Safety of Rockfill Dam upon Underwater Explosion Limin Zhang Tianhua Xu

Size: px
Start display at page:

Download "Safety of Rockfill Dam upon Underwater Explosion Limin Zhang Tianhua Xu"

Transcription

1 Wuhan University 26 May 215 Safety of Rockfill Dam upon Underwater Explosion Limin Zhang Tianhua Xu

2 Acknowledgement Breaching mechanisms of earth and rockfill dams under extreme dynamic loading conditions and associated risk assessment (NSFC 海外及港澳学者合作研究基金, ) 2

3 Outline Explosion physics and applications Numerical model Constitutive models Numerical implementation Response of a core-wall dam to upstream underwater explosion Conclusions 3

4 Blasting Civil engineering Mining engineering Military use-bombing Open pit mining blasting Tunnel excavation Slope excavation Demolition Military use 4

5 Blasting Energy release and transformation during an explosion Gas expansion Shock Fragmentation Explosives Detonation Production gas Surrounding materials Acceleration Damage Chemical energy Shock wave Heat, mechanical energy, Plastic deformation 5

6 Introduction to explosion physics Detonation Production gas Reaction zone Unreacted explosive C-J Plane: u CJ, p CJ, r CJ, T CJ, v CJ D u, p, r, T, v C-J Plane: Chapman-Jouget plane Production gas expansion JWL (Jones-Wilkins-Lee) equation of state (e.g. Zukas and Walters 1997) e p A 1 exp RV 1 B 1 exp R2V RV 1 R2V V p is pressure; A, B,, R 1 and R 2 are model coefficients; e is the initial internal energy per unit volume of explosive; and V is the relative volume, which can be calculated by V = v/v, where v and v are the current and initial specific volume, respectively. 6

7 Dams and blasting Dams around the world (Data from ICOLD (214)) dams ( h 15 m) in total Dams under blasting War time or terrorist attack e.g. Möhne Dam and Edersee Dam (German, World War II), Peruca Dam (Croatia, 1993) Engineering practice, disposal of landslide dams e.g. The Swir III dam (Russia, 1935) Earth dams Gravity dams Rockfill dams Others Arch dams Buttress dams Barrages Multiple arch dams (%) Percentage of different kinds of dams in the world Edersee Dam Möhne Dam 7

8 Core rockfill dams Upstream filter 1 Upstream filter 2 Downstream filter 1 Downstream filter 2 Upstream fine rockfill Downstream fine rockfill Mixed rockfill Upstream rockfill transition zone Upstream rockfill 1 Upstream rockfill Gravelly clay 76. Downstream rockfill Downstream rockfill 1 27 May 215 8

9 P ercent finer by w eight (% ) Susceptibility of liquefaction Susceptibility of liquefaction of a core rockfill dam (1) (2) (3) (4) Potentially liquefiable Most liquefiable (Following USNRC 1985) Susceptible to static liquefaction and flow sliding (Following Hunter and Fell 23) G rain size (m m ) Notes: N uozhadu Filter 1 Left N uozhadu Filter 1 R ight N uozhadu Filter 2 Left (1) Nuozhadu core material (Zhang et al. 25); (2) Nuozhadu filter I material (Yuan et al. 212); (3) Nuozhadu filter II material (Yuan et al. 212); (4) Nuozhadu rockfill material (Yuan et al. 212). N uozhadu F ilter 2 R ight N uozhadu R ockfillleft N uozhadu R ockfillright N uozhadu core M aterial 9

10 Research objectives To propose a constitutive model for soil under high strainrate loadings To implement the constitutive model for soil under high strain-rate loadings in a generic numerical platform to solve various engineering problems To study the response of a core/concrete faced rockfill dam to upstream underwater explosion with emphasis on blast wave propagation, pore pressure response and dam deformation 27 May 215 1

11 Outline Explosion physics and applications Numerical model Constitutive models Numerical implementation Response of a core-wall dam to upstream underwater explosion Conclusions 11

12 Dam profile Nuozhadu Dam Yunnan Province, China Height: m Storage capacity of reservoir: 2.37x1 1 m 3 Upstream filter 1 Upstream filter 2 Upstream fine rockfill Downstream filter 1 Downstream filter 2 Downstream fine rockfill Mixed rockfill Upstream rockfill transition zone Upstream rockfill 1 Upstream rockfill Gravelly clay 76. Downstream rockfill Downstream rockfill

13 Numerical model Center of blasting Downstream filter II y x Downstream filter I Air Upstream filter II Upstream filter I Center of blasting Phreatic line Downstream rockfill II Water Upstream rockfill I Upstream rockfill II Gravelly clay Downstream rockfill I 13

14 252 m 19.5 m Numerical model 12 m Center of blasting y x 9 m 14

15 Initial conditions Initial pore water pressure Assumptions: Steady seepage Saturated flow Hydraulic conductivity (m/s): Rockfill 1 & 2: 1.e-3 Filter 1: 5.e-5 Filter 2: 5.e-4 Core: 5.e-8 Phreatic line (kpa)

16 Initial conditions Initial stress state Linear elastic material: E = 1 MPa, n =.25 (MPa) Initial 1 st effective principal stress: Initial 3 rd effective principal stress: (MPa)

17 Outline Explosion physics and applications Numerical model Constitutive models Numerical implementation Response of a core-wall dam to upstream underwater explosion Conclusions 17

18 Explosive C4 Explosive JWL equation of state E p A 1 exp RV 1 B 1 exp R2V RV 1 R2V V A B.1295 E 9e 4 R 4.5 V 1. R High explosive burning model p Fp eos F 1 F max F,1 2tDA 3V el el 1 D*t Typical element l 3v 2A el el 18

19 Water and air Water Null material: deviatoric stress = Gruneisen equation of state 2 2 rc 1 1 / 2 a / 2 p E S1 1 S2 S V Viscosity of water is not considered Air bubbles and turbulent flow are not taken into account Air Null material: deviatoric stress = Equation of state of ideal gas: p r r 1 e C v is the specific heat at constant volume, is the specific heat at constant pressure 19

20 Dam materials Dam materials Rockfill I and II, Filters I and II, Core material (gravelly clay) High strain-rate bounding surface model: cyclic behavior; high strain-rate behavior p Bounding surface Critical surface r 1 =s 1 /p Yield surface n Dilation surface q r 2 =s 2 /p r 3 =s 3 /p T.H. Xu, L.M. Zhang Numerical implementation of a bounding surface plasticity model for sand under high strain-rate loadings in LS-DYNA. Computers and Geotechnics 66,

21 Deviatoric stress (kpa) Volumetric strain (%) Dam materials Model parameters for dam materials Rockfill I & II, gravelly clay: calibrated according to experimental data Filter I & II: use the parameters of a similar material (bedding material in a concrete face rockfill dam) Mechanical behavior Simulation: Rockfill ( 3 =15 kpa) Core ( 3 =5 kpa) Filter ( 3 =8 kpa) Axial strain (%) Test data: Rockfill ( 3 =15 kpa) Core ( 3 =15 kpa) Simulation: Rockfill ( 3 =15 kpa) Core ( 3 =5 kpa) Filter ( 6 3 =8 kpa) Axial strain (%) Test data: Rockfill ( 3 =15 kpa) Core ( 3 =15 kpa) 21

22 Volumetric strain (%) Deviatoric stress (kpa) Dam materials Simulation of high strain-rate triaxial tests Simulation.21%/s.23%/s 1495%/s Experiment.21%/s.23%/s 1495%/s -8 Simulation %/s.23%/s 1495%/s Experiment.21%/s.23%/s 1495%/s Axial strain (%) -2 (Crushed coral sand, 3 = 35 kpa, e in =.93, experimental data after Yamamuro et al. 211) Axial strain (%) 22

23 Undrained analysis The part of dam below the phreatic line is considered undrained Hydro-mechanics coupled analysis is not supported in LS-DYNA Loading duration << Time scale for excessive pore pressure dissipation Implementation of undrained stress integration σ ' D ε σ D ε f σ σ ' σ f f σ' σ' σ' σ σ σ f f f D f is the effective bulk modulus of the pore water/solid mixture, 1-1 times of that of the soil skeleton 27 May

24 Outline Explosion physics and applications Numerical model Constitutive models Numerical implementation Response of a core-wall dam to underwater explosion Conclusions 25

25 Solution loop Numerical platform: LS-DYNA Solution loop Update velocities Update time and check for termination Process kinematic based contact interfaces Update displacements and new geometry Update current time and check for termination START Apply force boundary conditions Process elements Update accelerations; apply kinematic boundary conditions Process penalty based contact interfaces 26

26 Space discretization 8-noded 1-point element 6 5 z 7 8 Discretized equation of motion n i 1 T T T T rnn adv B σdv rn fdv N tds v v v v i Reduced integration: 1-point element x 1 4 h g v g x h z g v J J d d d d 8,,,,

27 Time integration Time integration in LS-DYNA Central difference method Acceleration Ma P F n n n a M P F 1 n n n Geometry x x u n 1 n 1 Velocity v v a t n 1/2 n 1/2 n n Displacement u u v t n 1 n n 1/2 n 1/2 n = current time step (the nth time step) M = diagonal mass matrix; a n = acceleration; P n = external and body forces; F n = internal force, or the stress divergence tensor; v = velocity; u = displacement, respectively; t n+1/2 = ( t n + t n+1 )/2; x = geometry at t = ; and x n+1 = geometry at the (n+1)th time 28

28 Model implementation Stress integration scheme Modified Eulerian scheme with automatic error control (Xu & Zhang, 215) Initial stress state Strain increment Elasto-plastic stress updating Strain increment decomposition Substep initialization Elastic stress updating 1st- and 2nd-order Eulerian estimates of increments of stress and hardening parameters Error calculation and substep refinement Output stress state (all the substeps calculated) 29

29 178 mm Volumetric strain (%) Deviatoric stress (kpa) Model implementation Simulation of high strain-rate triaxial tests Axis of symmetry Simulation.21%/s.23%/s 1495%/s Experiment.21%/s.23%/s 1495%/s Simulation %/s Axial strain (%).23%/s 1495%/s -6 Experiment.21%/s.23%/s %/s mm Axial strain (%) (Crushed coral sand, 3 = 35 kpa, e in =.93, experimental data after Yamamuro et al. 211) 3

30 178 mm Model implementation Simulation of high strain-rate triaxial tests Stress wave propagation in soil specimens Axis of symmetry t 1 = 1x1 4 s t 2 = 5x1 4 s t 3 = 1x1 3 s 35 mm Reference vector: 3.5 m/s 31

31 Outline Explosion physics and applications Numerical model Constitutive models Numerical implementation Response of a core-wall dam to upstream underwater explosion Conclusions 32

32 Pressure (MPa) Water pressure (MPa) Blast-induced water pressure Blast-induced water pressure Distance to center of blasting = 3.4m Distance to center of blasting = 13.7 m Distance to center of blasting = 21.6 m Distance to center of blasting = 27.9m Distance to center of blasting = 34.3 m Distance to center of blasting = 39.8 m Water Time (ms) 1 CRD simulations CRD Simulation Fitted kg/m Fitted 26.8 kg/m Fitted kg/m Fitted 1 Explosive Distance to center of blasting (m) 33

33 Blast-wave propagation Ground velocity at selected instants Refraction Incident wave front 5 ms 125 ms Reference scale: 1 m/s (m/s) Reflection wave front 175 ms 25 ms 35 ms 45 ms 34

34 Blast-wave propagation Ground velocity at selected instants Reference scale: 1.6 m/s (m/s) 65 ms 85 ms 15 ms 125 ms 145 ms 195 ms 35

35 Peak velocity (m/s) Blast-wave propagation Contour of peak ground velocity (m/s) Maximum value: 15.8 m/s Reference scale: 16 m/s Location of blast wave reflection Saturated 4 Part Dry part Distance to center of blasting (m) 36

36 Excessove pore pressure (kpa) Excessove pore pressure (kpa) Excessove pore pressure (kpa) Pore pressure response Time histories of excessive pore pressure EL EL Time (ms) Time (ms) EL Time (ms) 37

37 Pore pressure response Excessive pore pressure at selected instants Unit: MPa ms 125 ms

38 Pore pressure response Excessive pore pressure at selected instants Unit: MPa ms ms ms ms

39 Pore pressure response Peak blast-induced excessive pore pressure (MPa) Maximum value: 62 MPa

40 Pore pressure response Pore pressure ratio u PPR 3 u = excessive pore pressure; 3 = initial 3 rd principal stress Peak pore pressure ratio

41 Pore pressure response Pore pressure ratio u PPR 3 u = excessive pore pressure; 3 = initial 3 rd principal stress Residual pore pressure ratio

42 Blast-induced deformation Residual volumetric strain Residual deviatoric strain (%) (%)

43 Blast-induced deformation Permanent x displacement Permanent y displacement (cm) (cm)

44 Summary and conclusions A rate-dependent bounding surface model for soil under high strain-rate loadings is developed and implemented into an explicit finite element platform, LS-DYNA. Stress waves are observed in soil specimens in high strain-rate triaxial tests. The response of a high-rise core rockfill dam to upstream underwater explosion is simulated. 2 kg/m, C4 explosive. The maximum peak ground velocity occurs nearest to the center of blasting, which is about 15 m/s. The attenuation of blast waves in the dry materials is faster than that in the saturated materials. The upstream filters may be at risk of liquefaction based on the calculated residual pore pressure ratio. The blast-induced permanent horizontal displacement and settlement are 6 cm and 8 cm, respectively. 45

45 Thank you for your attention 46

46 47

Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading

Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading Jorge Castillo, Yong-Beom Lee Ausenco, USA Aurelian C. Trandafir Fugro GeoConsulting Inc., USA ABSTRACT

More information

Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation

Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation Yong-Beom Lee, Jorge Castillo Ausenco, USA Aurelian C. Trandafir Fugro GeoConsulting

More information

Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method

Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method E. Yıldız & A.F. Gürdil Temelsu International Engineering Services Inc., Ankara, Turkey SUMMARY: Time history analyses conducted

More information

Seismic Evaluation of Tailing Storage Facility

Seismic Evaluation of Tailing Storage Facility Australian Earthquake Engineering Society 2010 Conference, Perth, Western Australia Seismic Evaluation of Tailing Storage Facility Jonathan Z. Liang 1, David Elias 2 1 Senior Geotechnical Engineer, GHD

More information

Assessment of the Post-earthquake Safety and the Maximum Anti-Seismic Capability of Zipingpu Concrete Face Rockfill Dam

Assessment of the Post-earthquake Safety and the Maximum Anti-Seismic Capability of Zipingpu Concrete Face Rockfill Dam Assessment of the Post-earthquake Safety and the Maximum Anti-Seismic Capability of Zipingpu Concrete Face Rockfill Dam Jian-ming Zhao, Jinsheng Jia, Yanfeng Wen China Institute of Water Resources and

More information

The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing , China

The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing , China Send Orders for Reprin to reprin@benthamscience.ae 688 The Open Civil Engineering Journal, 205, 9, 688-692 Open Access Numerical Simulation of a Subway Station Structure Subjected to Terrorism Bombing

More information

USER S MANUAL 1D Seismic Site Response Analysis Example University of California: San Diego August 30, 2017

USER S MANUAL 1D Seismic Site Response Analysis Example   University of California: San Diego August 30, 2017 USER S MANUAL 1D Seismic Site Response Analysis Example http://www.soilquake.net/ucsdsoilmodels/ University of California: San Diego August 30, 2017 Table of Contents USER'S MANUAL TABLE OF CONTENTS Page

More information

Seismic Stability of Tailings Dams, an Overview

Seismic Stability of Tailings Dams, an Overview Seismic Stability of Tailings Dams, an Overview BY Gonzalo Castro, Ph.D., P.E. Principal International Workshop on Seismic Stability of Tailings Dams Case Western Reserve University, November 2003 Small

More information

Dynamic Analysis Contents - 1

Dynamic Analysis Contents - 1 Dynamic Analysis Contents - 1 TABLE OF CONTENTS 1 DYNAMIC ANALYSIS 1.1 Overview... 1-1 1.2 Relation to Equivalent-Linear Methods... 1-2 1.2.1 Characteristics of the Equivalent-Linear Method... 1-2 1.2.2

More information

USER S MANUAL 1D Seismic Site Response Analysis Example University of California: San Diego August 30, 2017

USER S MANUAL 1D Seismic Site Response Analysis Example   University of California: San Diego August 30, 2017 USER S MANUAL 1D Seismic Site Response Analysis Example http://www.soilquake.net/ucsdsoilmodels/ University of California: San Diego August 30, 2017 Table of Contents USER'S MANUAL TABLE OF CONTENTS Page

More information

Modified Cam-clay triaxial test simulations

Modified Cam-clay triaxial test simulations 1 Introduction Modified Cam-clay triaxial test simulations This example simulates a series of triaxial tests which can be used to verify that Modified Cam-Clay constitutive model is functioning properly.

More information

Changes in soil deformation and shear strength by internal erosion

Changes in soil deformation and shear strength by internal erosion Changes in soil deformation and shear strength by internal erosion C. Chen & L. M. Zhang The Hong Kong University of Science and Technology, Hong Kong, China D. S. Chang AECOM Asia Company Ltd., Hong Kong,

More information

A thermo-hydro-mechanically coupled analysis of clay using a thermo-elasto-viscoplastic model

A thermo-hydro-mechanically coupled analysis of clay using a thermo-elasto-viscoplastic model JHUWS05 A thermo-hydro-mechanically coupled analysis of clay using a thermo-elasto-viscoplastic model by F. Oka, S. Kimoto, Y.-S. Kim, N. Takada Department of Civil & Earth Resources Engineering, Kyoto

More information

USER S MANUAL. 1D Seismic Site Response Analysis Example. University of California: San Diego.

USER S MANUAL. 1D Seismic Site Response Analysis Example.  University of California: San Diego. USER S MANUAL 1D Seismic Site Response Analysis Example http://www.soilquake.net/ucsdsoilmodels/ University of California: San Diego August 2, 2017 Table of Contents USER'S MANUAL TABLE OF CONTENTS Page

More information

1.8 Unconfined Compression Test

1.8 Unconfined Compression Test 1-49 1.8 Unconfined Compression Test - It gives a quick and simple measurement of the undrained strength of cohesive, undisturbed soil specimens. 1) Testing method i) Trimming a sample. Length-diameter

More information

Influences of material dilatancy and pore water pressure on stability factor of shallow tunnels

Influences of material dilatancy and pore water pressure on stability factor of shallow tunnels Influences of material dilatancy and pore water pressure on stability factor of shallow tunnels YANG Xiao-li( ), HUANG Fu( ) School of Civil and Architectural Engineering, Central South University, Changsha

More information

Finite Deformation Analysis of Dynamic Behavior of Embankment on Liquefiable Sand Deposit Considering Pore Water Flow and Migration

Finite Deformation Analysis of Dynamic Behavior of Embankment on Liquefiable Sand Deposit Considering Pore Water Flow and Migration 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 215 Christchurch, New Zealand Finite Deformation Analysis of Dynamic Behavior of Embankment on Liquefiable Sand Deposit

More information

Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes

Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 215 Christchurch, New Zealand Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes T. Nishimura

More information

Validation of LS-DYNA MMALE with Blast Experiments

Validation of LS-DYNA MMALE with Blast Experiments 12 th International LS-DYNA Users Conference Blast/Impact(3) Validation of LS-DYNA MMALE with Blast Experiments Yuli Huang and Michael R. Willford Arup, San Francisco, CA 94116 Leonard E. Schwer Schwer

More information

2D Liquefaction Analysis for Bridge Abutment

2D Liquefaction Analysis for Bridge Abutment D Liquefaction Analysis for Bridge Abutment Tutorial by Angel Francisco Martinez Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering

More information

CYCLIC AND MONOTONIC UNDRAINED SHEAR RESPONSE OF SILTY SAND FROM BHUJ REGION IN INDIA

CYCLIC AND MONOTONIC UNDRAINED SHEAR RESPONSE OF SILTY SAND FROM BHUJ REGION IN INDIA ISET Journal of Earthquake Technology, Paper No. 45, Vol. 41, No. 2-4, June-December 24, pp. 249-26 CYCLIC AND MONOTONIC UNDRAINED SHEAR RESPONSE OF SILTY SAND FROM BHUJ REGION IN INDIA T.G. Sitharam,

More information

13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3016

13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3016 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3016 SOLUTIONS FOR MITIGATING SOIL LIQUEFACTION EFFECTS A NUMERICAL STUDUY AHMAD JAFARI MEHRABADI 1 AND

More information

Drained Against Undrained Behaviour of Sand

Drained Against Undrained Behaviour of Sand Archives of Hydro-Engineering and Environmental Mechanics Vol. 54 (2007), No. 3, pp. 207 222 IBW PAN, ISSN 1231 3726 Drained Against Undrained Behaviour of Sand Andrzej Sawicki, Waldemar Świdziński Institute

More information

Soil Behaviour in Earthquake Geotechnics

Soil Behaviour in Earthquake Geotechnics Soil Behaviour in Earthquake Geotechnics KENJI ISHIHARA Department of Civil Engineering Science University of Tokyo This publication was supported by a generous donation from the Daido Life Foundation

More information

Unloading Test with Remolded Marine Soil Sample and Disturbance Degree Assessment

Unloading Test with Remolded Marine Soil Sample and Disturbance Degree Assessment 2017 International Conference on Manufacturing Construction and Energy Engineering (MCEE 2017) ISBN: 978-1-60595-483-7 Unloading Test with Remolded Marine Soil Sample and Disturbance Degree Assessment

More information

Applicability of Multi-spring Model Based on Finite Strain Theory to Seismic Behavior of Embankment on Liquefiable Sand Deposit

Applicability of Multi-spring Model Based on Finite Strain Theory to Seismic Behavior of Embankment on Liquefiable Sand Deposit Applicability of Multi-spring Model Based on Finite Strain Theory to Seismic Behavior of Embankment on Liquefiable Sand Deposit Kyohei Ueda Railway Technical Research Institute, Kokubunji, Tokyo, Japan

More information

DYNAMIC RESPONSE APPROACH AND METHODOLOGY

DYNAMIC RESPONSE APPROACH AND METHODOLOGY DYNAMIC RESPONSE APPROACH AND METHODOLOGY Traditional seismic stability procedures vs coupled effective-stress approach. Traditional seismic stability procedures: Empirical and laboratory corrections and

More information

Application of cyclic accumulation models for undrained and partially drained general boundary value problems

Application of cyclic accumulation models for undrained and partially drained general boundary value problems Application of cyclic accumulation models for undrained and partially drained general boundary value problems A. M. Page Risueño Yngres Dag 2014, May 15 th 2014 Introduction Cyclic loads in geotechnical

More information

APPENDIX I. Deformation Analysis of the Left Abutment

APPENDIX I. Deformation Analysis of the Left Abutment APPENDIX I Deformation Analysis of the Left Abutment August 25, 2016 Appendix I Deformation Analysis of the Left Abutment TABLE OF CONTENTS I1 INTRODUCTION... 1 I2 MODEL DEVELOPMENT... 2 I2.1 General...

More information

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL Qassun S. Mohammed Shafiqu and Maarib M. Ahmed Al-Sammaraey Department of Civil Engineering, Nahrain University, Iraq

More information

CHARACTERISTICS OF LIQUEFIED SILTY SANDS FROM MEIZOSEISMAL REGION OF SHILLONG PLATEAU, ASSAM AND BHUJ IN INDIA

CHARACTERISTICS OF LIQUEFIED SILTY SANDS FROM MEIZOSEISMAL REGION OF SHILLONG PLATEAU, ASSAM AND BHUJ IN INDIA 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 2375 CHARACTERISTICS OF LIQUEFIED SILTY SANDS FROM MEIZOSEISMAL REGION OF SHILLONG PLATEAU, ASSAM AND BHUJ

More information

PRACTICAL THREE-DIMENSIONAL EFFECTIVE STRESS ANALYSIS CONSIDERING CYCLIC MOBILITY BEHAVIOR

PRACTICAL THREE-DIMENSIONAL EFFECTIVE STRESS ANALYSIS CONSIDERING CYCLIC MOBILITY BEHAVIOR PRACTICAL THREE-DIMENSIONAL EFFECTIVE STRESS ANALYSIS CONSIDERING CYCLIC MOBILITY BEHAVIOR Hiroyuki Yoshida 1, Kohji Tokimatsu 2, Tatsuya Sugiyama 3 and Tadahiko Shiomi 4 1 Member, Arch. & Struct. Eng.

More information

Instructor : Dr. Jehad Hamad. Chapter (7)

Instructor : Dr. Jehad Hamad. Chapter (7) Instructor : Dr. Jehad Hamad Chapter (7) 2017-2016 Soil Properties Physical Properties Mechanical Properties Gradation and Structure Compressibility Soil-Water Relationships Shear Strength Bearing Capacity

More information

Endochronic model applied to earthfill dams with impervious core: design recommendation at seismic sites

Endochronic model applied to earthfill dams with impervious core: design recommendation at seismic sites Proceedings of the 1st IASME / WSEAS International Conference on Geology and Seismology (GES'7), Portoroz, Slovenia, May 15-17, 27 51 Endochronic model applied to earthfill dams with impervious core: design

More information

Modelling Progressive Failure with MPM

Modelling Progressive Failure with MPM Modelling Progressive Failure with MPM A. Yerro, E. Alonso & N. Pinyol Department of Geotechnical Engineering and Geosciences, UPC, Barcelona, Spain ABSTRACT: In this work, the progressive failure phenomenon

More information

Advanced model for soft soils. Modified Cam-Clay (MCC)

Advanced model for soft soils. Modified Cam-Clay (MCC) Advanced model for soft soils. Modified Cam-Clay (MCC) c ZACE Services Ltd August 2011 1 / 62 2 / 62 MCC: Yield surface F (σ,p c ) = q 2 + M 2 c r 2 (θ) p (p p c ) = 0 Compression meridian Θ = +π/6 -σ

More information

the tests under simple shear condition (TSS), where the radial and circumferential strain increments were kept to be zero ( r = =0). In order to obtai

the tests under simple shear condition (TSS), where the radial and circumferential strain increments were kept to be zero ( r = =0). In order to obtai Institute of Industrial Science, niversity of Tokyo Bulletin of ES, No. 4 (0) STESS-DILATANCY CHAACTEISTICS OF SAND IN DAINED CYLIC TOSIONAL SHEA TESTS Seto WAHYDI and Junichi KOSEKI ABSTACT: Stress-dilatancy

More information

EFFECT OF SILT CONTENT ON THE UNDRAINED ANISOTROPIC BEHAVIOUR OF SAND IN CYCLIC LOADING

EFFECT OF SILT CONTENT ON THE UNDRAINED ANISOTROPIC BEHAVIOUR OF SAND IN CYCLIC LOADING 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. 1506 EFFECT OF SILT CONTENT ON THE UNDRAINED ANISOTROPIC BEHAVIOUR OF SAND IN CYCLIC LOADING Hadi BAHADORI

More information

Application of rockfill dynamical characteristic statistic curve in mid-small scale concrete face dam dynamic analysis

Application of rockfill dynamical characteristic statistic curve in mid-small scale concrete face dam dynamic analysis Application of rockfill dynamical characteristic statistic curve in mid-small scale concrete face dam dynamic analysis Yu.Feng. Jia, Shi.Chun. Chi State Key Laboratory of the Coastal and Offshore Engineering,

More information

Monitoring of underground construction

Monitoring of underground construction Monitoring of underground construction Geotechnical Aspects of Underground Construction in Soft Ground Yoo, Park, Kim & Ban (Eds) 2014 Korean Geotechnical Society, Seoul, Korea, ISBN 978-1-138-02700-8

More information

FINITE ELEMENT SIMULATION OF RETROGRESSIVE FAILURE OF SUBMARINE SLOPES

FINITE ELEMENT SIMULATION OF RETROGRESSIVE FAILURE OF SUBMARINE SLOPES FINITE ELEMENT SIMULATION OF RETROGRESSIVE FAILURE OF SUBMARINE SLOPES A. AZIZIAN & R. POPESCU Faculty of Engineering & Applied Science, Memorial University, St. John s, Newfoundland, Canada A1B 3X5 Abstract

More information

Liquefaction - principles

Liquefaction - principles Liquefaction - principles Consider a box of dry sand, subjected to cycles of shear strain. On initial loading, sand usually compacts and then dilates. On unloading, the sand follows a similar path to loading,

More information

Soil Properties - II

Soil Properties - II Soil Properties - II Amit Prashant Indian Institute of Technology andhinagar Short Course on eotechnical Aspects of Earthquake Engineering 04 08 March, 2013 Seismic Waves Earthquake Rock Near the ground

More information

EARTHQUAKE-INDUCED SETTLEMENT AS A RESULT OF DENSIFICATION, MEASURED IN LABORATORY TESTS

EARTHQUAKE-INDUCED SETTLEMENT AS A RESULT OF DENSIFICATION, MEASURED IN LABORATORY TESTS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3291 EARTHQUAKE-INDUCED SETTLEMENT AS A RESULT OF DENSIFICATION, MEASURED IN LABORATORY TESTS Constantine

More information

Laboratory Testing Total & Effective Stress Analysis

Laboratory Testing Total & Effective Stress Analysis SKAA 1713 SOIL MECHANICS Laboratory Testing Total & Effective Stress Analysis Prepared by: Dr. Hetty Mohr Coulomb failure criterion with Mohr circle of stress 2 ' 2 ' ' ' 3 ' 1 ' 3 ' 1 Cot Sin c ' ' 2

More information

Centrifuge Shaking Table Tests and FEM Analyses of RC Pile Foundation and Underground Structure

Centrifuge Shaking Table Tests and FEM Analyses of RC Pile Foundation and Underground Structure Centrifuge Shaking Table s and FEM Analyses of RC Pile Foundation and Underground Structure Kenji Yonezawa Obayashi Corporation, Tokyo, Japan. Takuya Anabuki Obayashi Corporation, Tokyo, Japan. Shunichi

More information

Effect of Plastic Fines on Liquefaction Characteristics of Gravelly Soil

Effect of Plastic Fines on Liquefaction Characteristics of Gravelly Soil 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Effect of Plastic Fines on Liquefaction Characteristics of Gravelly Soil W. Qi 1, C. Guoxing

More information

Propagation of Seismic Waves through Liquefied Soils

Propagation of Seismic Waves through Liquefied Soils Propagation of Seismic Waves through Liquefied Soils Mahdi Taiebat a,b,, Boris Jeremić b, Yannis F. Dafalias b,c, Amir M. Kaynia a, Zhao Cheng d a Norwegian Geotechnical Institute, P.O. Box 393 Ullevaal

More information

Application of advanced bounding surface plasticity model in static and seismic analyses of Zipingpu Dam

Application of advanced bounding surface plasticity model in static and seismic analyses of Zipingpu Dam University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2016 Application of advanced bounding surface plasticity

More information

SOME OBSERVATIONS RELATED TO LIQUEFACTION SUSCEPTIBILITY OF SILTY SOILS

SOME OBSERVATIONS RELATED TO LIQUEFACTION SUSCEPTIBILITY OF SILTY SOILS SOME OBSERVATIONS RELATED TO LIQUEFACTION SUSCEPTIBILITY OF SILTY SOILS Upul ATUKORALA 1, Dharma WIJEWICKREME 2 And Norman MCCAMMON 3 SUMMARY The liquefaction susceptibility of silty soils has not received

More information

Practical methodology for inclusion of uplift and pore pressures in analysis of concrete dams

Practical methodology for inclusion of uplift and pore pressures in analysis of concrete dams Practical methodology for inclusion of uplift and pore pressures in analysis of concrete dams Michael McKay 1 and Francisco Lopez 2 1 Dams Engineer, GHD Pty 2 Principal Dams/Structural Engineer, GHD Pty

More information

Simulation of Impact Proof Testing of Electronic Sub- Systems

Simulation of Impact Proof Testing of Electronic Sub- Systems 12 th International LS-DYNA Users Conference Blast/Impact(3) Simulation of Impact Proof Testing of Electronic Sub- Systems Paul Glance, PhD ME Naval Air Warfare Center Weapons Division China Lake, California

More information

The Seismic Performance of Tousheh Dam During the Chi-Chi Earthquake

The Seismic Performance of Tousheh Dam During the Chi-Chi Earthquake ( C023) Proceedings of 9 th Conference on Current Researches in Geotechnical Engineering, Shihman Reservoir, Tai-Yuan, Taiwan, R.O.C. August 30-3 and September, 200 92 () (the semi-analysis-testing method)(2)

More information

Shear strength. Common cases of shearing In practice, the state of stress in the ground will be complex. Common cases of shearing Strength

Shear strength. Common cases of shearing In practice, the state of stress in the ground will be complex. Common cases of shearing Strength Shear strength Common cases of shearing Strength Near any geotechnical construction (e.g. slopes, excavations, tunnels and foundations) there will be both mean and normal stresses and shear stresses. The

More information

Cubzac-les-Ponts Experimental Embankments on Soft Clay

Cubzac-les-Ponts Experimental Embankments on Soft Clay Cubzac-les-Ponts Experimental Embankments on Soft Clay 1 Introduction In the 197 s, a series of test embankments were constructed on soft clay at Cubzac-les-Ponts in France. These full-scale field tests

More information

Back Analysis of the Lower San Fernando Dam Slide Using a Multi-block Model

Back Analysis of the Lower San Fernando Dam Slide Using a Multi-block Model Proceedings Geohazards Engineering Conferences International Year 2006 Back Analysis of the Lower San Fernando Dam Slide Using a Multi-block Model C. A. Stamatopoulos P. Petridis Stamatopoulos and Associates

More information

IN SITU LIQUEFACTION TESTING USING SEQUENTIAL DETONATION OF EXPLOSIVES ABSTRACT

IN SITU LIQUEFACTION TESTING USING SEQUENTIAL DETONATION OF EXPLOSIVES ABSTRACT IN SITU LIQUEFACTION TESTING USING SEQUENTIAL DETONATION OF EXPLOSIVES W.B. Gohl 1, T. E. Martin 2 and J.P. Sully 3 ABSTRACT The use of the sequential detonation of explosives is described to evaluate

More information

3-D DYNAMIC ANALYSIS OF TAIYUAN FLY ASH DAM

3-D DYNAMIC ANALYSIS OF TAIYUAN FLY ASH DAM 3-D DYNAMIC ANALYSIS OF TAIYUAN FLY ASH DAM Jian ZHOU 1, Peijiang QI 2 And Yong CHI 3 SUMMARY In this paper, the seismic stability of Taiyuan Fly Ash Dam in China is studied by using 3-D dynamic effective

More information

Modelling the Construction of a High Embankment Dam

Modelling the Construction of a High Embankment Dam KSCE Journal of Civil Engineering (2014) 18(1):93-102 Copyright c2014 Korean Society of Civil Engineers DOI 10.1007/s12205-014-0180-4 TECHNICAL NOTE Geotechnical Engineering pissn 1226-7988, eissn 1976-3808

More information

Determination of Excess Pore Pressure in Earth Dam after Earthquake

Determination of Excess Pore Pressure in Earth Dam after Earthquake ABSTRACT: Determination of Excess Pore Pressure in Earth Dam after Earthquake S.M. Nasrollahi Faculty of Islamic Azad University Qaenat Branch, Qaen, Iran. Email: s.m.nasrollahi@gmail.com Pore pressure

More information

3D simulations of an injection test done into an unsaturated porous and fractured limestone

3D simulations of an injection test done into an unsaturated porous and fractured limestone 3D simulations of an injection test done into an unsaturated porous and fractured limestone A. Thoraval *, Y. Guglielmi, F. Cappa INERIS, Ecole des Mines de Nancy, FRANCE *Corresponding author: Ecole des

More information

Effect of Frozen-thawed Procedures on Shear Strength and Shear Wave Velocity of Sands

Effect of Frozen-thawed Procedures on Shear Strength and Shear Wave Velocity of Sands Effect of Frozen-thawed Procedures on Shear Strength and Shear Wave Velocity of Sands JongChan Kim 1), *Sang Yeob Kim 1), Shinhyun Jeong 2), Changho Lee 3) and Jong-Sub Lee 4) 1), 4) School of Civil, Environmental

More information

Prediction of torsion shear tests based on results from triaxial compression tests

Prediction of torsion shear tests based on results from triaxial compression tests Prediction of torsion shear tests based on results from triaxial compression tests P.L. Smith 1 and N. Jones *2 1 Catholic University of America, Washington, USA 2 Geo, Lyngby, Denmark * Corresponding

More information

Stress and Strains in Soil and Rock. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University

Stress and Strains in Soil and Rock. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Stress and Strains in Soil and Rock Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Stress and Strain ε 1 1 2 ε 2 ε Dimension 1 2 0 ε ε ε 0 1 2 ε 1 1 2 ε 2 ε Plane Strain = 0 1 2

More information

Appendix A Results of Triaxial and Consolidation Tests

Appendix A Results of Triaxial and Consolidation Tests Appendix A Results of Triaxial and Consolidation Tests Triaxial and consolidation tests were performed on specimens of the soils used for interface testing. The objectives of these tests were as follows:

More information

TWO DIMENSIONAL MODELING AND STABILITY ANALYSIS OF SLOPES OVERLAYING TO SHAHID RAGAEE POWER PLANT

TWO DIMENSIONAL MODELING AND STABILITY ANALYSIS OF SLOPES OVERLAYING TO SHAHID RAGAEE POWER PLANT 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. 1637 TWO DIMENSIONAL MODELING AND STABILITY ANALYSIS OF SLOPES OVERLAYING TO SHAHID RAGAEE POWER PLANT Mohammad

More information

3D MATERIAL MODEL FOR EPS RESPONSE SIMULATION

3D MATERIAL MODEL FOR EPS RESPONSE SIMULATION 3D MATERIAL MODEL FOR EPS RESPONSE SIMULATION A.E. Swart 1, W.T. van Bijsterveld 2, M. Duškov 3 and A. Scarpas 4 ABSTRACT In a country like the Netherlands, construction on weak and quite often wet soils

More information

STUDY ON FAILURE PROCESS OF TAILING DAMS BASED ON PARTICLE FLOW THEORIES

STUDY ON FAILURE PROCESS OF TAILING DAMS BASED ON PARTICLE FLOW THEORIES ISSN 176-459 Int j simul model 14 (015) 4, 658-668 Original scientific paper STUDY ON FAILURE PROCESS OF TAILING DAMS BASED ON PARTICLE FLOW THEORIES Yuan, L.-W. * ; Li, S.-M. *# ; Peng, B. ** & Chen,

More information

Evaluation of the behaviour of an arch-gravity dam. featuring a pre-existing crack

Evaluation of the behaviour of an arch-gravity dam. featuring a pre-existing crack Evaluation of the behaviour of an arch-gravity dam featuring a pre-existing crack Dr Aïssa Mellal, Civil Engineer STUCKY SA, Switzerland NUMERICS IN GEOTECHNICS AND STRUCTURES - ZSoil Days - 1-2 September

More information

Nonlinear Seismic Analysis of Buried Pipelines During Liquefaction

Nonlinear Seismic Analysis of Buried Pipelines During Liquefaction Missouri University of Science and Technology Scholars Mine International Conference on Case Histories in Geotechnical Engineering (8) - Sixth International Conference on Case Histories in Geotechnical

More information

Safety analyses of Srinagarind dam induced by earthquakes using dynamic response analysis method.

Safety analyses of Srinagarind dam induced by earthquakes using dynamic response analysis method. Safety analyses of Srinagarind dam induced by earthquakes using dynamic response analysis method. S. Soralump Assistance Professor, Faculty of Engineering, Kasetsart University, Thailand. K. Tansupo Ph.D.

More information

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.2. Some soils show a peak shear strength. Why and what type(s)

More information

NUMERICAL ANALYSIS OF DAMAGE OF RIVER EMBANKMENT ON SOFT SOIL DEPOSIT DUE TO EARTHQUAKES WITH LONG DURATION TIME

NUMERICAL ANALYSIS OF DAMAGE OF RIVER EMBANKMENT ON SOFT SOIL DEPOSIT DUE TO EARTHQUAKES WITH LONG DURATION TIME Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan NUMERICAL ANALYSIS OF DAMAGE OF RIVER EMBANKMENT ON SOFT

More information

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials Dublin, October 2010 A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials FracMan Technology Group Dr Mark Cottrell Presentation Outline Some Physical

More information

Chapter (12) Instructor : Dr. Jehad Hamad

Chapter (12) Instructor : Dr. Jehad Hamad Chapter (12) Instructor : Dr. Jehad Hamad 2017-2016 Chapter Outlines Shear strength in soils Direct shear test Unconfined Compression Test Tri-axial Test Shear Strength The strength of a material is the

More information

GEO E1050 Finite Element Method Mohr-Coulomb and other constitutive models. Wojciech Sołowski

GEO E1050 Finite Element Method Mohr-Coulomb and other constitutive models. Wojciech Sołowski GEO E050 Finite Element Method Mohr-Coulomb and other constitutive models Wojciech Sołowski To learn today. Reminder elasticity 2. Elastic perfectly plastic theory: concept 3. Specific elastic-perfectly

More information

Liquefaction Potential Variations Influenced by Building Constructions

Liquefaction Potential Variations Influenced by Building Constructions Earth Science Research; Vol. 1, No. 2; 2012 ISSN 1927-0542 E-ISSN 1927-0550 Published by Canadian Center of Science and Education Liquefaction Potential Variations Influenced by Building Constructions

More information

Lecture 7 Constitutive Behavior of Asphalt Concrete

Lecture 7 Constitutive Behavior of Asphalt Concrete Lecture 7 Constitutive Behavior of Asphalt Concrete What is a Constitutive Model? A constitutive model or constitutive equation is a relation between two physical quantities that is specific to a material

More information

Seismic Analyses of Concrete Gravity Dam with 3D Full Dam Model

Seismic Analyses of Concrete Gravity Dam with 3D Full Dam Model Seismic Analyses of Concrete Gravity Dam with 3D Full Dam Model Haibo Wang, Deyu Li & Huichen Yang China Institute of Water Resources and Hydropower Research, Beijing, China SUMMARY: Seismic analyses of

More information

Cyclic lateral response of piles in dry sand: Effect of pile slenderness

Cyclic lateral response of piles in dry sand: Effect of pile slenderness Cyclic lateral response of piles in dry sand: Effect of pile slenderness Rafa S. 1, Rouaz I. 1,Bouaicha A. 1, Abed El Hamid A. 1 Rafa.sidali@gmail.com 1 National Center for Studies and Integrated Researches

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 1, No 4, 2011

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 1, No 4, 2011 Undrained response of mining sand with fines contents Thian S. Y, Lee C.Y Associate Professor, Department of Civil Engineering, Universiti Tenaga Nasional, Malaysia siawyin_thian@yahoo.com ABSTRACT This

More information

THEME A. Analysis of the elastic behaviour of La Aceña arch-gravity dam

THEME A. Analysis of the elastic behaviour of La Aceña arch-gravity dam THEME A Analysis of the elastic behaviour of La Aceña arch-gravity dam Gjorgi KOKALANOV, Professor, Faculty of Civil Eng., Skopje, Republic of Macedonia Ljubomir TANČEV, Professor, Faculty of Civil Eng.,

More information

Landslide FE Stability Analysis

Landslide FE Stability Analysis Landslide FE Stability Analysis L. Kellezi Dept. of Geotechnical Engineering, GEO-Danish Geotechnical Institute, Denmark S. Allkja Altea & Geostudio 2000, Albania P. B. Hansen Dept. of Geotechnical Engineering,

More information

The Role of Slope Geometry on Flowslide Occurrence

The Role of Slope Geometry on Flowslide Occurrence American Journal of Environmental Sciences 3 (3): 93-97, 27 ISSN 1553-345X 27 Science Publications Corresponding Author: The Role of Slope Geometry on Flowslide Occurrence Chiara Deangeli DITAG, Politecnico

More information

Available online at ScienceDirect. Procedia Engineering 158 (2016 )

Available online at  ScienceDirect. Procedia Engineering 158 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 158 (2016 ) 344 349 VI ITALIAN ONFERENE OF RESEARHERS IN GEOTEHNIAL ENGINEERING Geotechnical Engineering in Multidisciplinary

More information

Dynamics: Domain Reduction Method. Case study

Dynamics: Domain Reduction Method. Case study Dynamics: Domain Reduction Method. Case study Andrzej Truty c ZACE Services Ltd August 2016 1 / 87 Scope of the lecture Example of a building subject to the earthquake (using Domain Reduction Method (DRM))

More information

SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS

SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 48, NO. 1 2, PP. 53 63 (2004) SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS Gabriella VARGA and Zoltán CZAP Geotechnical Department Budapest University of Technology

More information

Towards Efficient Finite Element Model Review Dr. Richard Witasse, Plaxis bv (based on the original presentation of Dr.

Towards Efficient Finite Element Model Review Dr. Richard Witasse, Plaxis bv (based on the original presentation of Dr. Towards Efficient Finite Element Model Review Dr. Richard Witasse, Plaxis bv (based on the original presentation of Dr. Brinkgreve) Journée Technique du CFMS, 16 Mars 2011, Paris 1/32 Topics FEA in geotechnical

More information

Piles in Lateral Spreading due to Liquefaction: A Physically Simplified Method Versus Centrifuge Experiments

Piles in Lateral Spreading due to Liquefaction: A Physically Simplified Method Versus Centrifuge Experiments "Pile-Group Response to Large Soil Displacements and Liquefaction: Centrifuge Experiments Versus A Physically Simplified Analysis", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.

More information

POSSIBILITY OF UNDRAINED FLOW IN SUCTION-DEVELOPED UNSATURATED SANDY SOILS IN TRIAXIAL TESTS

POSSIBILITY OF UNDRAINED FLOW IN SUCTION-DEVELOPED UNSATURATED SANDY SOILS IN TRIAXIAL TESTS 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. 1289 POSSIBILITY OF UNDRAINED FLOW IN SUCTION-DEVELOPED UNSATURATED SANDY SOILS IN TRIAXIAL TESTS Toshiyuki

More information

Time dependent earthquake modeling of an earth dam

Time dependent earthquake modeling of an earth dam Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (2016) 000 000 www.elsevier.com/locate/procedia 1st International Conference on the Material Point Method, MPM 2017 Time

More information

Shock Wave Propagation due to Methane-Air Mixture Explosion and Effect on a Concrete Enclosure

Shock Wave Propagation due to Methane-Air Mixture Explosion and Effect on a Concrete Enclosure Shock Wave Propagation due to Methane-Air Mixture Explosion and Effect on a Concrete Enclosure Sharad Tripathi, T.C.Arun Murthy, Alain Hodin, K.Suresh, Anup Ghosh International Contents 1. Introduction

More information

Climate effects on landslides

Climate effects on landslides GEORAMP ONE DAY SYMPOSIUM Climate effects on landslides E. E. Alonso, M. Sondón, N. M. Pinyol Universitat Politècnica de Catalunya October 14th, 2016. UPC, Barcelona Infiltration (evaporation) and slope

More information

Examining the Soil Responses during the Initiation of a Flow Landslide by Coupled Numerical Simulations

Examining the Soil Responses during the Initiation of a Flow Landslide by Coupled Numerical Simulations The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Examining the Soil Responses during the Initiation of a Flow Landslide by

More information

Cite this paper as follows:

Cite this paper as follows: Cite this paper as follows: Naughton P.J. and O Kelly B.C. 2001. An overview of the University College Dublin hollow cylinder apparatus. Proceedings of the 14th Young European Geotechnical Engineer s Conference,

More information

Soil strength. the strength depends on the applied stress. water pressures are required

Soil strength. the strength depends on the applied stress. water pressures are required Soil Strength Soil strength u Soils are essentially frictional materials the strength depends on the applied stress u Strength is controlled by effective stresses water pressures are required u Soil strength

More information

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION October 1-17,, Beijing, China DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION Mohammad M. Ahmadi 1 and Mahdi Ehsani 1 Assistant Professor, Dept. of Civil Engineering, Geotechnical Group,

More information

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials 1.3 Scope of This Book 1.4 Historical Development of Geotechnical

More information

Advanced Lateral Spread Modeling

Advanced Lateral Spread Modeling Adv. Liquefaction Modeling Page 1 Advanced Lateral Spread Modeling Reading Assignment Lecture Notes Other Materials Homework Assignment 1. Complete FLAC model 10a.pdf 2. Modify the example in FLAC model

More information

Validation of empirical formulas to derive model parameters for sands

Validation of empirical formulas to derive model parameters for sands Validation of empirical formulas to derive model parameters for sands R.B.J. Brinkgreve Geo-Engineering Section, Delft University of Technology, Delft, Netherlands/Plaxis B.V., Delft, Netherlands E. Engin

More information