Approximation of Heavy-tailed distributions via infinite dimensional phase type distributions

Size: px
Start display at page:

Download "Approximation of Heavy-tailed distributions via infinite dimensional phase type distributions"

Transcription

1 1 / 36 Approximation of Heavy-tailed distributions via infinite dimensional phase type distributions Leonardo Rojas-Nandayapa The University of Queensland ANZAPW March, Barossa Valley, SA, Australia.

2 Summary of Mogens talk... 2 / 36

3 3 / 36 Phase type Distributions of first passage times associated to a Markov Jump Process with a finite number of states. Facts 1. Dense class in the nonnegative distributions. 2. Mathematically tractable. 3. However, it is a subclass of light tailed distributions.

4 4 / 36 Key problem For most applications, a phase type approximation will suffice. However, for certain important problems this fail. A partial solution Consider Markov Jump processes with infinite number of states. This class contains heavy tailed distribution but also many other degenerate cases.

5 5 / 36 A more refined approach: Infinite mixtures of PH Consider X a random variable with phase type distribution, and let S be a nonnegative discrete random variable. Then the distribution of the random variable Y := S X is an infinite mixture of phase type distributions. Such a class is mathematically tractable and obviously dense in the nonnegative distributions.

6 6 / 36 Let F, G and H be the cdf of Y, S and X respectively. Then F (y) = 0 G(y/s)dH(s), y 0. The right hand side is called the Mellin Stieltjes transform. If G is phase type, the F is absolutely continuous with density f (y) = 0 g(y/s)dh(s), y 0.

7 Some interesting questions related to this class of distributions? 7 / 36

8 8 / What are the possible tail behaviors in this class? 2. How to approximate a theoretic heavy tailed distribution? 3. Given a sample y 1,..., y n. How to estimate the parameters of a distribution in this class?

9 Heavy Tails 9 / 36

10 10 / 36 Recall that... Heavy tailed distributions A nonnegative random variable X has a heavy tailed distribution iff E [e θx ] =, θ > 0. Equivalently, lim sup x Otherwise we say X is light tailed. P(X > x) e θx =, θ > 0.

11 11 / 36 Characterization via Convolutions Let X 1, X 2 be nonnegative iid rv with unbounded support, 1. It holds that lim inf x P(X 1 + X 2 > x) P(X 1 > x) Moreover, X 1 is heavy tailed iff lim inf x P(X 1 + X 2 > x) P(X 1 > x) = Furthermore, X is subexponential iff P(X 1 + X 2 > x) lim = 2. x P(X 1 > x)

12 12 / 36 Heavy tailed random variables arise as Exponential transformations of some light tailed random variables (normal lognormal, exponential Pareto). As weak limits of normalized maxima (also normalized sums). As reciprocals of certain random variables. Random sums of light tailed distributions. Products of light tailed distributions.

13 Problem 1: What are the possible tail behaviours in this class? 13 / 36

14 14 / 36 Theorem Let X be a phase type distribution and S be a nonnegative random variable. Define Y := S X Y is heavy tailed iff S has unbounded support.

15 15 / 36 Example Let X exp(λ) and S any nonnegative discrete distribution supported over a countable set {s 1, s 2,... }. P(S X > y) k=1 lim y e θy = lim e λy/s k P(S = s k ) y e θy =. (choose s k large enough and such that λ/s k < θ).

16 16 / 36 Theorem (generalization) Let S H 1 and X H 2, and let Y := S X. 1. If there exist θ > 0 and ξ(x) a nonnegative function such that lim sup e θx( ) H 1 (x/ξ(x)) + H 2 (ξ(x)) = 0, (1) x then Y is light tailed. 2. If there exists ξ(x) a nonnegative function such that for all θ > 0 it holds that lim sup x e θx H 1 (x/ξ(x)) H 2 (ξ(x)) =, (2) then Y is heavy tailed.

17 17 / 36 Example Let S Weibull(λ, p) and Y Weibull(β, q). Then Y := S X is light tailed iff 1 p + 1 q 1. Otherwise it is heavy tailed.

18 What are the possible maximum domains of attraction? 18 / 36

19 19 / 36 Frechét domain of attraction Breiman s Lemma If S is a α regularly varying random variable and there exists δ > 0 such that E [X α+δ ] <, then Y := S X has an α regularly varying distribution. Moreover P(Y > x) E [X]P(S > x).

20 20 / 36 Breiman s Lemma If L 1/S is a α regularly varying function then Y := S X has an α regularly varying distribution. Moreover P(Y > x) E [X]P(S > x).

21 Gumbel domain of attraction and Subexponentiality Let V (x) = ( 1) η 1 L (η 1) 1/S (x).1 Theorem If V ( ) is a von Mises function, then F MDA(Λ). Moreover, if lim inf x then F is subexponential. V (tx)v (x) V > 1, t > 1, (tx)v (x) 1 η is the largest dimension among the Jordan blocks associated to the largest eigenvalue of the sub intensity matrix 21 / 36

22 Problem 2: How to approximate theoretical heavy tailed distributions? 22 / 36

23 23 / 36 An approach for approximating theoretic distributions Take a sequence of Erlang rvs X n Erlang(n, n). Consider increasing sequences S n := {s n,0, s n,1, s n,2,... }, n N such that s n,0 = 0, s n,i as i and n := sup{s n,i+1 s n,i : i N} 0, as n 0 For each n, define the cdf s F n (x) = F(s n,i+1 ), x [s n,i, s n,i+1 ).

24 24 / 36 Construct a sequences of random variables S n F n, X n Erlang(n, n). Since X n 1, then Slutsky s theorem implies that S n X n X F. Note: It can be modified and will also work for light tailed distributions.

25 25 /

26 26 / 36 Ruin problem Definition Let F and G be two distribution functions with non-negative support. The relative error from F to G from 0 to s is defined by sup x [0,s] F(x) G(x). F(x)

27 27 / 36 Theorem Fix u > 0 and let F and G be such that F I (x) G I (x) sup ɛ(u) x [0,u] F I (x) where ɛ : R + R + is some non-decreasing function. Let F I be the integrated tail of F and let G and approximation of F. Further assume that F dominates G stochastically. Then ψ F (u) ψ G (u) ɛ(u)e (Number of down-crossings; A), where A := {Ruin happens in the last down-crossing}.

28 Problem 3: Statistical inference? 28 / 36

29 Key Idea See the first passages times as incomplete data set from the evolution of the Markov Jump Process. Employ the EM algorithm for estimating the parameters. 29 / 36

30 30 / 36 Density of an infinite mixture of PH f A (y) = π i (θ)αe T y/s i t/s i, x 0. i=1 Complete Data Likelihood l c (θ, α, T ) = L i log π i (θ) + i=1 i=1 k l T kl s i Z i k + i=1 k=1 i=1 k=1 p Bk i log α k + p A i k log ( tk s i ) i=1 k l i=1 k=1 ( ) Nkl i log Tkl s i p t k s i Z i k.

31 EM estimators Assume (θ, α, T ) is the current set of parameters in the EM algorithm. The one step EM-estimators are thus given by θ = argmax Θ (α U i t) log π i (Θ), i=1 diag (α)u t α =, N T kl = ( diag (R) 1 T R) kl, k l, t = α U diag (t) diag (R) 1, where R = R(θ, α, T ) = U i = U i (θ, α, T ) = N i=1 j=1 N j=1 π i (θ) s i ( π i (θ) J yj /s i ; α, T, t ) s i f A (y j ; θ, α, T ), exp ( T y j s i ) f A (y j ; θ, α, T ), 31 / 36

32 32 / 36 In the above J i (y) := y 0 e T i (y u) t i αe T i u du. Proposition Let c = max{t kk : k = 1,..., p} and set K := c 1 T + I. Define D(s) := D(s; α, T ) = 1 c s K r tαk s r r=0 Then J(y; θ, α, T ) = s=0 (cy) s+1 e cy D(s). (s + 1)!

33 33 / 36 An alternative model Let r (0, 1). f B (y) = r αe T y t + (1 r) i=1 π i (θ) λq i y q 1 e λ i y, Γ(q 1)

34 34 / 36 Proposition The EM estimators take the form r = rαut N α = diag (α)ut αut T kl = ( diag (R) 1 T R ) kl t = αu diag (t) diag (R) 1 θ = argmax Θ w i log π i (Θ) λ = i=1 i=1 i=1 / v i w i. s i

35 35 / 36 where R = R(α, T, λ, θ) = U = U(α, T, λ, θ) = N j=1 N j=1 w i = w i (α, T, λ, θ) = π i (θ) v i = v i (α, T, λ, θ) = π i (θ) J ( y j ; α, T, t ) f B (y j ; r, α, T, θ, λ). exp ( T y j ) f B (y j ; r, α, T, θ, λ) N j=1 N j=1 g(y j ; q, λ/s i ) f B (y j ; r, α, T, θ, λ) y j g(y j ; q, λ/s i ) f B (y j ; r, α, T, θ, λ)

36 36 / 36 Advantages Fast. Recovers the parameters of simulated data. Works reasonable well with real data. Converges to the MLE estimators most of the times. Provides a better approximation for the tails. Disadvantages There are some (minor) numerical issues yet to be resolved. MLE estimators are not appropriate for estimating tail parameters. EVT methods could be implemented. Sensitive with respect to the tail parameters. Kullback-Leibler does not work properly. Though we now have the first simpler approach.

arxiv: v1 [math.pr] 26 May 2017

arxiv: v1 [math.pr] 26 May 2017 Approximation of Ruin Probabilities via Erlangized Scale Mixtures Oscar Peralta, Leonardo Rojas-Nandayapa 2, Wangyue Xie 3 and Hui Yao 3 arxiv:75.945v [math.pr] 26 May 27 Department of Applied Mathematics

More information

Efficient rare-event simulation for sums of dependent random varia

Efficient rare-event simulation for sums of dependent random varia Efficient rare-event simulation for sums of dependent random variables Leonardo Rojas-Nandayapa joint work with José Blanchet February 13, 2012 MCQMC UNSW, Sydney, Australia Contents Introduction 1 Introduction

More information

MFM Practitioner Module: Quantitiative Risk Management. John Dodson. October 14, 2015

MFM Practitioner Module: Quantitiative Risk Management. John Dodson. October 14, 2015 MFM Practitioner Module: Quantitiative Risk Management October 14, 2015 The n-block maxima 1 is a random variable defined as M n max (X 1,..., X n ) for i.i.d. random variables X i with distribution function

More information

Math 576: Quantitative Risk Management

Math 576: Quantitative Risk Management Math 576: Quantitative Risk Management Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 11 Haijun Li Math 576: Quantitative Risk Management Week 11 1 / 21 Outline 1

More information

Limit Laws for Maxima of Functions of Independent Non-identically Distributed Random Variables

Limit Laws for Maxima of Functions of Independent Non-identically Distributed Random Variables ProbStat Forum, Volume 07, April 2014, Pages 26 38 ISSN 0974-3235 ProbStat Forum is an e-journal. For details please visit www.probstat.org.in Limit Laws for Maxima of Functions of Independent Non-identically

More information

CALCULATION OF RUIN PROBABILITIES FOR A DENSE CLASS OF HEAVY TAILED DISTRIBUTIONS

CALCULATION OF RUIN PROBABILITIES FOR A DENSE CLASS OF HEAVY TAILED DISTRIBUTIONS CALCULATION OF RUIN PROBABILITIES FOR A DENSE CLASS OF HEAVY TAILED DISTRIBUTIONS MOGENS BLADT, BO FRIIS NIELSEN, AND GENNADY SAMORODNITSKY Abstract. In this paper we propose a class of infinite dimensional

More information

The Fundamentals of Heavy Tails Properties, Emergence, & Identification. Jayakrishnan Nair, Adam Wierman, Bert Zwart

The Fundamentals of Heavy Tails Properties, Emergence, & Identification. Jayakrishnan Nair, Adam Wierman, Bert Zwart The Fundamentals of Heavy Tails Properties, Emergence, & Identification Jayakrishnan Nair, Adam Wierman, Bert Zwart Why am I doing a tutorial on heavy tails? Because we re writing a book on the topic Why

More information

ABC methods for phase-type distributions with applications in insurance risk problems

ABC methods for phase-type distributions with applications in insurance risk problems ABC methods for phase-type with applications problems Concepcion Ausin, Department of Statistics, Universidad Carlos III de Madrid Joint work with: Pedro Galeano, Universidad Carlos III de Madrid Simon

More information

A Note on Tail Behaviour of Distributions. the max domain of attraction of the Frechét / Weibull law under power normalization

A Note on Tail Behaviour of Distributions. the max domain of attraction of the Frechét / Weibull law under power normalization ProbStat Forum, Volume 03, January 2010, Pages 01-10 ISSN 0974-3235 A Note on Tail Behaviour of Distributions in the Max Domain of Attraction of the Frechét/ Weibull Law under Power Normalization S.Ravi

More information

Asymptotic Tail Probabilities of Sums of Dependent Subexponential Random Variables

Asymptotic Tail Probabilities of Sums of Dependent Subexponential Random Variables Asymptotic Tail Probabilities of Sums of Dependent Subexponential Random Variables Jaap Geluk 1 and Qihe Tang 2 1 Department of Mathematics The Petroleum Institute P.O. Box 2533, Abu Dhabi, United Arab

More information

Randomly weighted sums under a wide type of dependence structure with application to conditional tail expectation

Randomly weighted sums under a wide type of dependence structure with application to conditional tail expectation Randomly weighted sums under a wide type of dependence structure with application to conditional tail expectation Shijie Wang a, Yiyu Hu a, Lianqiang Yang a, Wensheng Wang b a School of Mathematical Sciences,

More information

Definition 1.1 (Parametric family of distributions) A parametric distribution is a set of distribution functions, each of which is determined by speci

Definition 1.1 (Parametric family of distributions) A parametric distribution is a set of distribution functions, each of which is determined by speci Definition 1.1 (Parametric family of distributions) A parametric distribution is a set of distribution functions, each of which is determined by specifying one or more values called parameters. The number

More information

Exponential functionals of Lévy processes

Exponential functionals of Lévy processes Exponential functionals of Lévy processes Víctor Rivero Centro de Investigación en Matemáticas, México. 1/ 28 Outline of the talk Introduction Exponential functionals of spectrally positive Lévy processes

More information

Lecture Notes 3 Convergence (Chapter 5)

Lecture Notes 3 Convergence (Chapter 5) Lecture Notes 3 Convergence (Chapter 5) 1 Convergence of Random Variables Let X 1, X 2,... be a sequence of random variables and let X be another random variable. Let F n denote the cdf of X n and let

More information

Proceedings of the 2016 Winter Simulation Conference T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

Proceedings of the 2016 Winter Simulation Conference T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds. Proceedings of the 2016 Winter Simulation Conference T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds. ESTIMATING TAIL PROBABILITIES OF RANDOM SUMS OF INFINITE MIXTURES

More information

Problem set 1, Real Analysis I, Spring, 2015.

Problem set 1, Real Analysis I, Spring, 2015. Problem set 1, Real Analysis I, Spring, 015. (1) Let f n : D R be a sequence of functions with domain D R n. Recall that f n f uniformly if and only if for all ɛ > 0, there is an N = N(ɛ) so that if n

More information

Rare Events in Random Walks and Queueing Networks in the Presence of Heavy-Tailed Distributions

Rare Events in Random Walks and Queueing Networks in the Presence of Heavy-Tailed Distributions Rare Events in Random Walks and Queueing Networks in the Presence of Heavy-Tailed Distributions Sergey Foss Heriot-Watt University, Edinburgh and Institute of Mathematics, Novosibirsk The University of

More information

Lecture 17: Likelihood ratio and asymptotic tests

Lecture 17: Likelihood ratio and asymptotic tests Lecture 17: Likelihood ratio and asymptotic tests Likelihood ratio When both H 0 and H 1 are simple (i.e., Θ 0 = {θ 0 } and Θ 1 = {θ 1 }), Theorem 6.1 applies and a UMP test rejects H 0 when f θ1 (X) f

More information

Consistency of the maximum likelihood estimator for general hidden Markov models

Consistency of the maximum likelihood estimator for general hidden Markov models Consistency of the maximum likelihood estimator for general hidden Markov models Jimmy Olsson Centre for Mathematical Sciences Lund University Nordstat 2012 Umeå, Sweden Collaborators Hidden Markov models

More information

Extreme Value Theory and Applications

Extreme Value Theory and Applications Extreme Value Theory and Deauville - 04/10/2013 Extreme Value Theory and Introduction Asymptotic behavior of the Sum Extreme (from Latin exter, exterus, being on the outside) : Exceeding the ordinary,

More information

Finite-time Ruin Probability of Renewal Model with Risky Investment and Subexponential Claims

Finite-time Ruin Probability of Renewal Model with Risky Investment and Subexponential Claims Proceedings of the World Congress on Engineering 29 Vol II WCE 29, July 1-3, 29, London, U.K. Finite-time Ruin Probability of Renewal Model with Risky Investment and Subexponential Claims Tao Jiang Abstract

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections Chapter 3 - continued 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions

More information

Week 3: The EM algorithm

Week 3: The EM algorithm Week 3: The EM algorithm Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London Term 1, Autumn 2005 Mixtures of Gaussians Data: Y = {y 1... y N } Latent

More information

Scandinavian Actuarial Journal. Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks

Scandinavian Actuarial Journal. Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks For eer Review Only Journal: Manuscript ID: SACT-- Manuscript Type: Original Article Date Submitted

More information

PENULTIMATE APPROXIMATIONS FOR WEATHER AND CLIMATE EXTREMES. Rick Katz

PENULTIMATE APPROXIMATIONS FOR WEATHER AND CLIMATE EXTREMES. Rick Katz PENULTIMATE APPROXIMATIONS FOR WEATHER AND CLIMATE EXTREMES Rick Katz Institute for Mathematics Applied to Geosciences National Center for Atmospheric Research Boulder, CO USA Email: rwk@ucar.edu Web site:

More information

Extreme Value Analysis and Spatial Extremes

Extreme Value Analysis and Spatial Extremes Extreme Value Analysis and Department of Statistics Purdue University 11/07/2013 Outline Motivation 1 Motivation 2 Extreme Value Theorem and 3 Bayesian Hierarchical Models Copula Models Max-stable Models

More information

Chapter 5. Weak convergence

Chapter 5. Weak convergence Chapter 5 Weak convergence We will see later that if the X i are i.i.d. with mean zero and variance one, then S n / p n converges in the sense P(S n / p n 2 [a, b])! P(Z 2 [a, b]), where Z is a standard

More information

Lecture 26: Likelihood ratio tests

Lecture 26: Likelihood ratio tests Lecture 26: Likelihood ratio tests Likelihood ratio When both H 0 and H 1 are simple (i.e., Θ 0 = {θ 0 } and Θ 1 = {θ 1 }), Theorem 6.1 applies and a UMP test rejects H 0 when f θ1 (X) f θ0 (X) > c 0 for

More information

MFM Practitioner Module: Quantitative Risk Management. John Dodson. September 23, 2015

MFM Practitioner Module: Quantitative Risk Management. John Dodson. September 23, 2015 MFM Practitioner Module: Quantitative Risk Management September 23, 2015 Mixtures Mixtures Mixtures Definitions For our purposes, A random variable is a quantity whose value is not known to us right now

More information

Random convolution of O-exponential distributions

Random convolution of O-exponential distributions Nonlinear Analysis: Modelling and Control, Vol. 20, No. 3, 447 454 ISSN 1392-5113 http://dx.doi.org/10.15388/na.2015.3.9 Random convolution of O-exponential distributions Svetlana Danilenko a, Jonas Šiaulys

More information

Chapter 4: Asymptotic Properties of the MLE

Chapter 4: Asymptotic Properties of the MLE Chapter 4: Asymptotic Properties of the MLE Daniel O. Scharfstein 09/19/13 1 / 1 Maximum Likelihood Maximum likelihood is the most powerful tool for estimation. In this part of the course, we will consider

More information

The Convergence Rate for the Normal Approximation of Extreme Sums

The Convergence Rate for the Normal Approximation of Extreme Sums The Convergence Rate for the Normal Approximation of Extreme Sums Yongcheng Qi University of Minnesota Duluth WCNA 2008, Orlando, July 2-9, 2008 This talk is based on a joint work with Professor Shihong

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 016 Full points may be obtained for correct answers to eight questions. Each numbered question which may have several parts is worth

More information

Tail negative dependence and its applications for aggregate loss modeling

Tail negative dependence and its applications for aggregate loss modeling Tail negative dependence and its applications for aggregate loss modeling Lei Hua Division of Statistics Oct 20, 2014, ISU L. Hua (NIU) 1/35 1 Motivation 2 Tail order Elliptical copula Extreme value copula

More information

2 Functions of random variables

2 Functions of random variables 2 Functions of random variables A basic statistical model for sample data is a collection of random variables X 1,..., X n. The data are summarised in terms of certain sample statistics, calculated as

More information

0.1 Uniform integrability

0.1 Uniform integrability Copyright c 2009 by Karl Sigman 0.1 Uniform integrability Given a sequence of rvs {X n } for which it is known apriori that X n X, n, wp1. for some r.v. X, it is of great importance in many applications

More information

Research Reports on Mathematical and Computing Sciences

Research Reports on Mathematical and Computing Sciences ISSN 1342-2804 Research Reports on Mathematical and Computing Sciences Long-tailed degree distribution of a random geometric graph constructed by the Boolean model with spherical grains Naoto Miyoshi,

More information

1 Stat 605. Homework I. Due Feb. 1, 2011

1 Stat 605. Homework I. Due Feb. 1, 2011 The first part is homework which you need to turn in. The second part is exercises that will not be graded, but you need to turn it in together with the take-home final exam. 1 Stat 605. Homework I. Due

More information

Importance Sampling Methodology for Multidimensional Heavy-tailed Random Walks

Importance Sampling Methodology for Multidimensional Heavy-tailed Random Walks Importance Sampling Methodology for Multidimensional Heavy-tailed Random Walks Jose Blanchet (joint work with Jingchen Liu) Columbia IEOR Department RESIM Blanchet (Columbia) IS for Heavy-tailed Walks

More information

Theory and Applications of Stochastic Systems Lecture Exponential Martingale for Random Walk

Theory and Applications of Stochastic Systems Lecture Exponential Martingale for Random Walk Instructor: Victor F. Araman December 4, 2003 Theory and Applications of Stochastic Systems Lecture 0 B60.432.0 Exponential Martingale for Random Walk Let (S n : n 0) be a random walk with i.i.d. increments

More information

Exercises in Extreme value theory

Exercises in Extreme value theory Exercises in Extreme value theory 2016 spring semester 1. Show that L(t) = logt is a slowly varying function but t ǫ is not if ǫ 0. 2. If the random variable X has distribution F with finite variance,

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions 3.6 Conditional

More information

A minimalist s exposition of EM

A minimalist s exposition of EM A minimalist s exposition of EM Karl Stratos 1 What EM optimizes Let O, H be a random variables representing the space of samples. Let be the parameter of a generative model with an associated probability

More information

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case The largest eigenvalues of the sample covariance matrix 1 in the heavy-tail case Thomas Mikosch University of Copenhagen Joint work with Richard A. Davis (Columbia NY), Johannes Heiny (Aarhus University)

More information

Introduction to Rare Event Simulation

Introduction to Rare Event Simulation Introduction to Rare Event Simulation Brown University: Summer School on Rare Event Simulation Jose Blanchet Columbia University. Department of Statistics, Department of IEOR. Blanchet (Columbia) 1 / 31

More information

Large deviations for random walks under subexponentiality: the big-jump domain

Large deviations for random walks under subexponentiality: the big-jump domain Large deviations under subexponentiality p. Large deviations for random walks under subexponentiality: the big-jump domain Ton Dieker, IBM Watson Research Center joint work with D. Denisov (Heriot-Watt,

More information

Semiparametric posterior limits

Semiparametric posterior limits Statistics Department, Seoul National University, Korea, 2012 Semiparametric posterior limits for regular and some irregular problems Bas Kleijn, KdV Institute, University of Amsterdam Based on collaborations

More information

Lecture 2 One too many inequalities

Lecture 2 One too many inequalities University of Illinois Department of Economics Spring 2017 Econ 574 Roger Koenker Lecture 2 One too many inequalities In lecture 1 we introduced some of the basic conceptual building materials of the course.

More information

Introduction to Algorithmic Trading Strategies Lecture 10

Introduction to Algorithmic Trading Strategies Lecture 10 Introduction to Algorithmic Trading Strategies Lecture 10 Risk Management Haksun Li haksun.li@numericalmethod.com www.numericalmethod.com Outline Value at Risk (VaR) Extreme Value Theory (EVT) References

More information

SOLUTIONS TO MATH68181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH68181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH68181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question A1 a) The marginal cdfs of F X,Y (x, y) = [1 + exp( x) + exp( y) + (1 α) exp( x y)] 1 are F X (x) = F X,Y (x, ) = [1

More information

The Subexponential Product Convolution of Two Weibull-type Distributions

The Subexponential Product Convolution of Two Weibull-type Distributions The Subexponential Product Convolution of Two Weibull-type Distributions Yan Liu School of Mathematics and Statistics Wuhan University Wuhan, Hubei 4372, P.R. China E-mail: yanliu@whu.edu.cn Qihe Tang

More information

Lecture 21: Convergence of transformations and generating a random variable

Lecture 21: Convergence of transformations and generating a random variable Lecture 21: Convergence of transformations and generating a random variable If Z n converges to Z in some sense, we often need to check whether h(z n ) converges to h(z ) in the same sense. Continuous

More information

UPPER DEVIATIONS FOR SPLIT TIMES OF BRANCHING PROCESSES

UPPER DEVIATIONS FOR SPLIT TIMES OF BRANCHING PROCESSES Applied Probability Trust 7 May 22 UPPER DEVIATIONS FOR SPLIT TIMES OF BRANCHING PROCESSES HAMED AMINI, AND MARC LELARGE, ENS-INRIA Abstract Upper deviation results are obtained for the split time of a

More information

Nonparametric estimation under Shape Restrictions

Nonparametric estimation under Shape Restrictions Nonparametric estimation under Shape Restrictions Jon A. Wellner University of Washington, Seattle Statistical Seminar, Frejus, France August 30 - September 3, 2010 Outline: Five Lectures on Shape Restrictions

More information

Randomly Weighted Sums of Conditionnally Dependent Random Variables

Randomly Weighted Sums of Conditionnally Dependent Random Variables Gen. Math. Notes, Vol. 25, No. 1, November 2014, pp.43-49 ISSN 2219-7184; Copyright c ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in Randomly Weighted Sums of Conditionnally

More information

A Conditional Approach to Modeling Multivariate Extremes

A Conditional Approach to Modeling Multivariate Extremes A Approach to ing Multivariate Extremes By Heffernan & Tawn Department of Statistics Purdue University s April 30, 2014 Outline s s Multivariate Extremes s A central aim of multivariate extremes is trying

More information

Three hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER.

Three hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER. Three hours To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER EXTREME VALUES AND FINANCIAL RISK Examiner: Answer QUESTION 1, QUESTION

More information

Stochastic Convergence, Delta Method & Moment Estimators

Stochastic Convergence, Delta Method & Moment Estimators Stochastic Convergence, Delta Method & Moment Estimators Seminar on Asymptotic Statistics Daniel Hoffmann University of Kaiserslautern Department of Mathematics February 13, 2015 Daniel Hoffmann (TU KL)

More information

Math 209B Homework 2

Math 209B Homework 2 Math 29B Homework 2 Edward Burkard Note: All vector spaces are over the field F = R or C 4.6. Two Compactness Theorems. 4. Point Set Topology Exercise 6 The product of countably many sequentally compact

More information

Nonparametric estimation of log-concave densities

Nonparametric estimation of log-concave densities Nonparametric estimation of log-concave densities Jon A. Wellner University of Washington, Seattle Northwestern University November 5, 2010 Conference on Shape Restrictions in Non- and Semi-Parametric

More information

Additive functionals of infinite-variance moving averages. Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535

Additive functionals of infinite-variance moving averages. Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535 Additive functionals of infinite-variance moving averages Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535 Departments of Statistics The University of Chicago Chicago, Illinois 60637 June

More information

Chapter 4: Modelling

Chapter 4: Modelling Chapter 4: Modelling Exchangeability and Invariance Markus Harva 17.10. / Reading Circle on Bayesian Theory Outline 1 Introduction 2 Models via exchangeability 3 Models via invariance 4 Exercise Statistical

More information

Bayesian estimation of the discrepancy with misspecified parametric models

Bayesian estimation of the discrepancy with misspecified parametric models Bayesian estimation of the discrepancy with misspecified parametric models Pierpaolo De Blasi University of Torino & Collegio Carlo Alberto Bayesian Nonparametrics workshop ICERM, 17-21 September 2012

More information

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series C.7 Numerical series Pag. 147 Proof of the converging criteria for series Theorem 5.29 (Comparison test) Let and be positive-term series such that 0, for any k 0. i) If the series converges, then also

More information

General Principles in Random Variates Generation

General Principles in Random Variates Generation General Principles in Random Variates Generation E. Moulines and G. Fort Telecom ParisTech June 2015 Bibliography : Luc Devroye, Non-Uniform Random Variate Generator, Springer-Verlag (1986) available on

More information

Statistical Inference

Statistical Inference Statistical Inference Robert L. Wolpert Institute of Statistics and Decision Sciences Duke University, Durham, NC, USA Week 12. Testing and Kullback-Leibler Divergence 1. Likelihood Ratios Let 1, 2, 2,...

More information

is a Borel subset of S Θ for each c R (Bertsekas and Shreve, 1978, Proposition 7.36) This always holds in practical applications.

is a Borel subset of S Θ for each c R (Bertsekas and Shreve, 1978, Proposition 7.36) This always holds in practical applications. Stat 811 Lecture Notes The Wald Consistency Theorem Charles J. Geyer April 9, 01 1 Analyticity Assumptions Let { f θ : θ Θ } be a family of subprobability densities 1 with respect to a measure µ on a measurable

More information

Nonparametric estimation of log-concave densities

Nonparametric estimation of log-concave densities Nonparametric estimation of log-concave densities Jon A. Wellner University of Washington, Seattle Seminaire, Institut de Mathématiques de Toulouse 5 March 2012 Seminaire, Toulouse Based on joint work

More information

Lecture 3: Random variables, distributions, and transformations

Lecture 3: Random variables, distributions, and transformations Lecture 3: Random variables, distributions, and transformations Definition 1.4.1. A random variable X is a function from S into a subset of R such that for any Borel set B R {X B} = {ω S : X(ω) B} is an

More information

Chapter 6. Convergence. Probability Theory. Four different convergence concepts. Four different convergence concepts. Convergence in probability

Chapter 6. Convergence. Probability Theory. Four different convergence concepts. Four different convergence concepts. Convergence in probability Probability Theory Chapter 6 Convergence Four different convergence concepts Let X 1, X 2, be a sequence of (usually dependent) random variables Definition 1.1. X n converges almost surely (a.s.), or with

More information

Lectures 16-17: Poisson Approximation. Using Lemma (2.4.3) with θ = 1 and then Lemma (2.4.4), which is valid when max m p n,m 1/2, we have

Lectures 16-17: Poisson Approximation. Using Lemma (2.4.3) with θ = 1 and then Lemma (2.4.4), which is valid when max m p n,m 1/2, we have Lectures 16-17: Poisson Approximation 1. The Law of Rare Events Theorem 2.6.1: For each n 1, let X n,m, 1 m n be a collection of independent random variables with PX n,m = 1 = p n,m and PX n,m = = 1 p

More information

1 Continuous-time chains, finite state space

1 Continuous-time chains, finite state space Université Paris Diderot 208 Markov chains Exercises 3 Continuous-time chains, finite state space Exercise Consider a continuous-time taking values in {, 2, 3}, with generator 2 2. 2 2 0. Draw the diagramm

More information

Lecture 4 Lebesgue spaces and inequalities

Lecture 4 Lebesgue spaces and inequalities Lecture 4: Lebesgue spaces and inequalities 1 of 10 Course: Theory of Probability I Term: Fall 2013 Instructor: Gordan Zitkovic Lecture 4 Lebesgue spaces and inequalities Lebesgue spaces We have seen how

More information

COMPSCI 240: Reasoning Under Uncertainty

COMPSCI 240: Reasoning Under Uncertainty COMPSCI 240: Reasoning Under Uncertainty Andrew Lan and Nic Herndon University of Massachusetts at Amherst Spring 2019 Lecture 20: Central limit theorem & The strong law of large numbers Markov and Chebyshev

More information

1 Review of Probability

1 Review of Probability 1 Review of Probability Random variables are denoted by X, Y, Z, etc. The cumulative distribution function (c.d.f.) of a random variable X is denoted by F (x) = P (X x), < x

More information

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS G. RAMESH Contents Introduction 1 1. Bounded Operators 1 1.3. Examples 3 2. Compact Operators 5 2.1. Properties 6 3. The Spectral Theorem 9 3.3. Self-adjoint

More information

On the Breiman conjecture

On the Breiman conjecture Péter Kevei 1 David Mason 2 1 TU Munich 2 University of Delaware 12th GPSD Bochum Outline Introduction Motivation Earlier results Partial solution Sketch of the proof Subsequential limits Further remarks

More information

Modèles de dépendance entre temps inter-sinistres et montants de sinistre en théorie de la ruine

Modèles de dépendance entre temps inter-sinistres et montants de sinistre en théorie de la ruine Séminaire de Statistiques de l'irma Modèles de dépendance entre temps inter-sinistres et montants de sinistre en théorie de la ruine Romain Biard LMB, Université de Franche-Comté en collaboration avec

More information

A NOTE ON SECOND ORDER CONDITIONS IN EXTREME VALUE THEORY: LINKING GENERAL AND HEAVY TAIL CONDITIONS

A NOTE ON SECOND ORDER CONDITIONS IN EXTREME VALUE THEORY: LINKING GENERAL AND HEAVY TAIL CONDITIONS REVSTAT Statistical Journal Volume 5, Number 3, November 2007, 285 304 A NOTE ON SECOND ORDER CONDITIONS IN EXTREME VALUE THEORY: LINKING GENERAL AND HEAVY TAIL CONDITIONS Authors: M. Isabel Fraga Alves

More information

Shape of the return probability density function and extreme value statistics

Shape of the return probability density function and extreme value statistics Shape of the return probability density function and extreme value statistics 13/09/03 Int. Workshop on Risk and Regulation, Budapest Overview I aim to elucidate a relation between one field of research

More information

Asymptotic Statistics-VI. Changliang Zou

Asymptotic Statistics-VI. Changliang Zou Asymptotic Statistics-VI Changliang Zou Kolmogorov-Smirnov distance Example (Kolmogorov-Smirnov confidence intervals) We know given α (0, 1), there is a well-defined d = d α,n such that, for any continuous

More information

Poisson Processes. Particles arriving over time at a particle detector. Several ways to describe most common model.

Poisson Processes. Particles arriving over time at a particle detector. Several ways to describe most common model. Poisson Processes Particles arriving over time at a particle detector. Several ways to describe most common model. Approach 1: a) numbers of particles arriving in an interval has Poisson distribution,

More information

Convolutions and Their Tails. Anirban DasGupta

Convolutions and Their Tails. Anirban DasGupta Convolutions and Their Tails Anirban DasGupta 1 Y, Z : (Ω, A, P) (X, B), Y, Z independent. Distribution of Y + Z = Convolution of the distributions of Y, Z. Colloquial: Convolution of Y and Z. 2 Convolution

More information

LAW OF LARGE NUMBERS FOR THE SIRS EPIDEMIC

LAW OF LARGE NUMBERS FOR THE SIRS EPIDEMIC LAW OF LARGE NUMBERS FOR THE SIRS EPIDEMIC R. G. DOLGOARSHINNYKH Abstract. We establish law of large numbers for SIRS stochastic epidemic processes: as the population size increases the paths of SIRS epidemic

More information

3 Measurable Functions

3 Measurable Functions 3 Measurable Functions Notation A pair (X, F) where F is a σ-field of subsets of X is a measurable space. If µ is a measure on F then (X, F, µ) is a measure space. If µ(x) < then (X, F, µ) is a probability

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 6

MATH 56A: STOCHASTIC PROCESSES CHAPTER 6 MATH 56A: STOCHASTIC PROCESSES CHAPTER 6 6. Renewal Mathematically, renewal refers to a continuous time stochastic process with states,, 2,. N t {,, 2, 3, } so that you only have jumps from x to x + and

More information

Section 8.2. Asymptotic normality

Section 8.2. Asymptotic normality 30 Section 8.2. Asymptotic normality We assume that X n =(X 1,...,X n ), where the X i s are i.i.d. with common density p(x; θ 0 ) P= {p(x; θ) :θ Θ}. We assume that θ 0 is identified in the sense that

More information

A Smooth Operator, Operated Correctly

A Smooth Operator, Operated Correctly Clark Department of Mathematics Bard College at Simon s Rock March 6, 2014 Abstract By looking at familiar smooth functions in new ways, we can make sense of matrix-valued infinite series and operator-valued

More information

EE/Stats 376A: Homework 7 Solutions Due on Friday March 17, 5 pm

EE/Stats 376A: Homework 7 Solutions Due on Friday March 17, 5 pm EE/Stats 376A: Homework 7 Solutions Due on Friday March 17, 5 pm 1. Feedback does not increase the capacity. Consider a channel with feedback. We assume that all the recieved outputs are sent back immediately

More information

Lecture 6 Basic Probability

Lecture 6 Basic Probability Lecture 6: Basic Probability 1 of 17 Course: Theory of Probability I Term: Fall 2013 Instructor: Gordan Zitkovic Lecture 6 Basic Probability Probability spaces A mathematical setup behind a probabilistic

More information

IEOR 4703: Homework 2 Solutions

IEOR 4703: Homework 2 Solutions IEOR 4703: Homework 2 Solutions Exercises for which no programming is required Let U be uniformly distributed on the interval (0, 1); P (U x) = x, x (0, 1). We assume that your computer can sequentially

More information

STAT 380 Markov Chains

STAT 380 Markov Chains STAT 380 Markov Chains Richard Lockhart Simon Fraser University Spring 2016 Richard Lockhart (Simon Fraser University) STAT 380 Markov Chains Spring 2016 1 / 38 1/41 PoissonProcesses.pdf (#2) Poisson Processes

More information

MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016

MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016 MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016 Lecture 14: Information Theoretic Methods Lecturer: Jiaming Xu Scribe: Hilda Ibriga, Adarsh Barik, December 02, 2016 Outline f-divergence

More information

Discrete time Markov chains. Discrete Time Markov Chains, Limiting. Limiting Distribution and Classification. Regular Transition Probability Matrices

Discrete time Markov chains. Discrete Time Markov Chains, Limiting. Limiting Distribution and Classification. Regular Transition Probability Matrices Discrete time Markov chains Discrete Time Markov Chains, Limiting Distribution and Classification DTU Informatics 02407 Stochastic Processes 3, September 9 207 Today: Discrete time Markov chains - invariant

More information

Part II Probability and Measure

Part II Probability and Measure Part II Probability and Measure Theorems Based on lectures by J. Miller Notes taken by Dexter Chua Michaelmas 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

1 Stationary point processes

1 Stationary point processes Copyright c 22 by Karl Sigman Stationary point processes We present here a brief introduction to stationay point processes on the real line.. Basic notation for point processes We consider simple point

More information

IE 303 Discrete-Event Simulation

IE 303 Discrete-Event Simulation IE 303 Discrete-Event Simulation 1 L E C T U R E 5 : P R O B A B I L I T Y R E V I E W Review of the Last Lecture Random Variables Probability Density (Mass) Functions Cumulative Density Function Discrete

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 09: Stochastic Convergence, Continued

Introduction to Empirical Processes and Semiparametric Inference Lecture 09: Stochastic Convergence, Continued Introduction to Empirical Processes and Semiparametric Inference Lecture 09: Stochastic Convergence, Continued Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and

More information

Heavy Tailed Time Series with Extremal Independence

Heavy Tailed Time Series with Extremal Independence Heavy Tailed Time Series with Extremal Independence Rafa l Kulik and Philippe Soulier Conference in honour of Prof. Herold Dehling Bochum January 16, 2015 Rafa l Kulik and Philippe Soulier Regular variation

More information

Minimax lower bounds I

Minimax lower bounds I Minimax lower bounds I Kyoung Hee Kim Sungshin University 1 Preliminaries 2 General strategy 3 Le Cam, 1973 4 Assouad, 1983 5 Appendix Setting Family of probability measures {P θ : θ Θ} on a sigma field

More information