Large deviations for random walks under subexponentiality: the big-jump domain

Size: px
Start display at page:

Download "Large deviations for random walks under subexponentiality: the big-jump domain"

Transcription

1 Large deviations under subexponentiality p. Large deviations for random walks under subexponentiality: the big-jump domain Ton Dieker, IBM Watson Research Center joint work with D. Denisov (Heriot-Watt, UK) and V. Shneer (EURANDOM, The Netherlands)

2 Large deviations under subexponentiality p. Random walks and LD theory Let {S n = ξ ξ n } be a random walk, with i.i.d. step sizes ξ 1, ξ 2,... having distribution F. We often assume Eξ = 0. We are interested in asymptotics of P(S n > x), for large n and x. Light-tailed case: Bahadur-Ranga Rao asymptotics for P(S n > an) Logarithmic asymptotics on abstract spaces (Cramér s theorem), assuming the existence of exponential moments e.g. books by Varadhan, Dembo/Zeitouni, Deuschel/Stroock, etc. If Cramér s condition fails to hold, then we are in the so-called heavy-tailed framework.

3 Large deviations under subexponentiality p. Subexponentiality The subexponential distributions form a widely used family of heavy-tailed distributions F is subexponential if, with F(x) = 1 F(x), for all y R, lim x F(x + y) F(x) = 1 P(S 2 > x) 2F(x) as x Intuition: either ξ 1 is very large and ξ 2 moderate, or vice versa For subexponential F, P(S n > x) nf(x) as x for any n 1 single big jump principle

4 Large deviations under subexponentiality p. Subexponentiality: applications Internet traffic modeling; e.g., session durations Long sessions can explain long-term correlations Some models make self-similarity plausible by superposition Insurance mathematics; e.g., claim sizes Theory of ruin for insurance companies One big claim causes ruin Call durations in certain call centers

5 Large deviations under subexponentiality p. Motivation from queueing theory The step size ξ i is the difference between the service time of the i-th customer and its inter-arrival time (so Eξ i < 0) Let τ be the length of the busy period Baltrunas/Daley/Klüppelberg, Denisov/Shneer: For heavy-tailed service distributions, we have for some explicit constant C P(τ > n) C n P(S n > 0)

6 Large deviations under subexponentiality p. Subexponentiality (3) Recall: P(S n > x) nf(x) as x Main question: for which {x n } do we have P(S n > x n ) nf(x n )? We say that {x n } is a big-jump sequence. This is a LD theory for heavy tails, but we ll see an interesting connection with LD theory for light-tailed distributions at the end

7 Large deviations under subexponentiality p. Two important examples F with F(x) x α, α > 0, is subexponential (more generally, F(x) = l(x)x α for some slowly varying l) a finite mean/variance is not required if α > 2, known that for any ɛ > 0, x n = (1 + ɛ) (α 2)n log n is a big-jump sequence (A. Nagaev) F with F(x) e xβ, β (0, 1), is subexponential known that any {x n } with x n n 1 2(1 β) is a big-jump sequence. in particular x n = an is big-jump sequence only if β < 1/2

8 Large deviations under subexponentiality p. Two important examples F with F(x) x α, α > 0, is subexponential (more generally, F(x) = l(x)x α for some slowly varying l) a finite mean/variance is not required if α > 2, known that for any ɛ > 0, x n = (1 + ɛ) (α 2)n log n is a big-jump sequence (A. Nagaev) F with F(x) e xβ, β (0, 1), is subexponential known that any {x n } with x n n 1 2(1 β) is a big-jump sequence. in particular x n = an is big-jump sequence only if β < 1/2 Are these special cases of a general theory?

9 Large deviations under subexponentiality p. Related work A. V. and S. V. Nagaev, A. A. Borovkov, R. Doney, C. C. Heyde, I. Pinelis, L. V. Rozovskii Post-2003 contributions: Baltrunas/Daley/Klüppelberg, Borovkov/Mogulskii, Hult/Lindskog/Mikosch/Samorodnitsky, Jelenkovic/Momcilovic, Konstantinides/Mikosch, Ng/Tang/Yan/Yang, Tang

10 Large deviations under subexponentiality p. Four sequences {b n } is a natural-scale sequence if {S n /b n } is tight

11 Large deviations under subexponentiality p. Four sequences {b n } is a natural-scale sequence if {S n /b n } is tight {I n } is an insentitivity sequence if I n b n and lim sup n x I n F(x b n ) F(x) 1 = 0

12 Large deviations under subexponentiality p. Four sequences {b n } is a natural-scale sequence if {S n /b n } is tight {I n } is an insentitivity sequence if I n b n and lim sup n x I n {h n } is a truncation sequence if F(x b n ) F(x) 1 = 0 lim sup np(s 2 > x, ξ 1 > h n, ξ 2 > h n ) n x h n F(x) = 0

13 Large deviations under subexponentiality p. Four sequences {b n } is a natural-scale sequence if {S n /b n } is tight {I n } is an insentitivity sequence if I n b n and lim sup n x I n {h n } is a truncation sequence if F(x b n ) F(x) 1 = 0 lim sup np(s 2 > x, ξ 1 > h n, ξ 2 > h n ) n x h n F(x) = 0 {J n } is an h-small steps sequence if lim sup P(S n > x, ξ 1 h n,..., ξ n h n ) n x J n nf(x) = 0

14 Main result A lemma shows that these sequences exist if and only if F is subexponential

15 Main result A lemma shows that these sequences exist if and only if F is subexponential Theorem If h n = O(b n ) and h n J n, then P(S n > I n + J n ) np(s 1 > I n + J n ). It remains to find good sequences {I n } and {J n } otherwise result still valid, but weak statement

16 Choosing {h n } Recall: {h n } is a truncation sequence if lim sup np(s 2 > x, ξ 1 > h n, ξ 2 > h n ) n x h n F(x) = 0 If F(x) x α, then any {h n } satisfying nf(h n ) 0 is a truncation sequence If x r F(x) is subexponential for some r > 0, then any {h n } with lim sup n nh r n < is a truncation sequence

17 Choosing {J n }: a heuristic Recall: {J n } is an h-small steps sequence if lim sup P(S n > x, ξ 1 h n,..., ξ n h n ) n x J n nf(x) = 0 Suppose Eξ 2 <, and let J n satisfy J n 2n log[nf(j n)]. For any ɛ > 0, J n = (1 + ɛ)j n is a good choice, provided {n/j n } is a truncation sequence

18 The polynomial-tail example Here F(x) x α, for some α > 2. Suppose that Eξ = 0, Eξ 2 = 1. By the CLT we may set b n = n

19 The polynomial-tail example Here F(x) x α, for some α > 2. Suppose that Eξ = 0, Eξ 2 = 1. By the CLT we may set b n = n Any I n b n suffices: lim sup n x I n (x b n ) α x α 1 = 0

20 The polynomial-tail example Here F(x) x α, for some α > 2. Suppose that Eξ = 0, Eξ 2 = 1. By the CLT we may set b n = n Any I n b n suffices: lim sup n x I n (x b n ) α x α 1 = 0 Any {h n } with nf(h n ) 0 is a truncation sequence

21 The polynomial-tail example Here F(x) x α, for some α > 2. Suppose that Eξ = 0, Eξ 2 = 1. By the CLT we may set b n = n Any I n b n suffices: lim sup n x I n (x b n ) α x α 1 = 0 Any {h n } with nf(h n ) 0 is a truncation sequence Use the heuristic for {J n }: set (α 2)n log n and note that 2n log[nf(j n)] = 2αn log[n 1/α J n] (α 2)n log n = J n 2αn log[n 1/2 1/α ]

22 The Weibull example Here F(x) e xβ, for some β (0, 1). By the CLT we may set b n = n

23 The Weibull example Here F(x) e xβ, for some β (0, 1). By the CLT we may set b n = n To find I n we study sup x I n e (x n) β +x β 1 = 0. Since (x n) β + x β β nx β 1, we need I n n 1 2(1 β)

24 The Weibull example Here F(x) e xβ, for some β (0, 1). By the CLT we may set b n = n To find I n we study sup x I n e (x n) β +x β 1 = 0. Since (x n) β + x β β nx β 1, we need I n n 1 2(1 β) For any r > 0, x r F(x) is the tail of a subexponential distribution, so any {h n } with h n n 1/r is a truncation sequence

25 The Weibull example Here F(x) e xβ, for some β (0, 1). By the CLT we may set b n = n To find I n we study sup x I n e (x n) β +x β 1 = 0. Since (x n) β + x β β nx β 1, we need I n n 1 2(1 β) For any r > 0, x r F(x) is the tail of a subexponential distribution, so any {h n } with h n n 1/r is a truncation sequence The heuristic can be used for {J n }, yielding {J n } with J n I n

26 Local analogues We also study for T (0, ) P(S n (x n, x n + T]) np(s 1 (x n, x n + T]) Statements very similar, parts of the proof a lot harder!!! Use in the context of light tails: given γ > 0, subexponential F with L(γ) = e γy F(dy) <, define the RW on P through P (S 1 dx) = e γx F(dx)/L(γ). The local case allows us to conclude that P (S n > x n ) nl(γ) 1 n P (S 1 > x n )

27 Further examples We worked out examples with infinite variance or mean We always recovered the sharpest known big-jump sequences... but we also found big-jump sequences in new examples

Rare Events in Random Walks and Queueing Networks in the Presence of Heavy-Tailed Distributions

Rare Events in Random Walks and Queueing Networks in the Presence of Heavy-Tailed Distributions Rare Events in Random Walks and Queueing Networks in the Presence of Heavy-Tailed Distributions Sergey Foss Heriot-Watt University, Edinburgh and Institute of Mathematics, Novosibirsk The University of

More information

Introduction to Rare Event Simulation

Introduction to Rare Event Simulation Introduction to Rare Event Simulation Brown University: Summer School on Rare Event Simulation Jose Blanchet Columbia University. Department of Statistics, Department of IEOR. Blanchet (Columbia) 1 / 31

More information

Approximating the Integrated Tail Distribution

Approximating the Integrated Tail Distribution Approximating the Integrated Tail Distribution Ants Kaasik & Kalev Pärna University of Tartu VIII Tartu Conference on Multivariate Statistics 26th of June, 2007 Motivating example Let W be a steady-state

More information

Reinsurance and ruin problem: asymptotics in the case of heavy-tailed claims

Reinsurance and ruin problem: asymptotics in the case of heavy-tailed claims Reinsurance and ruin problem: asymptotics in the case of heavy-tailed claims Serguei Foss Heriot-Watt University, Edinburgh Karlovasi, Samos 3 June, 2010 (Joint work with Tomasz Rolski and Stan Zachary

More information

Reduced-load equivalence for queues with Gaussian input

Reduced-load equivalence for queues with Gaussian input Reduced-load equivalence for queues with Gaussian input A. B. Dieker CWI P.O. Box 94079 1090 GB Amsterdam, the Netherlands and University of Twente Faculty of Mathematical Sciences P.O. Box 17 7500 AE

More information

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case The largest eigenvalues of the sample covariance matrix 1 in the heavy-tail case Thomas Mikosch University of Copenhagen Joint work with Richard A. Davis (Columbia NY), Johannes Heiny (Aarhus University)

More information

On lower limits and equivalences for distribution tails of randomly stopped sums 1

On lower limits and equivalences for distribution tails of randomly stopped sums 1 On lower limits and equivalences for distribution tails of randomly stopped sums 1 D. Denisov, 2 S. Foss, 3 and D. Korshunov 4 Eurandom, Heriot-Watt University and Sobolev Institute of Mathematics Abstract

More information

Precise Large Deviations for Sums of Negatively Dependent Random Variables with Common Long-Tailed Distributions

Precise Large Deviations for Sums of Negatively Dependent Random Variables with Common Long-Tailed Distributions This article was downloaded by: [University of Aegean] On: 19 May 2013, At: 11:54 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer

More information

Asymptotics and Simulation of Heavy-Tailed Processes

Asymptotics and Simulation of Heavy-Tailed Processes Asymptotics and Simulation of Heavy-Tailed Processes Department of Mathematics Stockholm, Sweden Workshop on Heavy-tailed Distributions and Extreme Value Theory ISI Kolkata January 14-17, 2013 Outline

More information

Rare event simulation for the ruin problem with investments via importance sampling and duality

Rare event simulation for the ruin problem with investments via importance sampling and duality Rare event simulation for the ruin problem with investments via importance sampling and duality Jerey Collamore University of Copenhagen Joint work with Anand Vidyashankar (GMU) and Guoqing Diao (GMU).

More information

The Fundamentals of Heavy Tails Properties, Emergence, & Identification. Jayakrishnan Nair, Adam Wierman, Bert Zwart

The Fundamentals of Heavy Tails Properties, Emergence, & Identification. Jayakrishnan Nair, Adam Wierman, Bert Zwart The Fundamentals of Heavy Tails Properties, Emergence, & Identification Jayakrishnan Nair, Adam Wierman, Bert Zwart Why am I doing a tutorial on heavy tails? Because we re writing a book on the topic Why

More information

Asymptotic Statistics-III. Changliang Zou

Asymptotic Statistics-III. Changliang Zou Asymptotic Statistics-III Changliang Zou The multivariate central limit theorem Theorem (Multivariate CLT for iid case) Let X i be iid random p-vectors with mean µ and and covariance matrix Σ. Then n (

More information

Stability and Rare Events in Stochastic Models Sergey Foss Heriot-Watt University, Edinburgh and Institute of Mathematics, Novosibirsk

Stability and Rare Events in Stochastic Models Sergey Foss Heriot-Watt University, Edinburgh and Institute of Mathematics, Novosibirsk Stability and Rare Events in Stochastic Models Sergey Foss Heriot-Watt University, Edinburgh and Institute of Mathematics, Novosibirsk ANSAPW University of Queensland 8-11 July, 2013 1 Outline (I) Fluid

More information

Corrections to the Central Limit Theorem for Heavy-tailed Probability Densities

Corrections to the Central Limit Theorem for Heavy-tailed Probability Densities Corrections to the Central Limit Theorem for Heavy-tailed Probability Densities Henry Lam and Jose Blanchet Harvard University and Columbia University Damian Burch and Martin Bazant Massachusetts Institute

More information

On the inefficiency of state-independent importance sampling in the presence of heavy tails

On the inefficiency of state-independent importance sampling in the presence of heavy tails Operations Research Letters 35 (2007) 251 260 Operations Research Letters www.elsevier.com/locate/orl On the inefficiency of state-independent importance sampling in the presence of heavy tails Achal Bassamboo

More information

8.1 Concentration inequality for Gaussian random matrix (cont d)

8.1 Concentration inequality for Gaussian random matrix (cont d) MGMT 69: Topics in High-dimensional Data Analysis Falll 26 Lecture 8: Spectral clustering and Laplacian matrices Lecturer: Jiaming Xu Scribe: Hyun-Ju Oh and Taotao He, October 4, 26 Outline Concentration

More information

arxiv: v2 [math.pr] 22 Apr 2014 Dept. of Mathematics & Computer Science Mathematical Institute

arxiv: v2 [math.pr] 22 Apr 2014 Dept. of Mathematics & Computer Science Mathematical Institute Tail asymptotics for a random sign Lindley recursion May 29, 218 arxiv:88.3495v2 [math.pr] 22 Apr 214 Maria Vlasiou Zbigniew Palmowski Dept. of Mathematics & Computer Science Mathematical Institute Eindhoven

More information

The Convergence Rate for the Normal Approximation of Extreme Sums

The Convergence Rate for the Normal Approximation of Extreme Sums The Convergence Rate for the Normal Approximation of Extreme Sums Yongcheng Qi University of Minnesota Duluth WCNA 2008, Orlando, July 2-9, 2008 This talk is based on a joint work with Professor Shihong

More information

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales.

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. Lecture 2 1 Martingales We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. 1.1 Doob s inequality We have the following maximal

More information

On the estimation of the heavy tail exponent in time series using the max spectrum. Stilian A. Stoev

On the estimation of the heavy tail exponent in time series using the max spectrum. Stilian A. Stoev On the estimation of the heavy tail exponent in time series using the max spectrum Stilian A. Stoev (sstoev@umich.edu) University of Michigan, Ann Arbor, U.S.A. JSM, Salt Lake City, 007 joint work with:

More information

IEOR 6711: Stochastic Models I SOLUTIONS to the First Midterm Exam, October 7, 2008

IEOR 6711: Stochastic Models I SOLUTIONS to the First Midterm Exam, October 7, 2008 IEOR 6711: Stochastic Models I SOLUTIONS to the First Midterm Exam, October 7, 2008 Justify your answers; show your work. 1. A sequence of Events. (10 points) Let {B n : n 1} be a sequence of events in

More information

Research Reports on Mathematical and Computing Sciences

Research Reports on Mathematical and Computing Sciences ISSN 1342-2804 Research Reports on Mathematical and Computing Sciences Long-tailed degree distribution of a random geometric graph constructed by the Boolean model with spherical grains Naoto Miyoshi,

More information

March 1, Florida State University. Concentration Inequalities: Martingale. Approach and Entropy Method. Lizhe Sun and Boning Yang.

March 1, Florida State University. Concentration Inequalities: Martingale. Approach and Entropy Method. Lizhe Sun and Boning Yang. Florida State University March 1, 2018 Framework 1. (Lizhe) Basic inequalities Chernoff bounding Review for STA 6448 2. (Lizhe) Discrete-time martingales inequalities via martingale approach 3. (Boning)

More information

Limit theorems for dependent regularly varying functions of Markov chains

Limit theorems for dependent regularly varying functions of Markov chains Limit theorems for functions of with extremal linear behavior Limit theorems for dependent regularly varying functions of In collaboration with T. Mikosch Olivier Wintenberger wintenberger@ceremade.dauphine.fr

More information

Asymptotics of random sums of heavy-tailed negatively dependent random variables with applications

Asymptotics of random sums of heavy-tailed negatively dependent random variables with applications Asymptotics of random sums of heavy-tailed negatively dependent random variables with applications Remigijus Leipus (with Yang Yang, Yuebao Wang, Jonas Šiaulys) CIRM, Luminy, April 26-30, 2010 1. Preliminaries

More information

Poisson Processes. Stochastic Processes. Feb UC3M

Poisson Processes. Stochastic Processes. Feb UC3M Poisson Processes Stochastic Processes UC3M Feb. 2012 Exponential random variables A random variable T has exponential distribution with rate λ > 0 if its probability density function can been written

More information

Other properties of M M 1

Other properties of M M 1 Other properties of M M 1 Přemysl Bejda premyslbejda@gmail.com 2012 Contents 1 Reflected Lévy Process 2 Time dependent properties of M M 1 3 Waiting times and queue disciplines in M M 1 Contents 1 Reflected

More information

The function graphed below is continuous everywhere. The function graphed below is NOT continuous everywhere, it is discontinuous at x 2 and

The function graphed below is continuous everywhere. The function graphed below is NOT continuous everywhere, it is discontinuous at x 2 and Section 1.4 Continuity A function is a continuous at a point if its graph has no gaps, holes, breaks or jumps at that point. If a function is not continuous at a point, then we say it is discontinuous

More information

arxiv: v1 [math.pr] 28 Nov 2007

arxiv: v1 [math.pr] 28 Nov 2007 Lower limits for distributions of randomly stopped sums D. Denisov, 2 S. Foss, 3 and D. Korshunov 4 Eurandom, Heriot-Watt University, and Sobolev Institute of Mathematics arxiv:7.449v [math.pr] 28 Nov

More information

The Moment Method; Convex Duality; and Large/Medium/Small Deviations

The Moment Method; Convex Duality; and Large/Medium/Small Deviations Stat 928: Statistical Learning Theory Lecture: 5 The Moment Method; Convex Duality; and Large/Medium/Small Deviations Instructor: Sham Kakade The Exponential Inequality and Convex Duality The exponential

More information

LIMITS FOR QUEUES AS THE WAITING ROOM GROWS. Bell Communications Research AT&T Bell Laboratories Red Bank, NJ Murray Hill, NJ 07974

LIMITS FOR QUEUES AS THE WAITING ROOM GROWS. Bell Communications Research AT&T Bell Laboratories Red Bank, NJ Murray Hill, NJ 07974 LIMITS FOR QUEUES AS THE WAITING ROOM GROWS by Daniel P. Heyman Ward Whitt Bell Communications Research AT&T Bell Laboratories Red Bank, NJ 07701 Murray Hill, NJ 07974 May 11, 1988 ABSTRACT We study the

More information

Approximation of Heavy-tailed distributions via infinite dimensional phase type distributions

Approximation of Heavy-tailed distributions via infinite dimensional phase type distributions 1 / 36 Approximation of Heavy-tailed distributions via infinite dimensional phase type distributions Leonardo Rojas-Nandayapa The University of Queensland ANZAPW March, 2015. Barossa Valley, SA, Australia.

More information

On Upper Bounds for the Tail Distribution of Geometric Sums of Subexponential Random Variables

On Upper Bounds for the Tail Distribution of Geometric Sums of Subexponential Random Variables On Upper Bounds for the Tail Distribution of Geometric Sums of Subexponential Random Variables Andrew Richards arxiv:0805.4548v2 [math.pr] 18 Mar 2009 Department of Actuarial Mathematics and Statistics

More information

The Subexponential Product Convolution of Two Weibull-type Distributions

The Subexponential Product Convolution of Two Weibull-type Distributions The Subexponential Product Convolution of Two Weibull-type Distributions Yan Liu School of Mathematics and Statistics Wuhan University Wuhan, Hubei 4372, P.R. China E-mail: yanliu@whu.edu.cn Qihe Tang

More information

The exact asymptotics for hitting probability of a remote orthant by a multivariate Lévy process: the Cramér case

The exact asymptotics for hitting probability of a remote orthant by a multivariate Lévy process: the Cramér case The exact asymptotics for hitting probability of a remote orthant by a multivariate Lévy process: the Cramér case Konstantin Borovkov and Zbigniew Palmowski Abstract For a multivariate Lévy process satisfying

More information

On Sums of Conditionally Independent Subexponential Random Variables

On Sums of Conditionally Independent Subexponential Random Variables On Sums of Conditionally Independent Subexponential Random Variables arxiv:86.49v1 [math.pr] 3 Jun 28 Serguei Foss 1 and Andrew Richards 1 The asymptotic tail-behaviour of sums of independent subexponential

More information

Moments of the maximum of the Gaussian random walk

Moments of the maximum of the Gaussian random walk Moments of the maximum of the Gaussian random walk A.J.E.M. Janssen (Philips Research) Johan S.H. van Leeuwaarden (Eurandom) Model definition Consider the partial sums S n = X 1 +... + X n with X 1, X,...

More information

Rare-Event Simulation

Rare-Event Simulation Rare-Event Simulation Background: Read Chapter 6 of text. 1 Why is Rare-Event Simulation Challenging? Consider the problem of computing α = P(A) when P(A) is small (i.e. rare ). The crude Monte Carlo estimator

More information

Limiting Distributions

Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the two fundamental results

More information

E cient Simulation and Conditional Functional Limit Theorems for Ruinous Heavy-tailed Random Walks

E cient Simulation and Conditional Functional Limit Theorems for Ruinous Heavy-tailed Random Walks E cient Simulation and Conditional Functional Limit Theorems for Ruinous Heavy-tailed Random Walks Jose Blanchet and Jingchen Liu y June 14, 21 Abstract The contribution of this paper is to introduce change

More information

f X (x) = λe λx, , x 0, k 0, λ > 0 Γ (k) f X (u)f X (z u)du

f X (x) = λe λx, , x 0, k 0, λ > 0 Γ (k) f X (u)f X (z u)du 11 COLLECTED PROBLEMS Do the following problems for coursework 1. Problems 11.4 and 11.5 constitute one exercise leading you through the basic ruin arguments. 2. Problems 11.1 through to 11.13 but excluding

More information

Estimating Tail Probabilities of Heavy Tailed Distributions with Asymptotically Zero Relative Error

Estimating Tail Probabilities of Heavy Tailed Distributions with Asymptotically Zero Relative Error Estimating Tail Probabilities of Heavy Tailed Distributions with Asymptotically Zero Relative Error S. Juneja Tata Institute of Fundamental Research, Mumbai juneja@tifr.res.in February 28, 2007 Abstract

More information

Asymptotic behavior for sums of non-identically distributed random variables

Asymptotic behavior for sums of non-identically distributed random variables Appl. Math. J. Chinese Univ. 2019, 34(1: 45-54 Asymptotic behavior for sums of non-identically distributed random variables YU Chang-jun 1 CHENG Dong-ya 2,3 Abstract. For any given positive integer m,

More information

EFFICIENT SIMULATION FOR LARGE DEVIATION PROBABILITIES OF SUMS OF HEAVY-TAILED INCREMENTS

EFFICIENT SIMULATION FOR LARGE DEVIATION PROBABILITIES OF SUMS OF HEAVY-TAILED INCREMENTS Proceedings of the 2006 Winter Simulation Conference L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds. EFFICIENT SIMULATION FOR LARGE DEVIATION PROBABILITIES OF

More information

arxiv:math/ v2 [math.pr] 9 Oct 2007

arxiv:math/ v2 [math.pr] 9 Oct 2007 Tails of random sums of a heavy-tailed number of light-tailed terms arxiv:math/0703022v2 [math.pr] 9 Oct 2007 Christian Y. Robert a, a ENSAE, Timbre J120, 3 Avenue Pierre Larousse, 92245 MALAKOFF Cedex,

More information

Stability of the Defect Renewal Volterra Integral Equations

Stability of the Defect Renewal Volterra Integral Equations 19th International Congress on Modelling and Simulation, Perth, Australia, 12 16 December 211 http://mssanz.org.au/modsim211 Stability of the Defect Renewal Volterra Integral Equations R. S. Anderssen,

More information

The Dynamic Analysis and Design of A Communication link with Stationary and Nonstationary Arrivals

The Dynamic Analysis and Design of A Communication link with Stationary and Nonstationary Arrivals 1 of 28 The Dynamic Analysis and Design of A Communication link with Stationary and Nonstationary Arrivals Five dubious ways to dynamically analyze and design a communication system Wenhong Tian, Harry

More information

Lecture 20: Reversible Processes and Queues

Lecture 20: Reversible Processes and Queues Lecture 20: Reversible Processes and Queues 1 Examples of reversible processes 11 Birth-death processes We define two non-negative sequences birth and death rates denoted by {λ n : n N 0 } and {µ n : n

More information

Exercises in Extreme value theory

Exercises in Extreme value theory Exercises in Extreme value theory 2016 spring semester 1. Show that L(t) = logt is a slowly varying function but t ǫ is not if ǫ 0. 2. If the random variable X has distribution F with finite variance,

More information

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n =

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n = Spring 2012 Math 541A Exam 1 1. (a) Let Z i be independent N(0, 1), i = 1, 2,, n. Are Z = 1 n n Z i and S 2 Z = 1 n 1 n (Z i Z) 2 independent? Prove your claim. (b) Let X 1, X 2,, X n be independent identically

More information

Analysis methods of heavy-tailed data

Analysis methods of heavy-tailed data Institute of Control Sciences Russian Academy of Sciences, Moscow, Russia February, 13-18, 2006, Bamberg, Germany June, 19-23, 2006, Brest, France May, 14-19, 2007, Trondheim, Norway PhD course Chapter

More information

arxiv: v1 [math.pr] 9 May 2014

arxiv: v1 [math.pr] 9 May 2014 On asymptotic scales of independently stopped random sums Jaakko Lehtomaa arxiv:1405.2239v1 [math.pr] 9 May 2014 May 12, 2014 Abstract We study randomly stopped sums via their asymptotic scales. First,

More information

Math 328 Course Notes

Math 328 Course Notes Math 328 Course Notes Ian Robertson March 3, 2006 3 Properties of C[0, 1]: Sup-norm and Completeness In this chapter we are going to examine the vector space of all continuous functions defined on the

More information

LARGE DEVIATION PROBABILITIES FOR SUMS OF HEAVY-TAILED DEPENDENT RANDOM VECTORS*

LARGE DEVIATION PROBABILITIES FOR SUMS OF HEAVY-TAILED DEPENDENT RANDOM VECTORS* LARGE EVIATION PROBABILITIES FOR SUMS OF HEAVY-TAILE EPENENT RANOM VECTORS* Adam Jakubowski Alexander V. Nagaev Alexander Zaigraev Nicholas Copernicus University Faculty of Mathematics and Computer Science

More information

SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012

SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012 SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012 This exam is closed book. YOU NEED TO SHOW YOUR WORK. Honor Code: Students are expected to behave honorably, following the accepted

More information

Probability and Measure

Probability and Measure Chapter 4 Probability and Measure 4.1 Introduction In this chapter we will examine probability theory from the measure theoretic perspective. The realisation that measure theory is the foundation of probability

More information

Efficient rare-event simulation for sums of dependent random varia

Efficient rare-event simulation for sums of dependent random varia Efficient rare-event simulation for sums of dependent random variables Leonardo Rojas-Nandayapa joint work with José Blanchet February 13, 2012 MCQMC UNSW, Sydney, Australia Contents Introduction 1 Introduction

More information

Finite-time Ruin Probability of Renewal Model with Risky Investment and Subexponential Claims

Finite-time Ruin Probability of Renewal Model with Risky Investment and Subexponential Claims Proceedings of the World Congress on Engineering 29 Vol II WCE 29, July 1-3, 29, London, U.K. Finite-time Ruin Probability of Renewal Model with Risky Investment and Subexponential Claims Tao Jiang Abstract

More information

Some open problems related to stability. 1 Multi-server queue with First-Come-First-Served discipline

Some open problems related to stability. 1 Multi-server queue with First-Come-First-Served discipline 1 Some open problems related to stability S. Foss Heriot-Watt University, Edinburgh and Sobolev s Institute of Mathematics, Novosibirsk I will speak about a number of open problems in queueing. Some of

More information

UNIFORM LARGE DEVIATIONS FOR HEAVY-TAILED QUEUES UNDER HEAVY TRAFFIC

UNIFORM LARGE DEVIATIONS FOR HEAVY-TAILED QUEUES UNDER HEAVY TRAFFIC Bol. Soc. Mat. Mexicana (3 Vol. 19, 213 UNIFORM LARGE DEVIATIONS FOR HEAVY-TAILED QUEUES UNDER HEAVY TRAFFIC JOSE BLANCHET AND HENRY LAM ABSTRACT. We provide a complete large and moderate deviations asymptotic

More information

Free Entropy for Free Gibbs Laws Given by Convex Potentials

Free Entropy for Free Gibbs Laws Given by Convex Potentials Free Entropy for Free Gibbs Laws Given by Convex Potentials David A. Jekel University of California, Los Angeles Young Mathematicians in C -algebras, August 2018 David A. Jekel (UCLA) Free Entropy YMC

More information

Stochastic-Process Limits

Stochastic-Process Limits Ward Whitt Stochastic-Process Limits An Introduction to Stochastic-Process Limits and Their Application to Queues With 68 Illustrations Springer Contents Preface vii 1 Experiencing Statistical Regularity

More information

Analysis of an M/G/1 queue with customer impatience and an adaptive arrival process

Analysis of an M/G/1 queue with customer impatience and an adaptive arrival process Analysis of an M/G/1 queue with customer impatience and an adaptive arrival process O.J. Boxma 1, O. Kella 2, D. Perry 3, and B.J. Prabhu 1,4 1 EURANDOM and Department of Mathematics & Computer Science,

More information

Sub-Gaussian estimators under heavy tails

Sub-Gaussian estimators under heavy tails Sub-Gaussian estimators under heavy tails Roberto Imbuzeiro Oliveira XIX Escola Brasileira de Probabilidade Maresias, August 6th 2015 Joint with Luc Devroye (McGill) Matthieu Lerasle (CNRS/Nice) Gábor

More information

Limiting Distributions

Limiting Distributions Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the

More information

Lecture 2: Convergence of Random Variables

Lecture 2: Convergence of Random Variables Lecture 2: Convergence of Random Variables Hyang-Won Lee Dept. of Internet & Multimedia Eng. Konkuk University Lecture 2 Introduction to Stochastic Processes, Fall 2013 1 / 9 Convergence of Random Variables

More information

STATE-DEPENDENT IMPORTANCE SAMPLING FOR REGULARLY VARYING RANDOM WALKS

STATE-DEPENDENT IMPORTANCE SAMPLING FOR REGULARLY VARYING RANDOM WALKS Adv. Appl. Prob. 40, 1104 1128 2008 Printed in Northern Ireland Applied Probability Trust 2008 STATE-DEPENDENT IMPORTANCE SAMPLING FOR REGULARLY VARYING RANDOM WALKS JOSE H. BLANCHET and JINGCHEN LIU,

More information

Class 11 Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis.

Class 11 Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis. Service Engineering Class 11 Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis. G/G/1 Queue: Virtual Waiting Time (Unfinished Work). GI/GI/1: Lindley s Equations

More information

FRACTIONAL BROWNIAN MOTION WITH H < 1/2 AS A LIMIT OF SCHEDULED TRAFFIC

FRACTIONAL BROWNIAN MOTION WITH H < 1/2 AS A LIMIT OF SCHEDULED TRAFFIC Applied Probability Trust ( April 20) FRACTIONAL BROWNIAN MOTION WITH H < /2 AS A LIMIT OF SCHEDULED TRAFFIC VICTOR F. ARAMAN, American University of Beirut PETER W. GLYNN, Stanford University Keywords:

More information

Chapter 2. Poisson Processes. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan

Chapter 2. Poisson Processes. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Chapter 2. Poisson Processes Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Outline Introduction to Poisson Processes Definition of arrival process Definition

More information

Control of Fork-Join Networks in Heavy-Traffic

Control of Fork-Join Networks in Heavy-Traffic in Heavy-Traffic Asaf Zviran Based on MSc work under the guidance of Rami Atar (Technion) and Avishai Mandelbaum (Technion) Industrial Engineering and Management Technion June 2010 Introduction Network

More information

A Diffusion Approximation for Stationary Distribution of Many-Server Queueing System In Halfin-Whitt Regime

A Diffusion Approximation for Stationary Distribution of Many-Server Queueing System In Halfin-Whitt Regime A Diffusion Approximation for Stationary Distribution of Many-Server Queueing System In Halfin-Whitt Regime Mohammadreza Aghajani joint work with Kavita Ramanan Brown University APS Conference, Istanbul,

More information

Phenomena in high dimensions in geometric analysis, random matrices, and computational geometry Roscoff, France, June 25-29, 2012

Phenomena in high dimensions in geometric analysis, random matrices, and computational geometry Roscoff, France, June 25-29, 2012 Phenomena in high dimensions in geometric analysis, random matrices, and computational geometry Roscoff, France, June 25-29, 202 BOUNDS AND ASYMPTOTICS FOR FISHER INFORMATION IN THE CENTRAL LIMIT THEOREM

More information

THIELE CENTRE. Markov Dependence in Renewal Equations and Random Sums with Heavy Tails. Søren Asmussen and Julie Thøgersen

THIELE CENTRE. Markov Dependence in Renewal Equations and Random Sums with Heavy Tails. Søren Asmussen and Julie Thøgersen THIELE CENTRE for applied mathematics in natural science Markov Dependence in Renewal Equations and Random Sums with Heavy Tails Søren Asmussen and Julie Thøgersen Research Report No. 2 June 216 Markov

More information

Chapter 10. Hypothesis Testing (I)

Chapter 10. Hypothesis Testing (I) Chapter 10. Hypothesis Testing (I) Hypothesis Testing, together with statistical estimation, are the two most frequently used statistical inference methods. It addresses a different type of practical problems

More information

IEOR 8100: Topics in OR: Asymptotic Methods in Queueing Theory. Fall 2009, Professor Whitt. Class Lecture Notes: Wednesday, September 9.

IEOR 8100: Topics in OR: Asymptotic Methods in Queueing Theory. Fall 2009, Professor Whitt. Class Lecture Notes: Wednesday, September 9. IEOR 8100: Topics in OR: Asymptotic Methods in Queueing Theory Fall 2009, Professor Whitt Class Lecture Notes: Wednesday, September 9. Heavy-Traffic Limits for the GI/G/1 Queue 1. The GI/G/1 Queue We will

More information

Logarithmic scaling of planar random walk s local times

Logarithmic scaling of planar random walk s local times Logarithmic scaling of planar random walk s local times Péter Nándori * and Zeyu Shen ** * Department of Mathematics, University of Maryland ** Courant Institute, New York University October 9, 2015 Abstract

More information

Randomly Weighted Sums of Conditionnally Dependent Random Variables

Randomly Weighted Sums of Conditionnally Dependent Random Variables Gen. Math. Notes, Vol. 25, No. 1, November 2014, pp.43-49 ISSN 2219-7184; Copyright c ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in Randomly Weighted Sums of Conditionnally

More information

Ruin Probabilities of a Discrete-time Multi-risk Model

Ruin Probabilities of a Discrete-time Multi-risk Model Ruin Probabilities of a Discrete-time Multi-risk Model Andrius Grigutis, Agneška Korvel, Jonas Šiaulys Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 4, Vilnius LT-035, Lithuania

More information

Large deviations of empirical processes

Large deviations of empirical processes Large deviations of empirical processes Miguel A. Arcones Abstract. We give necessary and sufficient conditions for the large deviations of empirical processes and of Banach space valued random vectors.

More information

Uniformly Efficient Importance Sampling for the Tail Distribution of Sums of Random Variables

Uniformly Efficient Importance Sampling for the Tail Distribution of Sums of Random Variables Uniformly Efficient Importance Sampling for the Tail Distribution of Sums of Random Variables P. Glasserman Columbia University pg20@columbia.edu S.K. Juneja Tata Institute of Fundamental Research juneja@tifr.res.in

More information

POISSON PROCESSES 1. THE LAW OF SMALL NUMBERS

POISSON PROCESSES 1. THE LAW OF SMALL NUMBERS POISSON PROCESSES 1. THE LAW OF SMALL NUMBERS 1.1. The Rutherford-Chadwick-Ellis Experiment. About 90 years ago Ernest Rutherford and his collaborators at the Cavendish Laboratory in Cambridge conducted

More information

Notes 9 : Infinitely divisible and stable laws

Notes 9 : Infinitely divisible and stable laws Notes 9 : Infinitely divisible and stable laws Math 733 - Fall 203 Lecturer: Sebastien Roch References: [Dur0, Section 3.7, 3.8], [Shi96, Section III.6]. Infinitely divisible distributions Recall: EX 9.

More information

Lecture Notes 3 Convergence (Chapter 5)

Lecture Notes 3 Convergence (Chapter 5) Lecture Notes 3 Convergence (Chapter 5) 1 Convergence of Random Variables Let X 1, X 2,... be a sequence of random variables and let X be another random variable. Let F n denote the cdf of X n and let

More information

Additive functionals of infinite-variance moving averages. Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535

Additive functionals of infinite-variance moving averages. Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535 Additive functionals of infinite-variance moving averages Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535 Departments of Statistics The University of Chicago Chicago, Illinois 60637 June

More information

This lecture is expanded from:

This lecture is expanded from: This lecture is expanded from: HIGH VOLUME JOB SHOP SCHEDULING AND MULTICLASS QUEUING NETWORKS WITH INFINITE VIRTUAL BUFFERS INFORMS, MIAMI Nov 2, 2001 Gideon Weiss Haifa University (visiting MS&E, Stanford)

More information

University Of Calgary Department of Mathematics and Statistics

University Of Calgary Department of Mathematics and Statistics University Of Calgary Department of Mathematics and Statistics Hawkes Seminar May 23, 2018 1 / 46 Some Problems in Insurance and Reinsurance Mohamed Badaoui Department of Electrical Engineering National

More information

Introduction to Algorithmic Trading Strategies Lecture 10

Introduction to Algorithmic Trading Strategies Lecture 10 Introduction to Algorithmic Trading Strategies Lecture 10 Risk Management Haksun Li haksun.li@numericalmethod.com www.numericalmethod.com Outline Value at Risk (VaR) Extreme Value Theory (EVT) References

More information

Branching Processes II: Convergence of critical branching to Feller s CSB

Branching Processes II: Convergence of critical branching to Feller s CSB Chapter 4 Branching Processes II: Convergence of critical branching to Feller s CSB Figure 4.1: Feller 4.1 Birth and Death Processes 4.1.1 Linear birth and death processes Branching processes can be studied

More information

Quantile-quantile plots and the method of peaksover-threshold

Quantile-quantile plots and the method of peaksover-threshold Problems in SF2980 2009-11-09 12 6 4 2 0 2 4 6 0.15 0.10 0.05 0.00 0.05 0.10 0.15 Figure 2: qqplot of log-returns (x-axis) against quantiles of a standard t-distribution with 4 degrees of freedom (y-axis).

More information

Self-normalized Cramér-Type Large Deviations for Independent Random Variables

Self-normalized Cramér-Type Large Deviations for Independent Random Variables Self-normalized Cramér-Type Large Deviations for Independent Random Variables Qi-Man Shao National University of Singapore and University of Oregon qmshao@darkwing.uoregon.edu 1. Introduction Let X, X

More information

18.175: Lecture 17 Poisson random variables

18.175: Lecture 17 Poisson random variables 18.175: Lecture 17 Poisson random variables Scott Sheffield MIT 1 Outline More on random walks and local CLT Poisson random variable convergence Extend CLT idea to stable random variables 2 Outline More

More information

TAIL ASYMPTOTICS FOR A RANDOM SIGN LINDLEY RECURSION

TAIL ASYMPTOTICS FOR A RANDOM SIGN LINDLEY RECURSION J. Appl. Prob. 47, 72 83 (21) Printed in England Applied Probability Trust 21 TAIL ASYMPTOTICS FOR A RANDOM SIGN LINDLEY RECURSION MARIA VLASIOU, Eindhoven University of Technology ZBIGNIEW PALMOWSKI,

More information

Random matrices: Distribution of the least singular value (via Property Testing)

Random matrices: Distribution of the least singular value (via Property Testing) Random matrices: Distribution of the least singular value (via Property Testing) Van H. Vu Department of Mathematics Rutgers vanvu@math.rutgers.edu (joint work with T. Tao, UCLA) 1 Let ξ be a real or complex-valued

More information

TOWARDS BETTER MULTI-CLASS PARAMETRIC-DECOMPOSITION APPROXIMATIONS FOR OPEN QUEUEING NETWORKS

TOWARDS BETTER MULTI-CLASS PARAMETRIC-DECOMPOSITION APPROXIMATIONS FOR OPEN QUEUEING NETWORKS TOWARDS BETTER MULTI-CLASS PARAMETRIC-DECOMPOSITION APPROXIMATIONS FOR OPEN QUEUEING NETWORKS by Ward Whitt AT&T Bell Laboratories Murray Hill, NJ 07974-0636 March 31, 199 Revision: November 9, 199 ABSTRACT

More information

Generalization theory

Generalization theory Generalization theory Daniel Hsu Columbia TRIPODS Bootcamp 1 Motivation 2 Support vector machines X = R d, Y = { 1, +1}. Return solution ŵ R d to following optimization problem: λ min w R d 2 w 2 2 + 1

More information

Designing load balancing and admission control policies: lessons from NDS regime

Designing load balancing and admission control policies: lessons from NDS regime Designing load balancing and admission control policies: lessons from NDS regime VARUN GUPTA University of Chicago Based on works with : Neil Walton, Jiheng Zhang ρ K θ is a useful regime to study the

More information

18.175: Lecture 13 Infinite divisibility and Lévy processes

18.175: Lecture 13 Infinite divisibility and Lévy processes 18.175 Lecture 13 18.175: Lecture 13 Infinite divisibility and Lévy processes Scott Sheffield MIT Outline Poisson random variable convergence Extend CLT idea to stable random variables Infinite divisibility

More information

BRAVO for QED Queues

BRAVO for QED Queues 1 BRAVO for QED Queues Yoni Nazarathy, The University of Queensland Joint work with Daryl J. Daley, The University of Melbourne, Johan van Leeuwaarden, EURANDOM, Eindhoven University of Technology. Applied

More information

Convexity Properties of Loss and Overflow Functions

Convexity Properties of Loss and Overflow Functions Convexity Properties of Loss and Overflow Functions Krishnan Kumaran?, Michel Mandjes y, and Alexander Stolyar? email: kumaran@lucent.com, michel@cwi.nl, stolyar@lucent.com? Bell Labs/Lucent Technologies,

More information