REAL TIME AIRFLOW SIMULATION IN BUILDINGS

Size: px
Start display at page:

Download "REAL TIME AIRFLOW SIMULATION IN BUILDINGS"

Transcription

1 REAL TIME AIRFLOW SIMULATION IN BUILDINGS Wangda Zuo, and Qngyan (Yan) Chen School of Mechancal Engneerng, Purdue Unversty, West Lafayette, USA ABSTRACT Real tme flow smulaton s crucal n emergency management n buldngs, such as fre or accdental release of chemcal/bologcal agents. Proper measures can be taken to mnmze casualtes wth correct and tmely predcton of the spread of the fre or contamnants. Although the tradtonal CFD smulaton n buldngs s accurate, t s too tme consumng. Multzone flow modelng s fast, but ts accuracy s poor. Therefore, t s very necessary to develop a new method that s faster than the tradtonal CFD, but more accurate than the multzone modelng. Recently, the modfed sem-lagrangan method based on Naver-Stokes equaton has been used for flow smulaton. Ths method s uncondtonally stable and can use a larger tme step than tradtonal CFD. The method has been successfully used n computer game ndustry and n computer graphc scence. However, the results are only vrtually real and are not rgorously valdated. Ths nvestgaton used the method to systematcally study three basc flows n buldngs and compared the numercal results wth the correspondng expermental data or drect numercal smulaton data from the lterature. The results conclude that t s possble to conduct flow smulatons faster than real tme by usng the method, although some dscrepances exst between the numercal results and the data. KEYWORDS CFD, Real Tme, Sem-Lagrangan method, Fast Flud Dynamcs INTRODUCTION Fre or accdental release of chemcal/bologcal agents n buldngs happens occasonally. In such emergent stuatons, quck predcton of the smoke or contamnant transport s crucal for proposng measures to mnmze casualtes. The predcton should be not only accurate and nformatve, but also faster than the real tme. Unfortunately, current modelng technologes cannot meet such requrements. Ether ther computng speed s too slow or ther accuracy s too poor. For example, Computatonal Flud Dynamcs (CFD) by large eddy smulaton (LES) of arflow and contamnant transport n a buldng demands an mpractcally large computer capacty (tens of Gb memory) and long computng tme (weeks). Although CFD smulatons usng unsteady Reynolds averaged Naver-Stokes equatons (URANS) are much faster than the LES, t stll takes a desktop several hours to a few days to compute the arflow and contamnant transport n the buldng. On the other hand, by assumng the flow n a room s unform, multzone flow network models need lttle computng tme (a few seconds) (Wang 007). However, the homogenous assumpton of arflow n each room does not provde nformatve results for emergency management. Therefore, t s necessary to develop a method that s faster than the CFD, but more accurate and nformatve than the multzone modelng. Weather forecast requres quck and accurate calculaton of ar moton and temperature of the atmosphere. By treatng the lnear terms responsble for gravtatonal oscllatons n an mplct manner, Robert et al. (197) proposed a sem-lagrangan scheme. Ths scheme can ncrease the tme step sze Correspondng Author: Tel: , Fax: E-mal address: yanchen@purdue.edu

2 by about sx tmes at lttle addtonal cost and wthout degradng the accuracy of the soluton. Applyng the sem-lagrangan approach, Stanforth and Cote (1991) calculated flow for weather forecast and Stam (1999) and Harrs (003) smulated flud moton n computer games and acheved plausble results on real tme. To dstngush the dfferences from tradtonal CFD, the method usng sem-lagrangan approach s named as Fast Flud Dynamcs or FFD. We have attempted to use the FFD predctng ndoor arflows (Zuo and Chen 007). By comparng the computed results wth correspondng data on ndoor arflow from the lterature, our results show that that FFD could predct such flows wth reasonable accuracy and the smulatons were faster than real tme. However, our early work was for sothermal flow wth unform grds so that very fne grds were used for some cases. Ths nvestgaton extended the smulatons to non-sothermal arflows for ndoor envronment and developed our code further wth non-unform grd meshes. The results are reported n ths paper. SCHEME OF FAST FLUID DYNAMICS Before reportng the results, ths secton presents the basc equatons and numercal technques used by FFD. The FFD solves Naver-Stokes equatons for ncompressble flud: カU = 0, (1) カx U = U U + υ U + + P f, () t x x x where U and U are flud velocty components n x and x drectons, respectvely; υ s knematc molecular vscosty; P s pressure; and f s forces, such as buoyancy force. Applyng the Euler approach to the scalar varables (such as contamnant concentraton and ar temperature), the state equaton of the contamnant concentraton or ar temperature s: C = U C + k C + S, (3) t x x where C s contamnant concentraton or ar temperature; k dffusvty; and S source. In each tme step, the FFD solves the Naver-Stokes equatons (1) and () n four stages: (0) (1) () (3) (4) add force dffuse advect proect U U U U U. (4) At the frst stage, the FFD smply adds the force term n equaton () as: (1) (0) U = U + t f, (5) where t s the tme step. The second stage s to solve the dffuson term n equaton () through a frst order mplct scheme: () (1) () U U U = υ. (6) t x By applyng the mplct scheme, the smulaton s always stable even when the Courant number s much large than 1. The thrd stage s to solve the advecton term n equaton (): U (3) (3) () U = U x t, (7)

3 wth a sem-lagrangan approach (Courant et al. 195): ( ) (3) () () U ( x ) = U x t U, (8) where U (3) (3) (3) (x ) s U at locaton x = (x 1, x, x 3 ). However, the U does not satsfy the contnuty equaton (1). Hence, the last stage s to correct U (3) by a pressure-correcton proecton scheme (Chorn 1967). The proecton operaton ensures the conservaton of mass and t solves a Posson equaton for pressure: The veloctes are then corrected by P U = x x (4) (3) (3). (9) U = U P x, (10) where U (4) s the velocty satsfyng the contnuty equaton (1). A smlar approach can be appled for scalar varable state equaton (3) for comtanmant concentraton or ar temerpature except the proecton stage. RESULT ANALYSES Ths nvestgaton studed three typcal ndoor arflows: (1) a fully developed flow n a plane channel; () a natural convecton flow n a tall cavty; and (3) a forced convecton flow n a ventlated room. The flows represent the most basc elements of flows found n buldngs. Fully Developed Flow n a Plane Channel Flow through a corrdor n a buldng s smlar to that n a plane channel. Therefore, ths study selected a fully developed flow n a plane channel as a test case for the FFD. Based on wall shear velocty, U τ, and the channel half-wdth, H, the flow Reynolds number studed s Re τ = 180. Km et al. (1987) dd drect numercal smulaton (DNS) for ths flow and ther data were used as reference. The FFD smulaton was carred out wth 64 3 non-unform grds. Fgure 1 compares the normalzed mean streamwse veloctes obtaned by the FFD wth the DNS data. The FFD can capture the man shape of the velocty profle, although t under-predcts the velocty at the near wall regon and overpredcts t at the center of the channel. Ths dsagreement s possbly due to the wall treatment. The FFD used a smple no-slp wall boundary condton. Ths boundary treatment s proper for the lamnar flow. However, the channel flow at Re τ = 180 s turbulent (Km et al. 1987). Therefore, n order to mprove the accuracy, more advanced models for the wall are necessary. Our prevous work (Zuo and Chen 007) found that the velocty profle predcted by the FFD dd not satsfy the mass conservaton. Ths nvestgaton successfully solved ths problem by fxng the pressure at a gven pont n the doman. Natural Convecton Flow n a Tall Cavty The arflow due to natural convecton n a tall cavty s lke that n a room wth a heater n the wnter. Ths study used a case wth expermental data from Betts and Bokhar (1995). The cavty was m wde and.18 m tall as shown n Fgure. The rght wall was heated at T = 34.7 o C and the left wall cooled at T 1 = 15.1 o C. The correspondng Raylegh number was The FFD smulaton was carred out on 10 0 non-unform grd cells (Fgure 3) wth a tme step equal to 0.05 s.

4 Fgure 1. The comparson of mean streamwse velocty of the plane channel flow at Re τ = 180, predcted by the FFD and DNS (Km et al. 1987) Fgure. The sketch of natural convecton n a tall cavty Fgure 3. The mesh used n the case of the natural convecton n a tall cavty Fgure 4 compares the predcted temperature and vertcal velocty by the FFD wth the correspondng expermental data. Although the temperature profles predcted by the FFD are steeper at the near wall regon and flatter at the center of the cavty, the agreement wth the expermental data s acceptable consderng the smple flow model used. The computed vertcal veloctes agree wth the expermental data better at the center of the cavty than at the near wall regons. Ths s probably due to the overpredcted heat transfer from the walls by the FFD, whch generated a larger buoyancy force and, consequently, a larger velocty near the walls.

5 (a) Ar temperature (b) Vertcal ar velocty Fgure 4. Comparson of the averaged ar temperature and vertcal ar velocty predcted by the FFD wth the expermental data (Betts and Bokhar 1995). Forced Convecton Flow n a Room The forced convecton case used s based on Restvo s experment (1979). Fgure 4 shows the sketch of the experment, where H was 3 m. The nlet heght, h n, was m (0.056 H) and nlet velocty, U n, was m/s. The outlet heght, h out, was 0.48 m (0.16 H). Based on the nlet heght and nlet velocty, the Reynolds number was Multple boundary condtons, such as nflow, outflow and walls, were appled on the flow doman. The FFD used non-unform grd cells and a tme step of 0.5 s (Fgure 6). Fgure 5. The sketch of a forced convecton flow n a room Fgure 6. The mesh used n the case of forced convecton flow n a room Fgure 7 compares the FFD results n two vertcal and two horzontal lnes across the room wth the expermental data. The expermental data llustrates that the flow was complex because there was a secondary recrculaton n the upper-rght corner and another n the lower-left corner. The FFD can properly predct the velocty at the center of the room (x = H and H), but t dd not work perfectly at the near wall regons (y = 0.08H and 0.97H). Two possble reasons may cause that problem. Frst, the grd resoluton of the near wall regon s coarse. Second, flow near the wall s very complex and current no-slp wall boundary condton s not proper. As dscussed n channel flow secton, to correctly capture the flow at the near wall regon, one has to apply approprate wall treatment.

6 Fgure 7. Comparson of horzontal ar veloctes by the FFD and the expermental data (Restvo 1979). The data are extracted at two vertcal and horzontal sectons across the room. DISCUSSION Ths nvestgaton evaluated also the computng speed of the FFD method. The evaluaton defned a speed enhancement as N = t physcal / t cpu, where t cpu s the elapsed CPU tme used by the FFD and t physcal the physcal tme of flow moton. Thus, real tme smulaton means N = 1. When N > 1, the FFD smulaton s faster than real tme. For the three cases, the FFD smulatons were faster than the real tme on a HP workstaton wth an Intel Xeon (TM) CPU at 3.60 GHz. Table 1 lsts the performance of the FFD smulatons. The FFD ran much faster than real tme n all the three cases. However, the N strongly depends on number of grds and tme step sze. For example, the forced convecton case used fner grd (6.5 tmes), but even larger tme step (10 tmes) than the natural convecton case. Furthermore, the FFD dd not solve temperature equaton for the sothermal flow n the forced convecton. Therefore, the FFD for the forced convecton obtaned more speed enhancement than the natural convecton. Obvously, a coarse grd sze and large tme steps can

7 accelerate the smulaton but accordngly degrade the accuracy. Therefore, one has to fnd a trade-off between the computatonal performance and accuracy. Table 1 Performance of the FFD smulatons Case Grds t (s) N Channel flow Natural convecton Forced convecton CONCLUSIONS Ths paper ntroduced a scheme of fast flud dynamcs (FFD) method. The FFD has been used to compute arflow and temperature dstrbutons for a fully developed plane channel flow, a natural convecton flow n a tall cavty, and a forced convecton flow n a ventlated room. The three flows represent the basc flow features n buldngs. The correspondng expermental or DNS data from the lterature for the three flows were used to compare the FFD results. The results show that the FFD can predct the arflows wth acceptable accuracy at a speed 6 to 100 tmes faster than real tme. NOMENCLATURE C Contamnant concentraton or ar temperature K Contamnant or thermal dffusvty f Force P Pressure S Source t Tme step U, U Velocty components n x and x drectons, respectvely x, x Spatal coordnates υ Dynamcs molecular vscosty ACKNOWLEDGEMENTS Ths proect was funded by U.S. Federal Avaton Admnstraton (FAA) Offce of Aerospace Medcne through the Ar Transportaton Center of Excellence for Arlner Cabn Envronment Research under Cooperatve Agreement 04-C-ACE-PU. Although the FAA has sponsored ths proect, t nether endorses nor reects the fndngs of ths research. The presentaton of ths nformaton s n the nterest of nvokng techncal communty comment on the results and conclusons of research. REFERENCES 1. P. L. Betts and I. H. Bokhar (1995) "New experments on turbulent natural convecton of ar n a tall cavty", Proc. of IMechE Conference Transactons, 4th UK Natonal Conference on Heat Transfer.. A. J. Chorn (1967) "A numercal method for solvng ncompressble vscous flow problems", Journal of Computatonal Physcs, Vol., R. Courant, E. Isaacson and M. Rees (195) "On the soluton of nonlnear hyperbolc dfferental equatons by fnte dfferences", Communcaton on Pure and Appled Mathematcs Vol. 5, J. Km, P. Mon and R. Moser (1987) "Turbulence statstcs n fully-developed channel flow at low Reynolds-number", Journal of Flud Mechancs, Vol. 177, A. Robert, C. Turnbull and J. Henderso (197) "Implct tme ntegraton scheme for baroclnc models of atmosphere", Monthly Weather Revew, Vol. 100,

8 6. J. Stam (1999) "Stable fluds", Proc. of SIGGRAPH L. Wang (007) "Couplng of multzone and CFD programs for buldng arflow and contamnant transport smulatons", Ph.D. Thess, Purdue Unversty. 8. W. Zuo and Q. Chen (007) "Valdaton of fast flud dynamcs for room arflow", Proc. of Internatonal Symposum on Heatng, Ventlatng and Ar Condtonng, Beng, Chna.

A NEW FILTERED DYNAMIC SUBGRID-SCALE MODEL FOR LARGE EDDY SIMULATION OF INDOOR AIRFLOW

A NEW FILTERED DYNAMIC SUBGRID-SCALE MODEL FOR LARGE EDDY SIMULATION OF INDOOR AIRFLOW A NEW FILTERED DYNAMIC SUBGRID-SCALE MODEL FOR LARGE EDDY SIMULATION OF INDOOR AIRFLOW We Zhang and Qngyan Chen Buldng Technology Program Massachusetts Insttute of Technology 77 Mass. Ave., Cambrdge, MA

More information

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Blucher Mechancal Engneerng Proceedngs May 0, vol., num. www.proceedngs.blucher.com.br/evento/0wccm STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Takahko Kurahash,

More information

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube A Numercal Study of Heat ransfer and Flud Flow past Sngle ube ZEINAB SAYED ABDEL-REHIM Mechancal Engneerng Natonal Research Center El-Bohos Street, Dokk, Gza EGYP abdelrehmz@yahoo.com Abstract: - A numercal

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Using Large Eddy Simulation to Study Airflows in and around Buildings

Using Large Eddy Simulation to Study Airflows in and around Buildings Jang, Y., Su., M., and Chen, Q. 003. Usng large eddy smulaton to study arflows n and around buldngs, ASHRAE Transactons, 109(), 517-56. Usng Large Eddy Smulaton to Study Arflows n and around Buldngs Y

More information

A large scale tsunami run-up simulation and numerical evaluation of fluid force during tsunami by using a particle method

A large scale tsunami run-up simulation and numerical evaluation of fluid force during tsunami by using a particle method A large scale tsunam run-up smulaton and numercal evaluaton of flud force durng tsunam by usng a partcle method *Mtsuteru Asa 1), Shoch Tanabe 2) and Masaharu Isshk 3) 1), 2) Department of Cvl Engneerng,

More information

High resolution entropy stable scheme for shallow water equations

High resolution entropy stable scheme for shallow water equations Internatonal Symposum on Computers & Informatcs (ISCI 05) Hgh resoluton entropy stable scheme for shallow water equatons Xaohan Cheng,a, Yufeng Ne,b, Department of Appled Mathematcs, Northwestern Polytechncal

More information

Air Age Equation Parameterized by Ventilation Grouped Time WU Wen-zhong

Air Age Equation Parameterized by Ventilation Grouped Time WU Wen-zhong Appled Mechancs and Materals Submtted: 2014-05-07 ISSN: 1662-7482, Vols. 587-589, pp 449-452 Accepted: 2014-05-10 do:10.4028/www.scentfc.net/amm.587-589.449 Onlne: 2014-07-04 2014 Trans Tech Publcatons,

More information

Turbulent Flow. Turbulent Flow

Turbulent Flow. Turbulent Flow http://www.youtube.com/watch?v=xoll2kedog&feature=related http://br.youtube.com/watch?v=7kkftgx2any http://br.youtube.com/watch?v=vqhxihpvcvu 1. Caothc fluctuatons wth a wde range of frequences and

More information

Effect of Different Near-Wall Treatments on Indoor Airflow Simulations

Effect of Different Near-Wall Treatments on Indoor Airflow Simulations Journal of Appled Flud Mechancs, Vol. 5, No. 4, pp. 63-70, 2012. Avalable onlne at www.jafmonlne.net, ISSN 1735-3572, EISSN 1735-3645. Effect of Dfferent Near-Wall Treatments on Indoor Arflow Smulatons

More information

Introduction to Computational Fluid Dynamics

Introduction to Computational Fluid Dynamics Introducton to Computatonal Flud Dynamcs M. Zanub 1, T. Mahalakshm 2 1 (PG MATHS), Department of Mathematcs, St. Josephs College of Arts and Scence for Women-Hosur, Peryar Unversty 2 Assstance professor,

More information

Simulated Power of the Discrete Cramér-von Mises Goodness-of-Fit Tests

Simulated Power of the Discrete Cramér-von Mises Goodness-of-Fit Tests Smulated of the Cramér-von Mses Goodness-of-Ft Tests Steele, M., Chaselng, J. and 3 Hurst, C. School of Mathematcal and Physcal Scences, James Cook Unversty, Australan School of Envronmental Studes, Grffth

More information

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate Internatonal Journal of Mathematcs and Systems Scence (018) Volume 1 do:10.494/jmss.v1.815 (Onlne Frst)A Lattce Boltzmann Scheme for Dffuson Equaton n Sphercal Coordnate Debabrata Datta 1 *, T K Pal 1

More information

Higher Order Wall Boundary Conditions for Incompressible Flow Simulations

Higher Order Wall Boundary Conditions for Incompressible Flow Simulations THE 5 TH ASIAN COMPUTAITIONAL FLUID DYNAMICS BUSAN KOREA OCTOBER 7-30 003 Hgher Order Wall Boundary Condtons for Incompressble Flow Smulatons Hdetosh Nshda. Department of Mechancal and System Engneerng

More information

Research & Reviews: Journal of Engineering and Technology

Research & Reviews: Journal of Engineering and Technology Research & Revews: Journal of Engneerng and Technology Case Study to Smulate Convectve Flows and Heat Transfer n Arcondtoned Spaces Hussen JA 1 *, Mazlan AW 1 and Hasanen MH 2 1 Department of Mechancal

More information

APPLICATION OF CFD TOOLS FOR INDOOR AND OUTDOOR ENVIRONMENT DESIGN

APPLICATION OF CFD TOOLS FOR INDOOR AND OUTDOOR ENVIRONMENT DESIGN , Volume 1, Number 1, p.14-9, 000 APPLICATION OF CFD TOOLS FOR INDOOR AND OUTDOOR ENVIRONMENT DESIGN Q. Chen and J. Srebrc Buldng Technology Program, Department of Archtecture, Massachusetts Insttute of

More information

SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME. Abstract

SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME. Abstract SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME PACS REFERENCE: 43.20.Mv Andreas Wlde Fraunhofer Insttut für Integrerte Schaltungen, Außenstelle EAS Zeunerstr.

More information

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA 14 th Internatonal Users Conference Sesson: ALE-FSI Statstcal Energy Analyss for Hgh Frequency Acoustc Analyss wth Zhe Cu 1, Yun Huang 1, Mhamed Soul 2, Tayeb Zeguar 3 1 Lvermore Software Technology Corporaton

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information

Solution of the Navier-Stokes Equations

Solution of the Navier-Stokes Equations Numercal Flud Mechancs Fall 2011 Lecture 25 REVIEW Lecture 24: Soluton of the Naver-Stokes Equatons Dscretzaton of the convectve and vscous terms Dscretzaton of the pressure term Conservaton prncples Momentum

More information

Flow equations To simulate the flow, the Navier-Stokes system that includes continuity and momentum equations is solved

Flow equations To simulate the flow, the Navier-Stokes system that includes continuity and momentum equations is solved Smulaton of nose generaton and propagaton caused by the turbulent flow around bluff bodes Zamotn Krll e-mal: krart@gmal.com, cq: 958886 Summary Accurate predctons of nose generaton and spread n turbulent

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

FORCED CONVECTION HEAT TRANSFER FROM A RECTANGULAR CYLINDER: EFFECT OF ASPECT RATIO

FORCED CONVECTION HEAT TRANSFER FROM A RECTANGULAR CYLINDER: EFFECT OF ASPECT RATIO ISTP-,, PRAGUE TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA FORCED CONVECTION HEAT TRANSFER FROM A RECTANGULAR CYLINDER: EFFECT OF ASPECT RATIO Mohammad Rahnama*, Seyed-Mad Hasheman*, Mousa Farhad**

More information

Operating conditions of a mine fan under conditions of variable resistance

Operating conditions of a mine fan under conditions of variable resistance Paper No. 11 ISMS 216 Operatng condtons of a mne fan under condtons of varable resstance Zhang Ynghua a, Chen L a, b, Huang Zhan a, *, Gao Yukun a a State Key Laboratory of Hgh-Effcent Mnng and Safety

More information

Numerical Simulation of Lid-Driven Cavity Flow Using the Lattice Boltzmann Method

Numerical Simulation of Lid-Driven Cavity Flow Using the Lattice Boltzmann Method Proceedngs of the 3th WSEAS Internatonal Conference on APPLIED MATHEMATICS (MATH'8) Numercal Smulaton of Ld-Drven Cavty Flow Usng the Lattce Boltzmann Method M.A. MUSSA, S. ABDULLAH *, C.S. NOR AZWADI

More information

The Finite Element Method

The Finite Element Method The Fnte Element Method GENERAL INTRODUCTION Read: Chapters 1 and 2 CONTENTS Engneerng and analyss Smulaton of a physcal process Examples mathematcal model development Approxmate solutons and methods of

More information

CFD VALIDATION OF STRATIFIED TWO-PHASE FLOWS IN A HORIZONTAL CHANNEL

CFD VALIDATION OF STRATIFIED TWO-PHASE FLOWS IN A HORIZONTAL CHANNEL CFD VALIDATION OF STRATIFIED TWO-PHASE FLOWS IN A HORIZONTAL CHANNEL 1. Introducton Chrstophe Vallée and Thomas Höhne In dfferent scenaros of small break Loss of Coolant Accdent (SB-LOCA), stratfed twophase

More information

NUMERICAL SIMULATION OF FLOW OVER STEPPED SPILLWAYS

NUMERICAL SIMULATION OF FLOW OVER STEPPED SPILLWAYS ISSN: 345-3109 RCEE Research n Cvl and Envronmental Engneerng www.rcee.com Research n Cvl and Envronmental Engneerng 014 (04) 190-198 NUMERICAL SIMULATION OF FLOW OVER STEPPED SPILLWAYS Rasoul Daneshfaraz

More information

Corresponding author: Tsubasa Okaze,

Corresponding author: Tsubasa Okaze, Academc Artcle Journal of Heat Island Insttute Internatonal Vol. - (7) Large-Eddy Smulaton of on-isothermal Flow around a Buldng Usng Artfcally Generated Inflow Turbulent Fluctuatons of Wnd Velocty and

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

IDENTIFY CONTAMINANT SOURCES IN AIRLINER CABINS BY INVERSE MODELING OF CFD WITH INFORMATION FROM A SENSOR

IDENTIFY CONTAMINANT SOURCES IN AIRLINER CABINS BY INVERSE MODELING OF CFD WITH INFORMATION FROM A SENSOR Proceedngs: Buldng Smulaton 27 IDENTIFY CONTAMINANT SOURCES IN AIRLINER CABINS BY INVERSE MODELING OF CFD WITH INFORMATION FROM A SENSOR Tengfe Zhang 1, Qngyan (Yan) Chen 1 1 Ar Transportaton Center of

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

REAL-TIME DETERMINATION OF INDOOR CONTAMINANT SOURCE LOCATION AND STRENGTH, PART II: WITH TWO SENSORS. Beijing , China,

REAL-TIME DETERMINATION OF INDOOR CONTAMINANT SOURCE LOCATION AND STRENGTH, PART II: WITH TWO SENSORS. Beijing , China, REAL-TIME DETERMIATIO OF IDOOR COTAMIAT SOURCE LOCATIO AD STREGTH, PART II: WITH TWO SESORS Hao Ca,, Xantng L, Wedng Long 3 Department of Buldng Scence, School of Archtecture, Tsnghua Unversty Bejng 84,

More information

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites 7 Asa-Pacfc Engneerng Technology Conference (APETC 7) ISBN: 978--6595-443- The Two-scale Fnte Element Errors Analyss for One Class of Thermoelastc Problem n Perodc Compostes Xaoun Deng Mngxang Deng ABSTRACT

More information

A Cartesian-grid integrated-rbf method for viscoelastic flows

A Cartesian-grid integrated-rbf method for viscoelastic flows Home Search Collectons Journals About Contact us My IOPscence A Cartesan-grd ntegrated-rbf method for vscoelastc flows Ths artcle has been downloaded from IOPscence. Please scroll down to see the full

More information

Consideration of 2D Unsteady Boundary Layer Over Oscillating Flat Plate

Consideration of 2D Unsteady Boundary Layer Over Oscillating Flat Plate Proceedngs of the th WSEAS Internatonal Conference on Flud Mechancs and Aerodynamcs, Elounda, Greece, August -, (pp-) Consderaton of D Unsteady Boundary Layer Over Oscllatng Flat Plate N.M. NOURI, H.R.

More information

Lecture 12. Modeling of Turbulent Combustion

Lecture 12. Modeling of Turbulent Combustion Lecture 12. Modelng of Turbulent Combuston X.S. Ba Modelng of TC Content drect numercal smulaton (DNS) Statstcal approach (RANS) Modelng of turbulent non-premxed flames Modelng of turbulent premxed flames

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Turbulent Flow in Curved Square Duct: Prediction of Fluid flow and Heat transfer Characteristics

Turbulent Flow in Curved Square Duct: Prediction of Fluid flow and Heat transfer Characteristics Internatonal Research Journal of Engneerng and Technology (IRJET) e-issn: 2395-56 Volume: 4 Issue: 7 July -217 www.ret.net p-issn: 2395-72 Turbulent Flow n Curved Square Duct: Predcton of Flud flow and

More information

THE NEAR-WALL INFLUENCE ON THE FLOW AROUND A SINGLE SQUARE CYLINDER.

THE NEAR-WALL INFLUENCE ON THE FLOW AROUND A SINGLE SQUARE CYLINDER. THE NEAR-WALL INFLUENCE ON THE FLOW AROUND A SINGLE SQUARE CYLINDER. Campregher, Rubens Faculty of Mechancal Engneerng, FEMEC Federal Unversty of Uberlânda, UFU 38400-902 Uberlânda - Brazl campregher@mecanca.ufu.br

More information

INTERROGATING THE FLOW BEHAVIOUR IN A NOVEL MAGNETIC DESICCANT VENTILATION SYSTEM USING COMPUTATIONAL FLUID DYNAMICS (CFD)

INTERROGATING THE FLOW BEHAVIOUR IN A NOVEL MAGNETIC DESICCANT VENTILATION SYSTEM USING COMPUTATIONAL FLUID DYNAMICS (CFD) INTERROGATING THE FLOW BEHAVIOUR IN A NOVEL MAGNETIC DESICCANT VENTILATION SYSTEM USING COMPUTATIONAL FLUID DYNAMICS (CFD) Auwal Dodo*, Valente Hernandez-Perez, Je Zhu and Saffa Rffat Faculty of Engneerng,

More information

NUMERICAL MODEL FOR NON-DARCY FLOW THROUGH COARSE POROUS MEDIA USING THE MOVING PARTICLE SIMULATION METHOD

NUMERICAL MODEL FOR NON-DARCY FLOW THROUGH COARSE POROUS MEDIA USING THE MOVING PARTICLE SIMULATION METHOD THERMAL SCIENCE: Year 2018, Vol. 22, No. 5, pp. 1955-1962 1955 NUMERICAL MODEL FOR NON-DARCY FLOW THROUGH COARSE POROUS MEDIA USING THE MOVING PARTICLE SIMULATION METHOD Introducton by Tomok IZUMI a* and

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

Research Article A Multilevel Finite Difference Scheme for One-Dimensional Burgers Equation Derived from the Lattice Boltzmann Method

Research Article A Multilevel Finite Difference Scheme for One-Dimensional Burgers Equation Derived from the Lattice Boltzmann Method Appled Mathematcs Volume 01, Artcle ID 9590, 13 pages do:10.1155/01/9590 Research Artcle A Multlevel Fnte Dfference Scheme for One-Dmensonal Burgers Equaton Derved from the Lattce Boltzmann Method Qaoe

More information

Rotor Noise Modeling Kenneth S. Brentner Penn State University

Rotor Noise Modeling Kenneth S. Brentner Penn State University Rotor Nose Modelng Kenneth S. Brentner Penn State Unversty Joby Avaton S4 www.jobyavaton.com 2018 Kenneth S. Brentner. All rghts reserved. 5 th Transformatve Vertcal Flght Workshop, January 18-19, 2018

More information

Simulation of Turbulent Flow Using FEM

Simulation of Turbulent Flow Using FEM Internatonal Journal of Engneerng and Technology Volume 2 No. 8, August, 2012 Smulaton of Turbulent Flow Usng FEM Sabah Tamm College of Computng, AlGhurar Unversty, Duba, Unted Arab Emrates. ABSTRACT An

More information

HYBRID LBM-FVM AND LBM-MCM METHODS FOR FLUID FLOW AND HEAT TRANSFER SIMULATION

HYBRID LBM-FVM AND LBM-MCM METHODS FOR FLUID FLOW AND HEAT TRANSFER SIMULATION HYBRID LBM-FVM AND LBM-MCM METHODS FOR FLUID FLOW AND HEAT TRANSFER SIMULATION Zheng L a,b, Mo Yang b and Yuwen Zhang a* a Department of Mechancal and Aerospace Engneerng, Unversty of Mssour, Columba,

More information

Computational Analysis of Cavitating Marine Propeller Performance using OpenFOAM

Computational Analysis of Cavitating Marine Propeller Performance using OpenFOAM Fourth Internatonal Symposum on Marne Propulsors smp 15, Austn, Texas, USA, June 2015 Workshop: Propeller Performance Computatonal Analyss of Cavtatng Marne Propeller Performance usng OpenFOAM Abolfazl

More information

Investigation of a New Monte Carlo Method for the Transitional Gas Flow

Investigation of a New Monte Carlo Method for the Transitional Gas Flow Investgaton of a New Monte Carlo Method for the Transtonal Gas Flow X. Luo and Chr. Day Karlsruhe Insttute of Technology(KIT) Insttute for Techncal Physcs 7602 Karlsruhe Germany Abstract. The Drect Smulaton

More information

Turbulence and its Modelling

Turbulence and its Modelling School of Mechancal Aerospace and Cvl Engneerng 3rd Year Flud Mechancs Introducton In earler lectures we have consdered how flow nstabltes develop, and noted that above some crtcal Reynolds number flows

More information

LES ESTIMATION OF ENVIRONMENTAL DEGRADATION AT THE URBAN HEAT ISLAND DUE TO DENSELY-ARRAYED TALL BUILDINGS

LES ESTIMATION OF ENVIRONMENTAL DEGRADATION AT THE URBAN HEAT ISLAND DUE TO DENSELY-ARRAYED TALL BUILDINGS 3.3 LES ESTIMATION OF ENVIRONMENTAL DEGRADATION AT THE URBAN HEAT ISLAND DUE TO DENSELY-ARRAYED TALL BUILDINGS Tetsuro Tamura* Junch Nagayama Kench Ohta Tetsuya Takem and Yasuo Okuda Tokyo Insttute of

More information

Tools for large-eddy simulation

Tools for large-eddy simulation Center for Turbulence Research Proceedngs of the Summer Program 00 117 Tools for large-eddy smulaton By Davd A. Caughey AND Grdhar Jothprasad A computer code has been developed for solvng the ncompressble

More information

TURBULENT FLOW A BEGINNER S APPROACH. Tony Saad March

TURBULENT FLOW A BEGINNER S APPROACH. Tony Saad March TURBULENT FLOW A BEGINNER S APPROACH Tony Saad March 2004 http://tsaad.uts.edu - tsaad@uts.edu CONTENTS Introducton Random processes The energy cascade mechansm The Kolmogorov hypotheses The closure problem

More information

Tensor Smooth Length for SPH Modelling of High Speed Impact

Tensor Smooth Length for SPH Modelling of High Speed Impact Tensor Smooth Length for SPH Modellng of Hgh Speed Impact Roman Cherepanov and Alexander Gerasmov Insttute of Appled mathematcs and mechancs, Tomsk State Unversty 634050, Lenna av. 36, Tomsk, Russa RCherepanov82@gmal.com,Ger@npmm.tsu.ru

More information

Calculation of Aerodynamic Characteristics of NACA 2415, 23012, Airfoils Using Computational Fluid Dynamics (CFD)

Calculation of Aerodynamic Characteristics of NACA 2415, 23012, Airfoils Using Computational Fluid Dynamics (CFD) Calculaton of Aerodynamc Characterstcs of NACA 2415, 23012, 23015 Arfols Usng Computatonal Flud Dynamcs (CFD) Hmanshu Parashar Abstract A method of solvng the flow over arfols of Natonal Advsory Commttee

More information

Adiabatic Sorption of Ammonia-Water System and Depicting in p-t-x Diagram

Adiabatic Sorption of Ammonia-Water System and Depicting in p-t-x Diagram Adabatc Sorpton of Ammona-Water System and Depctng n p-t-x Dagram J. POSPISIL, Z. SKALA Faculty of Mechancal Engneerng Brno Unversty of Technology Techncka 2, Brno 61669 CZECH REPUBLIC Abstract: - Absorpton

More information

Simulation of Incompressible Flows in Two-Sided Lid-Driven Square Cavities. Part II - LBM

Simulation of Incompressible Flows in Two-Sided Lid-Driven Square Cavities. Part II - LBM Perumal & Dass CFD Letters Vol. 2(1) 2010 www.cfdl.ssres.net Vol. 2 (1) March 2010 Smulaton of Incompressble Flows n Two-Sded Ld-Drven Square Cavtes. Part II - LBM D. Arumuga Perumal 1c and Anoop K. Dass

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Survey of applications of discrete vortex method in civil engineering

Survey of applications of discrete vortex method in civil engineering Budownctwo Archtektura 5 (2009) 29-38 Survey of applcatons of dscrete vortex method n cvl engneerng Tomasz Nowck Lubln Unversty of Technology, Faculty of Cvl Engneerng and Archtecture, Department of Structural

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

NUMERICAL SIMULATION OF TURBULENT FLOW AROUND A BUILDING COMPLEX

NUMERICAL SIMULATION OF TURBULENT FLOW AROUND A BUILDING COMPLEX BBAA VI Internatonal Colloquum on: Bluff Bodes Aerodynamcs & Applcatons lano, Italy, July, 0-4 008 NUEICAL SIULATION OF TUBULENT FLOW AOUND A BUILDING COPLEX Sungsu Lee, Choon-Bum Cho, Kyung-Soo Yang and

More information

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems Mathematca Aeterna, Vol. 1, 011, no. 06, 405 415 Applcaton of B-Splne to Numercal Soluton of a System of Sngularly Perturbed Problems Yogesh Gupta Department of Mathematcs Unted College of Engneerng &

More information

Journal of Fluid Science and Technology

Journal of Fluid Science and Technology Journal of Flud Scence and Technology Numercal Smulaton of Incompressble Flows around a Fsh Model at Low Reynolds Number Usng Seamless Vrtual Boundary Method * Hdetosh NISHIDA ** and Kyohe TAJIRI ** **Department

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Simulation of Flow Pattern in Open Channels with Sudden Expansions

Simulation of Flow Pattern in Open Channels with Sudden Expansions Research Journal of Appled Scences, Engneerng and Technology 4(19): 3852-3857, 2012 ISSN: 2040-7467 Maxwell Scentfc Organzaton, 2012 Submtted: May 11, 2012 Accepted: June 01, 2012 Publshed: October 01,

More information

Analysis of Unsteady Aerodynamics of a Car Model with Radiator in Dynamic Pitching Motion using LS-DYNA

Analysis of Unsteady Aerodynamics of a Car Model with Radiator in Dynamic Pitching Motion using LS-DYNA Analyss of Unsteady Aerodynamcs of a Car Model wth Radator n Dynamc Ptchng Moton usng LS-DYNA Yusuke Nakae 1, Jro Takamtsu 1, Hrosh Tanaka 1, Tsuyosh Yasuk 1 1 Toyota Motor Corporaton 1 Introducton Recently,

More information

Numerical Studies on Flow Features past a Backward Facing Sharp Edge Step Introducing Hybrid RANS-LES

Numerical Studies on Flow Features past a Backward Facing Sharp Edge Step Introducing Hybrid RANS-LES ISSN NO : 49-7455 Numercal Studes on Flow Features past a Backward Facng Sharp Edge Step Introducng Hybrd RANS-LES Abstract Dr. Nrmal Kumar Kund Assocate Professor, Department of Producton Engneerng Veer

More information

Three-Phase Distillation in Packed Towers: Short-Cut Modelling and Parameter Tuning

Three-Phase Distillation in Packed Towers: Short-Cut Modelling and Parameter Tuning European Symposum on Computer Arded Aded Process Engneerng 15 L. Pugjaner and A. Espuña (Edtors) 2005 Elsever Scence B.V. All rghts reserved. Three-Phase Dstllaton n Packed Towers: Short-Cut Modellng and

More information

One-sided finite-difference approximations suitable for use with Richardson extrapolation

One-sided finite-difference approximations suitable for use with Richardson extrapolation Journal of Computatonal Physcs 219 (2006) 13 20 Short note One-sded fnte-dfference approxmatons sutable for use wth Rchardson extrapolaton Kumar Rahul, S.N. Bhattacharyya * Department of Mechancal Engneerng,

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

Introduction to Turbulence Modeling

Introduction to Turbulence Modeling Introducton to Turbulence Modelng Professor Ismal B. Celk West Vrgna nversty Ismal.Celk@mal.wvu.edu CFD Lab. - West Vrgna nversty I-1 Introducton to Turbulence CFD Lab. - West Vrgna nversty I-2 Introducton

More information

New Method for Solving Poisson Equation. on Irregular Domains

New Method for Solving Poisson Equation. on Irregular Domains Appled Mathematcal Scences Vol. 6 01 no. 8 369 380 New Method for Solvng Posson Equaton on Irregular Domans J. Izadan and N. Karamooz Department of Mathematcs Facult of Scences Mashhad BranchIslamc Azad

More information

Note 10. Modeling and Simulation of Dynamic Systems

Note 10. Modeling and Simulation of Dynamic Systems Lecture Notes of ME 475: Introducton to Mechatroncs Note 0 Modelng and Smulaton of Dynamc Systems Department of Mechancal Engneerng, Unversty Of Saskatchewan, 57 Campus Drve, Saskatoon, SK S7N 5A9, Canada

More information

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12 REVIEW Lecture 11: 2.29 Numercal Flud Mechancs Fall 2011 Lecture 12 End of (Lnear) Algebrac Systems Gradent Methods Krylov Subspace Methods Precondtonng of Ax=b FINITE DIFFERENCES Classfcaton of Partal

More information

Lab 2e Thermal System Response and Effective Heat Transfer Coefficient

Lab 2e Thermal System Response and Effective Heat Transfer Coefficient 58:080 Expermental Engneerng 1 OBJECTIVE Lab 2e Thermal System Response and Effectve Heat Transfer Coeffcent Warnng: though the experment has educatonal objectves (to learn about bolng heat transfer, etc.),

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

A new integrated-rbf-based domain-embedding scheme for solving fluid-flow problems

A new integrated-rbf-based domain-embedding scheme for solving fluid-flow problems Home Search Collectons Journals About Contact us My IOPscence A new ntegrated-rbf-based doman-embeddng scheme for solvng flud-flow problems Ths artcle has been downloaded from IOPscence. Please scroll

More information

1-Dimensional Advection-Diffusion Finite Difference Model Due to a Flow under Propagating Solitary Wave

1-Dimensional Advection-Diffusion Finite Difference Model Due to a Flow under Propagating Solitary Wave 014 4th Internatonal Conference on Future nvronment and nergy IPCB vol.61 (014) (014) IACSIT Press, Sngapore I: 10.776/IPCB. 014. V61. 6 1-mensonal Advecton-ffuson Fnte fference Model ue to a Flow under

More information

Publication 2006/01. Transport Equations in Incompressible. Lars Davidson

Publication 2006/01. Transport Equations in Incompressible. Lars Davidson Publcaton 2006/01 Transport Equatons n Incompressble URANS and LES Lars Davdson Dvson of Flud Dynamcs Department of Appled Mechancs Chalmers Unversty of Technology Göteborg, Sweden, May 2006 Transport

More information

Problem adapted reduced models based on Reaction-Diffusion Manifolds (REDIMs)

Problem adapted reduced models based on Reaction-Diffusion Manifolds (REDIMs) Problem adapted reduced models based on Reacton-Dffuson Manfolds (REDIMs) V Bykov, U Maas Thrty-Second Internatonal Symposum on ombuston, Montreal, anada, 3-8 August, 8 Problem Statement: Smulaton of reactng

More information

A Robust Method for Calculating the Correlation Coefficient

A Robust Method for Calculating the Correlation Coefficient A Robust Method for Calculatng the Correlaton Coeffcent E.B. Nven and C. V. Deutsch Relatonshps between prmary and secondary data are frequently quantfed usng the correlaton coeffcent; however, the tradtonal

More information

Uncertainty as the Overlap of Alternate Conditional Distributions

Uncertainty as the Overlap of Alternate Conditional Distributions Uncertanty as the Overlap of Alternate Condtonal Dstrbutons Olena Babak and Clayton V. Deutsch Centre for Computatonal Geostatstcs Department of Cvl & Envronmental Engneerng Unversty of Alberta An mportant

More information

TURBULENT WALL JET OVER A FORWARD-BACKWARD FACING STEP PAIR

TURBULENT WALL JET OVER A FORWARD-BACKWARD FACING STEP PAIR Nnth Internatonal Conference on Computatonal Flud Dynamcs (ICCFD9), Istanbul, Turkey, July -5, ICCFD9-xxxx TURBULENT WALL JET OVER A FORWARD-BACKWARD FACING STEP PAIR Kabache Malka & Mataou Amna Unversty

More information

Computational Geodynamics: Advection equations and the art of numerical modeling

Computational Geodynamics: Advection equations and the art of numerical modeling 540 Geodynamcs Unversty of Southern Calforna, Los Angeles Computatonal Geodynamcs: Advecton equatons and the art of numercal modelng Sofar we manly focussed on dffuson equaton n a non-movng doman. Ths

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Numercal models for unsteady flow n ppe dvdng systems R. Klasnc," H. Knoblauch," R. Mader* ^ Department of Hydraulc Structures and Water Resources Management, Graz Unversty of Technology, A-8010, Graz,

More information

The Effect of Cyclone Shape and Dust Collector on Gas-Solid Flow and Performance

The Effect of Cyclone Shape and Dust Collector on Gas-Solid Flow and Performance Internatonal Journal of Mechancal and Aerospace Engneerng 6 01 The Effect of Cyclone Shape and Dust Collector on Gas-Sold Flow and Performance Kyoungwoo Park, Chol-Ho Hong, J-Won Han, Byeong-Sam Km, Cha-Sk

More information

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11)

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11) Gravtatonal Acceleraton: A case of constant acceleraton (approx. hr.) (6/7/11) Introducton The gravtatonal force s one of the fundamental forces of nature. Under the nfluence of ths force all objects havng

More information

Optimal Control of Temperature in Fluid Flow

Optimal Control of Temperature in Fluid Flow Kawahara Lab. 5 March. 27 Optmal Control of Temperature n Flud Flow Dasuke YAMAZAKI Department of Cvl Engneerng, Chuo Unversty Kasuga -3-27, Bunkyou-ku, Tokyo 2-855, Japan E-mal : d33422@educ.kc.chuo-u.ac.jp

More information

Numerical Transient Heat Conduction Experiment

Numerical Transient Heat Conduction Experiment Numercal ransent Heat Conducton Experment OBJECIVE 1. o demonstrate the basc prncples of conducton heat transfer.. o show how the thermal conductvty of a sold can be measured. 3. o demonstrate the use

More information

Lecture 5.8 Flux Vector Splitting

Lecture 5.8 Flux Vector Splitting Lecture 5.8 Flux Vector Splttng 1 Flux Vector Splttng The vector E n (5.7.) can be rewrtten as E = AU (5.8.1) (wth A as gven n (5.7.4) or (5.7.6) ) whenever, the equaton of state s of the separable form

More information

The Analysis of Convection Experiment

The Analysis of Convection Experiment Internatonal Conference on Appled Scence and Engneerng Innovaton (ASEI 5) The Analyss of Convecton Experment Zlong Zhang School of North Chna Electrc Power Unversty, Baodng 7, Chna 469567@qq.com Keywords:

More information

ENERGY SAVING SOLAR FACADE FOR NON-RESIDENTIAL BUILDINGS FOR CLIMATIC CONDITION IN THE CZECH REPUBLIC

ENERGY SAVING SOLAR FACADE FOR NON-RESIDENTIAL BUILDINGS FOR CLIMATIC CONDITION IN THE CZECH REPUBLIC ENERGY SAVING SOLAR FACADE FOR NON-RESIDENTIAL BUILDINGS FOR CLIMATIC CONDITION IN THE CZECH REPUBLIC Jr Sedlak and Mlos Kalousek Department of Buldng Desgn Engneerng, Faculty of Cvl Engneerng, Techncal

More information

This column is a continuation of our previous column

This column is a continuation of our previous column Comparson of Goodness of Ft Statstcs for Lnear Regresson, Part II The authors contnue ther dscusson of the correlaton coeffcent n developng a calbraton for quanttatve analyss. Jerome Workman Jr. and Howard

More information

Airflow and Contaminant Simulation with CONTAM

Airflow and Contaminant Simulation with CONTAM Arflow and Contamnant Smulaton wth CONTAM George Walton, NIST CHAMPS Developers Workshop Syracuse Unversty June 19, 2006 Network Analogy Electrc Ppe, Duct & Ar Wre Ppe, Duct, or Openng Juncton Juncton

More information

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018 MATH 5630: Dscrete Tme-Space Model Hung Phan, UMass Lowell March, 08 Newton s Law of Coolng Consder the coolng of a well strred coffee so that the temperature does not depend on space Newton s law of collng

More information

POLYMER MELT FLOW IN SUDDEN EXPANSIONS: THE EFFECTS OF VISCOUS HEATING

POLYMER MELT FLOW IN SUDDEN EXPANSIONS: THE EFFECTS OF VISCOUS HEATING POLYMER MELT FLOW IN SUDDEN EXPANSIONS: THE EFFECTS OF VISCOUS HEATING P. S. B. Zdansk a, M. Vaz. Jr. a, and A. P. C. Das a a Unversdade do Estado de Santa Catarna Departamento de Engenhara Mecânca Barro

More information

J19.1 NUMERICAL SIMULATIONS OF AIRFLOWS AND TRANSPORT AND DIFFUSION FROM WIND TUNNEL TO TERRAIN SCALES

J19.1 NUMERICAL SIMULATIONS OF AIRFLOWS AND TRANSPORT AND DIFFUSION FROM WIND TUNNEL TO TERRAIN SCALES J9. NUMERICAL SIMULATIONS OF AIRFLOWS AND TRANSPORT AND DIFFUSION FROM WIND TUNNEL TO TERRAIN SCALES Tetsuj Yamada Yamada Scence & Art Corporaton, Santa Fe, New Mexco. INTRODUCTION We added CFD (Computatonal

More information

An Experimental and Numerical Study on Pressure Drop Coefficient of Ball Valves

An Experimental and Numerical Study on Pressure Drop Coefficient of Ball Valves A. Ozdomar, K. Turgut Gursel, Y. Pekbey, B. Celkag / Internatonal Energy Journal 8 (2007) An Expermental and Numercal Study on Pressure Drop Coeffcent of Ball Valves www.serd.at.ac.th/rerc A. Ozdamar*

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information