/) -(/)(-4)8 -(/)()5/ 4 eceve d L d fd 8 L sed L to 4 P 5- epet step () fo 8-(-)(-4) (5/)-(-)87/ 6- G 7-eceve / fom P 8- use bck substtuto to fd d sed t to P Fue () sks of pocessos us PGE lothm - Us PGEC: 79

12 We eed 4 pocessos to solve the poblem ve () s show fue (4) P ` P P P 4 Step - sve -sve - sve -sve X C [ / ] [ / ] [ 4 ] - fd 4 L, L d sed the to P,,P,P4 - do 4 - -(/) [ ] C step - eceve [ 4 4 ] C - eceve L-,,L/ - do 4-(-)(-4)-4 -(/)(-4)8 [ ] C step - fd L8/-4- d sed t to P,,P4I - do 8-(-)(-4) sed t to P C [ ] -eceve L,L -do - (-)()8 -(/)()-5/ [ ] C 8 5/ step - eceve L - do -5/-(-)(8)7/ [ ] C 8 7/ sed t to P [ ] / -eceve L,L - do --(-)(-/)-4 --/(-/)5/4 [ ] / 4 5/4 step - eceve L - do 5/4 -(-)(-4)-7/4 [ / 4 7/4] () sed t to P C () () C,, () - G 4 4 / 4 7 / 4 - use bck 8 7/ substtuto to fd / Fue (4): sks of pocessos fo PGEC lothm 5-Numecl epemets: 8

13 Pllel Newto Optmzto Both the mout of tme equed to complete the clcultos d the subsequet oud-off eo deped o the umbe of flot thmetc opetos eeded to solve oute poblem. he mout of tme equed to pefom multplcto o dvso o compute s ppomtely the sme d s cosdebly ete th tht equed to pefom ddto o subtcto (see []). he totl umbe of thmetc opeto depeds o the sze s follows: Multplctos / dvsos: 5 Addtos / subtctos: 6 Fo le, the totl umbe of Multplctos d dvsos s ppomtely s s the totl umbe of ddtos d subtctos. ece f the ll opetos doe o sequetl compute the the ccumulto eo wll be le. O the othe hd, dvd the opeto o dffeet pocessos wll educe the mout of eos. As fo the mout of tme, If we ssume t s tme equed to complete the clcultos sequetl compute, we epect the tme equed to pefom the sme clcultos the pllel lothms poposed s t whee p umbe of pocessos. p I the lothms PGE d PGEC, thee s o eed to le sech d mt veso, ll opetos e doe us ody thmetc opetos. Also, the umbe of fucto evlutos e oly, sce the Guss method ves ect solutos show the ve emple. Cocluso: I ths ppe we poposed two pllel lothms fo solv ucosted optmzto poblem. hese methods c be eteded to y o-homoeous le system wth postve defte mt. hese methods do ot eque to vecto multplcto d mt veso s show the umecl emple. EFEENCES 8

14 [] Budy B.. (984) A Bsc optmzto methods Lodo.Edwd Aold Bdfod squ. [] Des J. d J. Moe (974) A chctezto of supe le covee d ts pplcto to qus-newto Methods Mths. of Computto. 8,pp [] Douls J. d B. chd () Numecl Methods thd edto [Books/ Cole] homso le: Ic [4] Edw K. d. Stslw () A toducto to optmzto Joh Wley & Sos. Ic [5] Fletche. (987) Pctcl optmzto secod edto, Joh Wley & Sos. Ltd [6] Fletche. (99) A ovevew of ucosted optmzto Numecl Alyss epot NA/49. [7] Jmes, W.;. Mchel,; A. ek, d V.V, (99) Pllel Numecl Le Aleb,Mthemtcl Isttute uvesty. [8] Jod,. d G. Alhbd, () Fudmetls of pllel pocess, USA: New Jesey, Petce ll. [9] Khlf M. 99 Pllel Numecl Alothms fo solv ODEs Ph.D. hess leds uvesty. [] Luss () Numecl Mthemtcs d Scetfc computto Ake-Bjolck Vol.. [] Ms O. (994) Pllel Gdet Dstbuto ucosted optmzto /sech?hl e&sx&ospell&esum&ctesult&cd &qms O. 994%E%8%9CPllelGdetDstb [] Mchel, W. 4 Pllel Guss Elmto http: // www. studet.cs.uwteloo.c/~cs775/poject/de.html [] obet, M. (4) Newto s Method fo ucosted optmzto, Cs775, Uvesty of Wteloo, Msschusetts Isttute of echoloy. 8

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS ELM Numecl Alyss D Muhem Mecmek SOLVING SYSTEMS OF EQUATIONS DIRECT METHODS ELM Numecl Alyss Some of the cotets e dopted fom Luee V. Fusett Appled Numecl Alyss usg MATLAB. Petce Hll Ic. 999 ELM Numecl

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Chapter 17. Least Square Regression

Chapter 17. Least Square Regression The Islmc Uvest of Gz Fcult of Egeeg Cvl Egeeg Deptmet Numecl Alss ECIV 336 Chpte 7 Lest que Regesso Assocte Pof. Mze Abultef Cvl Egeeg Deptmet, The Islmc Uvest of Gz Pt 5 - CURVE FITTING Descbes techques

More information

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE D I D A C T I C S O F A T H E A T I C S No (4) 3 SOE REARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOIAL ASYPTOTE Tdeusz Jszk Abstct I the techg o clculus, we cosde hozotl d slt symptote I ths ppe the

More information

Describes techniques to fit curves (curve fitting) to discrete data to obtain intermediate estimates.

Describes techniques to fit curves (curve fitting) to discrete data to obtain intermediate estimates. CURVE FITTING Descbes techques to ft cuves (cuve fttg) to dscete dt to obt temedte estmtes. Thee e two geel ppoches fo cuve fttg: Regesso: Dt ehbt sgfct degee of sctte. The stteg s to deve sgle cuve tht

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi Assgmet /MATH 47/Wte Due: Thusday Jauay The poblems to solve ae umbeed [] to [] below Fst some explaatoy otes Fdg a bass of the colum-space of a max ad povg that the colum ak (dmeso of the colum space)

More information

XII. Addition of many identical spins

XII. Addition of many identical spins XII. Addto of may detcal sps XII.. ymmetc goup ymmetc goup s the goup of all possble pemutatos of obects. I total! elemets cludg detty opeato. Each pemutato s a poduct of a ceta fte umbe of pawse taspostos.

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

Lecture 3-4 Solutions of System of Linear Equations

Lecture 3-4 Solutions of System of Linear Equations Lecture - Solutos of System of Ler Equtos Numerc Ler Alger Revew of vectorsd mtrces System of Ler Equtos Guss Elmto (drect solver) LU Decomposto Guss-Sedel method (tertve solver) VECTORS,,, colum vector

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

8. SIMPLE LINEAR REGRESSION. Stupid is forever, ignorance can be fixed.

8. SIMPLE LINEAR REGRESSION. Stupid is forever, ignorance can be fixed. CIVL 33 Appomto d Ucett J.W. Hule, R.W. Mee 8. IMPLE LINEAR REGREION tupd s foeve, goce c be fed. Do Wood uppose we e gve set of obsevtos (, ) tht we beleve to be elted s f(): Lookg t the plot t ppes tht

More information

5 - Determinants. r r. r r. r r. r s r = + det det det

5 - Determinants. r r. r r. r r. r s r = + det det det 5 - Detemts Assote wth y sque mtx A thee s ume lle the etemt of A eote A o et A. Oe wy to efe the etemt, ths futo fom the set of ll mtes to the set of el umes, s y the followg thee popetes. All mtes elow

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

GCE AS/A Level MATHEMATICS GCE AS/A Level FURTHER MATHEMATICS

GCE AS/A Level MATHEMATICS GCE AS/A Level FURTHER MATHEMATICS GCE AS/A Level MATHEMATICS GCE AS/A Level FURTHER MATHEMATICS FORMULA BOOKLET Fom Septembe 07 Issued 07 Mesuto Pue Mthemtcs Sufce e of sphee = 4 Ae of cuved sufce of coe = slt heght Athmetc Sees S l d

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

6.6 The Marquardt Algorithm

6.6 The Marquardt Algorithm 6.6 The Mqudt Algothm lmttons of the gdent nd Tylo expnson methods ecstng the Tylo expnson n tems of ch-sque devtves ecstng the gdent sech nto n tetve mtx fomlsm Mqudt's lgothm utomtclly combnes the gdent

More information

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by Clss Summy.5 Eponentil Functions.6 Invese Functions nd Logithms A function f is ule tht ssigns to ech element D ectly one element, clled f( ), in. Fo emple : function not function Given functions f, g:

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1 Scholas Joual of Egeeg ad Techology (SJET) Sch. J. Eg. Tech. 0; (C):669-67 Scholas Academc ad Scetfc Publshe (A Iteatoal Publshe fo Academc ad Scetfc Resouces) www.saspublshe.com ISSN -X (Ole) ISSN 7-9

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof MATEC Web of Cofeeces ICIEA 06 600 (06) DOI: 0.05/mateccof/0668600 The ea Pobablty Desty Fucto of Cotuous Radom Vaables the Real Numbe Feld ad Its Estece Poof Yya Che ad Ye Collee of Softwae, Taj Uvesty,

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

SEPTIC B-SPLINE COLLOCATION METHOD FOR SIXTH ORDER BOUNDARY VALUE PROBLEMS

SEPTIC B-SPLINE COLLOCATION METHOD FOR SIXTH ORDER BOUNDARY VALUE PROBLEMS VOL. 5 NO. JULY ISSN 89-8 RN Joul of Egeeg d ppled Sceces - s Resech ulshg Netok RN. ll ghts eseved..pouls.com SETIC -SLINE COLLOCTION METHOD FOR SIXTH ORDER OUNDRY VLUE ROLEMS K.N.S. Ks Vsdhm d. Mul Ksh

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

Difference Sets of Null Density Subsets of

Difference Sets of Null Density Subsets of dvces Pue Mthetcs 95-99 http://ddoog/436/p37 Pulshed Ole M (http://wwwscrpog/oul/p) Dffeece Sets of Null Dest Susets of Dwoud hd Dsted M Hosse Deptet of Mthetcs Uvest of Gul Rsht I El: hd@gulc h@googlelco

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

Chapter 9 Pipeline and Parallel Recursive and Adaptive Filters

Chapter 9 Pipeline and Parallel Recursive and Adaptive Filters Chpte 9 Ppele d Pllel Recusve d Adptve Fltes Y-Tsug Hwg VLSI DSP Y.T. Hwg 9- Itoducto Ay equed dgtl flte spectum c be eled usg FIR o IIR fltes IIR fltes eque lowe tp ode but hve potetl stblty poblem dptve

More information

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles.

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles. Seeth Edto CHPTER 4 VECTOR MECHNICS FOR ENINEERS: DYNMICS Fedad P. ee E. Russell Johsto, J. Systems of Patcles Lectue Notes: J. Walt Ole Texas Tech Uesty 003 The Mcaw-Hll Compaes, Ic. ll ghts eseed. Seeth

More information

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S Fomulae Fo u Pobablty By OP Gupta [Ida Awad We, +91-9650 350 480] Impotat Tems, Deftos & Fomulae 01 Bascs Of Pobablty: Let S ad E be the sample space ad a evet a expemet espectvely Numbe of favouable evets

More information

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses Mmzg sphecal abeatos Explotg the exstece of cojugate pots sphecal leses Let s ecall that whe usg asphecal leses, abeato fee magg occus oly fo a couple of, so called, cojugate pots ( ad the fgue below)

More information

Gauss-Quadrature for Fourier-Coefficients

Gauss-Quadrature for Fourier-Coefficients Copote Techology Guss-Qudtue o Foue-Coecets A. Glg. Hezog. Pth P. Retop d U. Weve Cotet: The tusve method The o-tusve method Adptve Guss qudtue Embeddg to optmzto Applcto u ü tee Gebuch / Copyght Semes

More information

Fairing of Parametric Quintic Splines

Fairing of Parametric Quintic Splines ISSN 46-69 Eglad UK Joual of Ifomato ad omputg Scece Vol No 6 pp -8 Fag of Paametc Qutc Sples Yuau Wag Shagha Isttute of Spots Shagha 48 ha School of Mathematcal Scece Fuda Uvesty Shagha 4 ha { P t )}

More information

Lecture 10: Condensed matter systems

Lecture 10: Condensed matter systems Lectue 0: Codesed matte systems Itoducg matte ts codesed state.! Ams: " Idstgushable patcles ad the quatum atue of matte: # Cosequeces # Revew of deal gas etopy # Femos ad Bosos " Quatum statstcs. # Occupato

More information

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane.

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane. CBSE CBSE SET- SECTION. Gv tht d W d to fd 7 7 Hc, 7 7 7. Lt,. W ow tht.. Thus,. Cosd th vcto quto of th pl.. z. - + z = - + z = Thus th Cts quto of th pl s - + z = Lt d th dstc tw th pot,, - to th pl.

More information

Studying the Problems of Multiple Integrals with Maple Chii-Huei Yu

Studying the Problems of Multiple Integrals with Maple Chii-Huei Yu Itetol Joul of Resech (IJR) e-issn: 2348-6848, - ISSN: 2348-795X Volume 3, Issue 5, Mch 26 Avlble t htt://tetoljoulofesechog Studyg the Poblems of Multle Itegls wth Mle Ch-Hue Yu Detmet of Ifomto Techology,

More information

Lecture 10. Solution of Nonlinear Equations - II

Lecture 10. Solution of Nonlinear Equations - II Fied point Poblems Lectue Solution o Nonline Equtions - II Given unction g : R R, vlue such tht gis clled ied point o the unction g, since is unchnged when g is pplied to it. Whees with nonline eqution

More information

AS and A Level Further Mathematics B (MEI)

AS and A Level Further Mathematics B (MEI) fod Cmbdge d RSA *3369600* AS d A evel Futhe Mthemtcs B (MEI) The fomto ths booklet s fo the use of cddtes followg the Advced Subsd Futhe Mthemtcs B (MEI)(H635) o the Advced GCE Futhe Mthemtcs B (MEI)

More information

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx Iteatoal Joual of Mathematcs ad Statstcs Iveto (IJMSI) E-ISSN: 3 4767 P-ISSN: 3-4759 www.jms.og Volume Issue 5 May. 4 PP-44-5 O EP matces.ramesh, N.baas ssocate Pofesso of Mathematcs, ovt. ts College(utoomous),Kumbakoam.

More information

ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY)

ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY) ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY) Floet Smdche, Ph D Aocte Pofeo Ch of Deptmet of Mth & Scece Uvety of New Mexco 2 College Rod Gllup, NM 873, USA E-ml: md@um.edu

More information

Mathematical Statistics

Mathematical Statistics 7 75 Ode Sttistics The ode sttistics e the items o the dom smple ed o odeed i mitude om the smllest to the lest Recetl the impotce o ode sttistics hs icesed owi to the moe equet use o opmetic ieeces d

More information

Week 8. Topic 2 Properties of Logarithms

Week 8. Topic 2 Properties of Logarithms Week 8 Topic 2 Popeties of Logithms 1 Week 8 Topic 2 Popeties of Logithms Intoduction Since the esult of ithm is n eponent, we hve mny popeties of ithms tht e elted to the popeties of eponents. They e

More information

GCE AS and A Level MATHEMATICS FORMULA BOOKLET. From September Issued WJEC CBAC Ltd.

GCE AS and A Level MATHEMATICS FORMULA BOOKLET. From September Issued WJEC CBAC Ltd. GCE AS d A Level MATHEMATICS FORMULA BOOKLET Fom Septeme 07 Issued 07 Pue Mthemtcs Mesuto Suce e o sphee = 4 Ae o cuved suce o coe = heght slt Athmetc Sees S = + l = [ + d] Geometc Sees S = S = o < Summtos

More information

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi SOME PROPERTIES CONCERNING THE HYPERSURFACES OF A WEYL SPACE

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi SOME PROPERTIES CONCERNING THE HYPERSURFACES OF A WEYL SPACE Jou of Eee d Ntu Scece Mühed e Fe Be De S 5/4 SOME PROPERTIES CONCERNING THE HYPERSURFACES OF A EYL SPACE N KOFOĞLU M S Güze St Üete, Fe-Edeyt Füte, Mtet Böüü, Beştş-İSTANBUL Geş/Receed:..4 Ku/Accepted:

More information

Spectral Continuity: (p, r) - Α P And (p, k) - Q

Spectral Continuity: (p, r) - Α P And (p, k) - Q IOSR Joul of Mthemtcs (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X Volume 11, Issue 1 Ve 1 (J - Feb 215), PP 13-18 wwwosjoulsog Spectl Cotuty: (p, ) - Α P Ad (p, k) - Q D Sethl Kum 1 d P Mhesw Nk 2 1

More information

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system 436-459 Advnced contol nd utomtion Extensions to bckstepping contolle designs Tcking Obseves (nonline dmping) Peviously Lst lectue we looked t designing nonline contolles using the bckstepping technique

More information

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index Joual of Multdscplay Egeeg Scece ad Techology (JMEST) ISSN: 359-0040 Vol Issue, Febuay - 05 Mmum Hype-Wee Idex of Molecula Gaph ad Some Results o eged Related Idex We Gao School of Ifomato Scece ad Techology,

More information

Summary: Binomial Expansion...! r. where

Summary: Binomial Expansion...! r. where Summy: Biomil Epsio 009 M Teo www.techmejcmth-sg.wes.com ) Re-cp of Additiol Mthemtics Biomil Theoem... whee )!!(! () The fomul is ville i MF so studets do ot eed to memoise it. () The fomul pplies oly

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

Exponential Generating Functions - J. T. Butler

Exponential Generating Functions - J. T. Butler Epoetal Geeatg Fuctos - J. T. Butle Epoetal Geeatg Fuctos Geeatg fuctos fo pemutatos. Defto: a +a +a 2 2 + a + s the oday geeatg fucto fo the sequece of teges (a, a, a 2, a, ). Ep. Ge. Fuc.- J. T. Butle

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector evel-2 BS trx-vector opertos wth 2 opertos sequetlly BS-Notto: S --- sgle precso G E geerl mtrx V --- vector defes SGEV, mtrx-vector product: r y r α x β r y ther evel-2 BS: Solvg trgulr system x wth trgulr

More information

The definite Riemann integral

The definite Riemann integral Roberto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 4 The defte Rem tegrl Wht you eed to kow lredy: How to ppromte the re uder curve by usg Rem sums. Wht you c ler here: How to use

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae : Fomule Gee (G): Fomule you bsolutely must memoise i ode to pss Advced Highe mths. Remembe you get o fomul sheet t ll i the em! Ambe (A): You do t hve to memoise these fomule, s it is possible to deive

More information

2. Elementary Linear Algebra Problems

2. Elementary Linear Algebra Problems . Eleety e lge Pole. BS: B e lge Suoute (Pog pge wth PCK) Su of veto opoet:. Coputto y f- poe: () () () (3) N 3 4 5 3 6 4 7 8 Full y tee Depth te tep log()n Veto updte the f- poe wth N : ) ( ) ( ) ( )

More information

On The Circulant K Fibonacci Matrices

On The Circulant K Fibonacci Matrices IOSR Jou of Mthetcs (IOSR-JM) e-issn: 78-578 p-issn: 39-765X. Voue 3 Issue Ve. II (M. - Ap. 07) PP 38-4 www.osous.og O he Ccut K bocc Mtces Sego co (Deptet of Mthetcs Uvesty of Ls Ps de G C Sp) Abstct:

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

Lecture 5 Single factor design and analysis

Lecture 5 Single factor design and analysis Lectue 5 Sngle fcto desgn nd nlss Completel ndomzed desgn (CRD Completel ndomzed desgn In the desgn of expements, completel ndomzed desgns e fo studng the effects of one pm fcto wthout the need to tke

More information

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005.

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005. Techc Appedx fo Iveoy geme fo Assemy Sysem wh Poduc o Compoe eus ecox d Zp geme Scece 2005 Lemm µ µ s c Poof If J d µ > µ he ˆ 0 µ µ µ µ µ µ µ µ Sm gumes essh he esu f µ ˆ > µ > µ > µ o K ˆ If J he so

More information

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index CROATICA CHEMICA ACTA CCACAA ISSN 00-6 e-issn -7X Crot. Chem. Act 8 () (0) 9 0. CCA-5 Orgl Scetfc Artcle Bod Addtve Modelg 5. Mthemtcl Propertes of the Vrble Sum Edeg Ide Dmr Vukčevć Fculty of Nturl Sceces

More information

This immediately suggests an inverse-square law for a "piece" of current along the line.

This immediately suggests an inverse-square law for a piece of current along the line. Electomgnetic Theoy (EMT) Pof Rui, UNC Asheville, doctophys on YouTube Chpte T Notes The iot-svt Lw T nvese-sque Lw fo Mgnetism Compe the mgnitude of the electic field t distnce wy fom n infinite line

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

10 Statistical Distributions Solutions

10 Statistical Distributions Solutions Communictions Engineeing MSc - Peliminy Reding 1 Sttisticl Distiutions Solutions 1) Pove tht the vince of unifom distiution with minimum vlue nd mximum vlue ( is ) 1. The vince is the men of the sques

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

Radial geodesics in Schwarzschild spacetime

Radial geodesics in Schwarzschild spacetime Rdil geodesics in Schwzschild spcetime Spheiclly symmetic solutions to the Einstein eqution tke the fom ds dt d dθ sin θdϕ whee is constnt. We lso hve the connection components, which now tke the fom using

More information

The formulae in this booklet have been arranged according to the unit in which they are first

The formulae in this booklet have been arranged according to the unit in which they are first Fomule Booklet Fomule Booklet The fomule ths ooklet hve ee ge ccog to the ut whch the e fst touce. Thus cte sttg ut m e eque to use the fomule tht wee touce peceg ut e.g. ctes sttg C mght e epecte to use

More information

Transmuted Generalized Lindley Distribution

Transmuted Generalized Lindley Distribution Itetol Joul of Memtcs Teds d Techology- olume9 Numbe Juy 06 Tsmuted Geelzed Ldley Dstbuto M. Elghy, M.Rshed d A.W.Shwk 3, Buydh colleges, Deptmet of Memtcl Sttstcs, KSA.,, 3 Isttute of Sttstcl Studes d

More information

Density estimation II

Density estimation II CS 750 Mche Lerg Lecture 6 esty estmto II Mlos Husrecht mlos@tt.edu 539 Seott Squre t: esty estmto {.. } vector of ttrute vlues Ojectve: estmte the model of the uderlyg rolty dstruto over vrles X X usg

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.) BINOMIAL THEOREM SOLUTION. (D) ( + + +... + ) (+ + +.) The coefficiet of + + + +... + fo. Moeove coefficiet of is + + + +... + if >. So. (B)... e!!!! The equied coefficiet coefficiet of i e -.!...!. (A),

More information

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz STAT UIU Pctice Poblems # SOLUTIONS Stepov Dlpiz The followig e umbe of pctice poblems tht my be helpful fo completig the homewo, d will liely be vey useful fo studyig fo ems...-.-.- Pove (show) tht. (

More information

Non-axial symmetric loading on axial symmetric. Final Report of AFEM

Non-axial symmetric loading on axial symmetric. Final Report of AFEM No-axal symmetc loadg o axal symmetc body Fal Repot of AFEM Ths poject does hamoc aalyss of o-axal symmetc loadg o axal symmetc body. Shuagxg Da, Musket Kamtokat 5//009 No-axal symmetc loadg o axal symmetc

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

9.4 The response of equilibrium to temperature (continued)

9.4 The response of equilibrium to temperature (continued) 9.4 The esponse of equilibium to tempetue (continued) In the lst lectue, we studied how the chemicl equilibium esponds to the vition of pessue nd tempetue. At the end, we deived the vn t off eqution: d

More information

Patterns of Continued Fractions with a Positive Integer as a Gap

Patterns of Continued Fractions with a Positive Integer as a Gap IOSR Jourl of Mthemtcs (IOSR-JM) e-issn: 78-578, -ISSN: 39-765X Volume, Issue 3 Ver III (My - Ju 6), PP -5 wwwosrjourlsorg Ptters of Cotued Frctos wth Postve Iteger s G A Gm, S Krth (Mthemtcs, Govermet

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae Advced Highe Mths: Fomule Advced Highe Mthemtics Gee (G): Fomule you solutely must memoise i ode to pss Advced Highe mths. Rememe you get o fomul sheet t ll i the em! Ame (A): You do t hve to memoise these

More information

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve)

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve) 6 Supeellipse (Lmé cuve) 6. Equtios of supeellipse A supeellipse (hoizotlly log) is epessed s follows. Implicit Equtio y + b 0 0 (.) Eplicit Equtio y b - 0 0 (.') Whe 3, b, the supeellipses fo

More information

Chapter I Vector Analysis

Chapter I Vector Analysis . Chpte I Vecto nlss . Vecto lgeb j It s well-nown tht n vecto cn be wtten s Vectos obe the followng lgebc ules: scl s ) ( j v v cos ) ( e Commuttv ) ( ssoctve C C ) ( ) ( v j ) ( ) ( ) ( ) ( (v) he lw

More information

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

University of Pavia, Pavia, Italy. North Andover MA 01845, USA Iteatoal Joual of Optmzato: heoy, Method ad Applcato 27-5565(Pt) 27-6839(Ole) wwwgph/otma 29 Global Ifomato Publhe (HK) Co, Ltd 29, Vol, No 2, 55-59 η -Peudoleaty ad Effcecy Gogo Gog, Noma G Rueda 2 *

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Chapter 2 Infinite Series Page 1 of 9

Chapter 2 Infinite Series Page 1 of 9 Chpter Ifiite eries Pge of 9 Chpter : Ifiite eries ectio A Itroductio to Ifiite eries By the ed of this sectio you will be ble to uderstd wht is met by covergece d divergece of ifiite series recogise geometric

More information

COMP 465: Data Mining More on PageRank

COMP 465: Data Mining More on PageRank COMP 465: Dt Mnng Moe on PgeRnk Sldes Adpted Fo: www.ds.og (Mnng Mssve Dtsets) Powe Iteton: Set = 1/ 1: = 2: = Goto 1 Exple: d 1/3 1/3 5/12 9/24 6/15 = 1/3 3/6 1/3 11/24 6/15 1/3 1/6 3/12 1/6 3/15 Iteton

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula NCTU Deprme o Elecrcl d Compuer Egeerg Seor Course By Pro. Yo-Pg Ce. Ruge-Ku Formul For Derel Equos A. Euler Formul B. Ruge-Ku Formul C. A Emple or Four-Order Ruge-Ku Formul

More information