Nerdy is the new black

Size: px
Start display at page:

Download "Nerdy is the new black"

Transcription

1 January 20, 2014

2 Overview Applications of derivatives

3 Overview Applications of derivatives Weather forecasting

4 Overview Applications of derivatives Weather forecasting Optimizing material design

5 Overview Applications of derivatives Weather forecasting Optimizing material design Applications of integrals

6 Overview Applications of derivatives Weather forecasting Optimizing material design Applications of integrals Fourier analysis

7 Overview Applications of derivatives Weather forecasting Optimizing material design Applications of integrals Fourier analysis Spectrum analysis of acoustic signals

8 Overview Applications of derivatives Weather forecasting Optimizing material design Applications of integrals Fourier analysis Spectrum analysis of acoustic signals The Fundamental Theorem of Calculus

9 Weather forecasting The temperature T (t) in a given area (SLC) can be described as dt dt = f (t, T, wind, cloud cover, humidity,...) where f is some function of all of those variables. As a simple example consider ( ) dt 1 dt = 6 sin 5 t t, T (0) = 40

10 ( ) dt 1 dt = 6 sin 5 t t

11 ( dt 1 dt = 6 sin dt = [ 6 sin 5 t ( 1 5 t ) 0.001t ) ] 0.001t dt

12 ( dt 1 dt = 6 sin dt = dt = [ 6 sin 5 t ( 1 5 t ) 0.001t ) ] 0.001t dt [ ( ) ] 1 6 sin 5 t t dt

13 ( dt 1 dt = 6 sin dt = [ 6 sin 5 t ( 1 5 t ) 0.001t ) ] 0.001t dt [ ( ) ] 1 dt = 6 sin 5 t t dt [ ( ) ] 1 T (t) = 6 sin 5 t t dt + C

14 ( dt 1 dt = 6 sin dt = [ 6 sin 5 t ( 1 5 t ) 0.001t ) ] 0.001t dt [ ( ) ] 1 dt = 6 sin 5 t t dt [ ( ) ] 1 T (t) = 6 sin 5 t t dt + C Problem: We can t integrate this! But... we could use an approximation of this function, which we find from a linearization.

15 Linearized differential equation Using the linearization formula f (t) f (a) + f (a)(t a) = L(t)

16 Linearized differential equation Using the linearization formula f (t) f (a) + f (a)(t a) = L(t) we find the linearization L(t) of the function ( ) 1 f (t) = 6 sin 5 t t.

17 Linearized differential equation Using the linearization formula f (t) f (a) + f (a)(t a) = L(t) we find the linearization L(t) of the function ( ) 1 f (t) = 6 sin 5 t t. Then we could use the approximation dt dt = f (t) L(t)

18 Linearized differential equation Using the linearization formula f (t) f (a) + f (a)(t a) = L(t) we find the linearization L(t) of the function ( ) 1 f (t) = 6 sin 5 t t. Then we could use the approximation dt dt = f (t) L(t) and we can solve the approximate differential equation to find T (t) = f (t)dt + C L(t)dt + C.

19 The linearization near time equal to zero of ( ) 1 f (t) = 6 sin 5 t t. is given by L(t) = f (0) + f (0)(t) = 0.001t.

20 So solving the linearized differential equation we have dt dt = 0.001t

21 So solving the linearized differential equation we have dt dt = 0.001t dt = 0.001tdt

22 So solving the linearized differential equation we have dt dt = 0.001t dt = 0.001tdt dt = 0.001tdt + C

23 So solving the linearized differential equation we have dt dt = 0.001t dt = 0.001tdt dt = 0.001tdt + C T (t) = t2 2 + C

24 So solving the linearized differential equation we have dt dt = 0.001t dt = 0.001tdt dt = 0.001tdt + C T (t) = t2 2 + C T (t) = t 2 + C

25 So solving the linearized differential equation we have dt dt = 0.001t dt = 0.001tdt dt = 0.001tdt + C T (t) = t2 2 + C T (t) = t 2 + C and using the fact that T (0) = 40 we find a temperature model T (t) = t

26 45 44 True Temperature Approximate Temperature Temperature Hours Why can t we trust the 7-day forecast? This linearized approximation is great for short times (within 2 hours in this case).

27 80 75 True Temperature Approximate Temperature Temperature Hours Why can t we trust the 7-day forecast? The linearized approximation breaks down as we move further away from time zero. So in general forecasting is hard for long periods of time because of the approximations to the model.

28 Optimal design of a climbing cam The curved shape of a climbing cam

29 Optimal design of a climbing cam The curved shape of a climbing cam is described by a sector of what is known as a logarithmic spiral r = e µθ where r is the radius on the spiral, θ is the angle in radians, and µ describes how fast the spiral opens up.

30 If this camming unit is placed inside a parallel crack we can look at a force diagram to understand what keeps climbers alive.

31 If this camming unit is placed inside a parallel crack we can look at a force diagram to understand what keeps climbers alive. Here the contact angle is what is most important for our purposes since it helps describe how much force we can expect on the center pin of the cam for a given load T.

32 The angle a is given by tan(a) = y/x where x describes the horizontal distance of the center pin to the wall, and y describes the vertical distance of the contact point below the center pin.

33 The angle a is given by tan(a) = y/x where x describes the horizontal distance of the center pin to the wall, and y describes the vertical distance of the contact point below the center pin. To find the angle for a given choice of parameter µ we need to find where the curve has a vertical tangent line.

34 The angle a is given by tan(a) = y/x where x describes the horizontal distance of the center pin to the wall, and y describes the vertical distance of the contact point below the center pin. To find the angle for a given choice of parameter µ we need to find where the curve has a vertical tangent line. The curved shape of the cam is given in polar coordinates by r = e µθ and we have y = r sin(a) and x = r cos(a).

35 Now instead of thinking of the spiral curve in polar coordinates r = e µθ, we can think of the curve being described in Euclidean (standard) coordinates as a function y(x).

36 Now instead of thinking of the spiral curve in polar coordinates r = e µθ, we can think of the curve being described in Euclidean (standard) coordinates as a function y(x). By the relationship of polar coordinates we have r 2 = e 2µθ x 2 + y 2 = e 2µ tan 1 (y/x).

37 Implicit differentiation gives 2x + 2yy = e 2µ tan 1 (y/x) 2µ x 2 + y 2 (xy y)

38 Implicit differentiation gives Gross algebra gives 2x + 2yy = e 2µ tan 1 (y/x) 2µ x 2 + y 2 (xy y) y = 2x ye2µ tan 1 (y/x) 2y 2µe2µ tan 1 (y/x) x 2 +y 2

39 Implicit differentiation gives Gross algebra gives 2x + 2yy = e 2µ tan 1 (y/x) 2µ x 2 + y 2 (xy y) y = 2x ye2µ tan 1 (y/x) 2y 2µe2µ tan 1 (y/x) x 2 +y 2 Set the bottom to zero to find a vertical tangent line! Everything simplifies to µ = tan(a) a = tan 1 (µ).

40 Now we can relate the total force applied to the center pin from the camming action of the device to find F = T µ 2.

41 Now we can relate the total force applied to the center pin from the camming action of the device to find F = T µ 2. If we know µ, and we know the amount of force F which will make the cam fail, we can find out how much of load the device can handle (i.e. how far we can fall before the unit fails).

42 Fourier analysis What if we could build a complicated function f (x) out of a bunch of other relatively simple functions? For example: f (x) = a 0 +a 1 cos(πx)+b 1 sin(πx)+a 2 cos(2πx)+b 2 sin(2πx)+

43 Example: f (x) = x 2 on the interval 0 x 2

44 Example: f (x) = x 2 on the interval 0 x 2 x 2 = a 0 + a 1 cos(πx) + b 1 sin(πx) + a 2 cos(2πx) + b 2 sin(2πx) + where

45 Example: f (x) = x 2 on the interval 0 x 2 x 2 = a 0 + a 1 cos(πx) + b 1 sin(πx) + a 2 cos(2πx) + b 2 sin(2πx) + where 2 a 0 = 1 2 a n = b n = x 2 dx = 4 3 x 2 cos(nπx)dx = 4 n 2 π 2 x 2 sin(nπx)dx = 4 nπ

46 So in a very general form we can write x 2 as Fourier series x 2 = (a n cos(nπx) + b n sin(nπx)) n=0 = cos(πx) + π2 π sin(πx)+ 1 2 cos(2πx) + π2 π sin(2πx) + This function is easy already (f (x) = x 2 ), but this will be very useful for more difficult functions!

47 Spectrum analysis A recording of a musical instrument is a time signal which may look like 0.1 Time signal time x 10 5

48 Spectrum analysis A recording of a musical instrument is a time signal which may look like 0.1 Time signal time x 10 5 This is just a function f (t) - Let s use Fourier series!

49 If T denotes the final time of the acoustic signal we are going to reconstruct the time function f (t) as where f (t) = a n cos(nπt) + b n sin(nπt), n=0 a 0 = 1 T T 0 f (t)dt T a n = C 1 f (t) cos(nπt)dt 0 T b n = C 2 f (t) sin(nπt)dt where we know exactly what C 1 and C 2 are. 0

50 Obviously, we can t use infinitely many terms or we d be working on one problem forever... literally. f (t) = a n cos(nπt) + b n sin(nπt) n=0

51 Obviously, we can t use infinitely many terms or we d be working on one problem forever... literally. f (t) = a n cos(nπt) + b n sin(nπt) n=0 So we use a finite amount N of them as an approximation: f (t) a n cos(nπt) + b n sin(nπt) N n=0 and we obtain the following sounds.

52 The Fundamental Theorem of Calculus Recall if then d(t) = t 0 v(τ)dτ

53 The Fundamental Theorem of Calculus Recall if then d(t) = t 0 v(τ)dτ d (t) = v(t). If v represents velocity (mph), then d(t) represents the distance traveled (mi) over the time interval [0, t].

54 Let s say v(t) = 80 mph, then in 1 hour we have traveled d(1) = dt

55 Let s say v(t) = 80 mph, then in 1 hour we have traveled d(1) = 1 = 80 80dt dt

56 Let s say v(t) = 80 mph, then in 1 hour we have traveled d(1) = 1 = 80 80dt = 80t 0 dt

57 Let s say v(t) = 80 mph, then in 1 hour we have traveled d(1) = 1 = 80 80dt dt = 80t 0 = 80 (1 0)

58 Let s say v(t) = 80 mph, then in 1 hour we have traveled d(1) = 1 = 80 80dt dt = 80t 0 = 80 (1 0) = 80.

59 Let s say v(t) = 80 mph, then in 1 hour we have traveled d(1) = 1 = 80 80dt dt = 80t 0 = 80 (1 0) = 80. Wow, if we are traveling 80mph, in one hour we will have traveled 80 miles! Who knew?!

60 Thanks for a great semester! Good luck on your finals and have a great winter break!

Mathematical Methods: Fourier Series. Fourier Series: The Basics

Mathematical Methods: Fourier Series. Fourier Series: The Basics 1 Mathematical Methods: Fourier Series Fourier Series: The Basics Fourier series are a method of representing periodic functions. It is a very useful and powerful tool in many situations. It is sufficiently

More information

1 + x 2 d dx (sec 1 x) =

1 + x 2 d dx (sec 1 x) = Page This exam has: 8 multiple choice questions worth 4 points each. hand graded questions worth 4 points each. Important: No graphing calculators! Any non-graphing, non-differentiating, non-integrating

More information

G: Uniform Convergence of Fourier Series

G: Uniform Convergence of Fourier Series G: Uniform Convergence of Fourier Series From previous work on the prototypical problem (and other problems) u t = Du xx 0 < x < l, t > 0 u(0, t) = 0 = u(l, t) t > 0 u(x, 0) = f(x) 0 < x < l () we developed

More information

PDF Created with deskpdf PDF Writer - Trial ::

PDF Created with deskpdf PDF Writer - Trial :: y 3 5 Graph of f ' x 76. The graph of f ', the derivative f, is shown above for x 5. n what intervals is f increasing? (A) [, ] only (B) [, 3] (C) [3, 5] only (D) [0,.5] and [3, 5] (E) [, ], [, ], and

More information

17 Source Problems for Heat and Wave IB- VPs

17 Source Problems for Heat and Wave IB- VPs 17 Source Problems for Heat and Wave IB- VPs We have mostly dealt with homogeneous equations, homogeneous b.c.s in this course so far. Recall that if we have non-homogeneous b.c.s, then we want to first

More information

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph:

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph: Section 10.3: Polar Coordinates The polar coordinate system is another way to coordinatize the Cartesian plane. It is particularly useful when examining regions which are circular. 1. Cartesian Coordinates

More information

Problem 1. Use a line integral to find the plane area enclosed by the curve C: r = a cos 3 t i + b sin 3 t j (0 t 2π). Solution: We assume a > b > 0.

Problem 1. Use a line integral to find the plane area enclosed by the curve C: r = a cos 3 t i + b sin 3 t j (0 t 2π). Solution: We assume a > b > 0. MATH 64: FINAL EXAM olutions Problem 1. Use a line integral to find the plane area enclosed by the curve C: r = a cos 3 t i + b sin 3 t j ( t π). olution: We assume a > b >. A = 1 π (xy yx )dt = 3ab π

More information

REQUIRED MATHEMATICAL SKILLS FOR ENTERING CADETS

REQUIRED MATHEMATICAL SKILLS FOR ENTERING CADETS REQUIRED MATHEMATICAL SKILLS FOR ENTERING CADETS The Department of Applied Mathematics administers a Math Placement test to assess fundamental skills in mathematics that are necessary to begin the study

More information

) # ( 281). Give units with your answer.

) # ( 281). Give units with your answer. Math 120 Winter 2009 Handout 17: In-Class Review for Exam 2 The topics covered by Exam 2 in the course include the following: Implicit differentiation. Finding formulas for tangent lines using implicit

More information

Motion in One Dimension

Motion in One Dimension Motion in One Dimension Much of the physics we ll learn this semester will deal with the motion of objects We start with the simple case of one-dimensional motion Or, motion in x: As always, we begin by

More information

MAC 2311 Calculus I Spring 2004

MAC 2311 Calculus I Spring 2004 MAC 2 Calculus I Spring 2004 Homework # Some Solutions.#. Since f (x) = d dx (ln x) =, the linearization at a = is x L(x) = f() + f ()(x ) = ln + (x ) = x. The answer is L(x) = x..#4. Since e 0 =, and

More information

Implicit Differentiation and Inverse Trigonometric Functions

Implicit Differentiation and Inverse Trigonometric Functions Implicit Differentiation an Inverse Trigonometric Functions MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Summer 2018 Explicit vs. Implicit Functions 0.5 1 y 0.0 y 2 0.5 3 4 1.0 0.5

More information

10.1 Curves Defined by Parametric Equation

10.1 Curves Defined by Parametric Equation 10.1 Curves Defined by Parametric Equation 1. Imagine that a particle moves along the curve C shown below. It is impossible to describe C by an equation of the form y = f (x) because C fails the Vertical

More information

4.10 Dirichlet problem in the circle and the Poisson kernel

4.10 Dirichlet problem in the circle and the Poisson kernel 220 CHAPTER 4. FOURIER SERIES AND PDES 4.10 Dirichlet problem in the circle and the Poisson kernel Note: 2 lectures,, 9.7 in [EP], 10.8 in [BD] 4.10.1 Laplace in polar coordinates Perhaps a more natural

More information

Solution: It could be discontinuous, or have a vertical tangent like y = x 1/3, or have a corner like y = x.

Solution: It could be discontinuous, or have a vertical tangent like y = x 1/3, or have a corner like y = x. 1. Name three different reasons that a function can fail to be differentiable at a point. Give an example for each reason, and explain why your examples are valid. It could be discontinuous, or have a

More information

Review for Exam 1. (a) Find an equation of the line through the point ( 2, 4, 10) and parallel to the vector

Review for Exam 1. (a) Find an equation of the line through the point ( 2, 4, 10) and parallel to the vector Calculus 3 Lia Vas Review for Exam 1 1. Surfaces. Describe the following surfaces. (a) x + y = 9 (b) x + y + z = 4 (c) z = 1 (d) x + 3y + z = 6 (e) z = x + y (f) z = x + y. Review of Vectors. (a) Let a

More information

AP Calculus AB Winter Break Packet Happy Holidays!

AP Calculus AB Winter Break Packet Happy Holidays! AP Calculus AB Winter Break Packet 04 Happy Holidays! Section I NO CALCULATORS MAY BE USED IN THIS PART OF THE EXAMINATION. Directions: Solve each of the following problems. After examining the form of

More information

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics MATHS 101: Calculus I

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics   MATHS 101: Calculus I Preliminaries 2 1 2 Lectures Department of Mathematics http://www.abdullaeid.net/maths101 MATHS 101: Calculus I (University of Bahrain) Prelim 1 / 35 Pre Calculus MATHS 101: Calculus MATHS 101 is all about

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Partial Derivatives Philippe B Laval KSU March 21, 2012 Philippe B Laval (KSU) Functions of Several Variables March 21, 2012 1 / 19 Introduction In this section we extend

More information

Calculus 437 Semester 1 Review Chapters 1, 2, and 3 January 2016

Calculus 437 Semester 1 Review Chapters 1, 2, and 3 January 2016 Name: Class: Date: Calculus 437 Semester 1 Review Chapters 1, 2, and 3 January 2016 Short Answer 1. Decide whether the following problem can be solved using precalculus, or whether calculus is required.

More information

AP Calculus Testbank (Chapter 9) (Mr. Surowski)

AP Calculus Testbank (Chapter 9) (Mr. Surowski) AP Calculus Testbank (Chapter 9) (Mr. Surowski) Part I. Multiple-Choice Questions n 1 1. The series will converge, provided that n 1+p + n + 1 (A) p > 1 (B) p > 2 (C) p >.5 (D) p 0 2. The series

More information

Chapter 5 The Next Wave: MORE MODELING AND TRIGONOMETRY

Chapter 5 The Next Wave: MORE MODELING AND TRIGONOMETRY ANSWERS Mathematics (Mathematical Analysis) page 1 Chapter The Next Wave: MORE MODELING AND TRIGONOMETRY NW-1. TI-8, points; Casio, points a) An infinite number of them. b) 17p, - 7p c) Add p n to p, p

More information

(b) x = (d) x = (b) x = e (d) x = e4 2 ln(3) 2 x x. is. (b) 2 x, x 0. (d) x 2, x 0

(b) x = (d) x = (b) x = e (d) x = e4 2 ln(3) 2 x x. is. (b) 2 x, x 0. (d) x 2, x 0 1. Solve the equation 3 4x+5 = 6 for x. ln(6)/ ln(3) 5 (a) x = 4 ln(3) ln(6)/ ln(3) 5 (c) x = 4 ln(3)/ ln(6) 5 (e) x = 4. Solve the equation e x 1 = 1 for x. (b) x = (d) x = ln(5)/ ln(3) 6 4 ln(6) 5/ ln(3)

More information

MATH 127 SAMPLE FINAL EXAM I II III TOTAL

MATH 127 SAMPLE FINAL EXAM I II III TOTAL MATH 17 SAMPLE FINAL EXAM Name: Section: Do not write on this page below this line Part I II III TOTAL Score Part I. Multiple choice answer exercises with exactly one correct answer. Each correct answer

More information

x f(x)

x f(x) 1. Name three different reasons that a function can fail to be differential at a point. Give an example for each reason, and explain why your examples are valid. 2. Given the following table of values,

More information

x f(x)

x f(x) 1. Name three different reasons that a function can fail to be differentiable at a point. Give an example for each reason, and explain why your examples are valid. 2. Given the following table of values,

More information

MATH20411 PDEs and Vector Calculus B

MATH20411 PDEs and Vector Calculus B MATH2411 PDEs and Vector Calculus B Dr Stefan Güttel Acknowledgement The lecture notes and other course materials are based on notes provided by Dr Catherine Powell. SECTION 1: Introctory Material MATH2411

More information

Chapter 2 Derivatives

Chapter 2 Derivatives Contents Chapter 2 Derivatives Motivation to Chapter 2 2 1 Derivatives and Rates of Change 3 1.1 VIDEO - Definitions................................................... 3 1.2 VIDEO - Examples and Applications

More information

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x?

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x? . What are the domain and range of the function Fall 9 Math 3 Final Exam Solutions f(x) = + ex e x? Answer: The function is well-defined everywhere except when the denominator is zero, which happens when

More information

Chapter 2: Rocket Launch

Chapter 2: Rocket Launch Chapter 2: Rocket Launch Lesson 2.1.1. 2-1. Domain:!" # x # " Range: 2! y! " y-intercept! y = 2 no x-intercepts 2-2. a. Time Hours sitting Amount Earned 8PM 1 $4 9PM 2 $4*2hrs = $8 10PM 3 $4*3hrs = $12

More information

Chapter 7: Techniques of Integration

Chapter 7: Techniques of Integration Chapter 7: Techniques of Integration MATH 206-01: Calculus II Department of Mathematics University of Louisville last corrected September 14, 2013 1 / 43 Chapter 7: Techniques of Integration 7.1. Integration

More information

Mathematical Methods and its Applications (Solution of assignment-12) Solution 1 From the definition of Fourier transforms, we have.

Mathematical Methods and its Applications (Solution of assignment-12) Solution 1 From the definition of Fourier transforms, we have. For 2 weeks course only Mathematical Methods and its Applications (Solution of assignment-2 Solution From the definition of Fourier transforms, we have F e at2 e at2 e it dt e at2 +(it/a dt ( setting (

More information

Trig Functions Learning Outcomes

Trig Functions Learning Outcomes 1 Trig Functions Learning Outcomes Solve problems about trig functions in right-angled triangles. Solve problems using Pythagoras theorem. Solve problems about trig functions in all quadrants of a unit

More information

08/01/2017. Trig Functions Learning Outcomes. Use Trig Functions (RAT) Use Trig Functions (Right-Angled Triangles)

08/01/2017. Trig Functions Learning Outcomes. Use Trig Functions (RAT) Use Trig Functions (Right-Angled Triangles) 1 Trig Functions Learning Outcomes Solve problems about trig functions in right-angled triangles. Solve problems using Pythagoras theorem. Solve problems about trig functions in all quadrants of a unit

More information

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3 Math 201 Solutions to Assignment 1 1. Solve the initial value problem: x 2 dx + 2y = 0, y(0) = 2. x 2 dx + 2y = 0, y(0) = 2 2y = x 2 dx y 2 = 1 3 x3 + C y = C 1 3 x3 Notice that y is not defined for some

More information

23. Implicit differentiation

23. Implicit differentiation 23. 23.1. The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x and y. If a value of x is given, then a corresponding value of y is determined. For instance, if x = 1, then y

More information

Math 131 Exam 2 Spring 2016

Math 131 Exam 2 Spring 2016 Math 3 Exam Spring 06 Name: ID: 7 multiple choice questions worth 4.7 points each. hand graded questions worth 0 points each. 0. free points (so the total will be 00). Exam covers sections.7 through 3.0

More information

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017 HOMEWORK MA112: ADVANCED CALCULUS, HILARY 2017 (1) A particle moves along a curve in R with position function given by r(t) = (e t, t 2 + 1, t). Find the velocity v(t), the acceleration a(t), the speed

More information

AP Calculus AB Chapter 4 Packet Implicit Differentiation. 4.5: Implicit Functions

AP Calculus AB Chapter 4 Packet Implicit Differentiation. 4.5: Implicit Functions 4.5: Implicit Functions We can employ implicit differentiation when an equation that defines a function is so complicated that we cannot use an explicit rule to find the derivative. EXAMPLE 1: Find dy

More information

Motion in Space. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Motion in Space

Motion in Space. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Motion in Space Motion in Space MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Suppose the position vector of a moving object is given by r(t) = f (t), g(t), h(t), Background

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES The functions that we have met so far can be described by expressing one variable explicitly in terms of another variable. y For example,, or y = x sin x,

More information

MATH 391 Test 1 Fall, (1) (12 points each)compute the general solution of each of the following differential equations: = 4x 2y.

MATH 391 Test 1 Fall, (1) (12 points each)compute the general solution of each of the following differential equations: = 4x 2y. MATH 391 Test 1 Fall, 2018 (1) (12 points each)compute the general solution of each of the following differential equations: (a) (b) x dy dx + xy = x2 + y. (x + y) dy dx = 4x 2y. (c) yy + (y ) 2 = 0 (y

More information

Autumn 2015 Practice Final. Time Limit: 1 hour, 50 minutes

Autumn 2015 Practice Final. Time Limit: 1 hour, 50 minutes Math 309 Autumn 2015 Practice Final December 2015 Time Limit: 1 hour, 50 minutes Name (Print): ID Number: This exam contains 9 pages (including this cover page) and 8 problems. Check to see if any pages

More information

2 Trigonometric functions

2 Trigonometric functions Theodore Voronov. Mathematics 1G1. Autumn 014 Trigonometric functions Trigonometry provides methods to relate angles and lengths but the functions we define have many other applications in mathematics..1

More information

TMTA Calculus and Advanced Topics Test 2010

TMTA Calculus and Advanced Topics Test 2010 . Evaluate lim Does not eist - - 0 TMTA Calculus and Advanced Topics Test 00. Find the period of A 6D B B y Acos 4B 6D, where A 0, B 0, D 0. Solve the given equation for : ln = ln 4 4 ln { } {-} {0} {}

More information

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018 DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 208 Version A refers to the regular exam and Version B to the make-up. Version A. A particle

More information

MA Chapter 10 practice

MA Chapter 10 practice MA 33 Chapter 1 practice NAME INSTRUCTOR 1. Instructor s names: Chen. Course number: MA33. 3. TEST/QUIZ NUMBER is: 1 if this sheet is yellow if this sheet is blue 3 if this sheet is white 4. Sign the scantron

More information

0 3 x < x < 5. By continuing in this fashion, and drawing a graph, it can be seen that T = 2.

0 3 x < x < 5. By continuing in this fashion, and drawing a graph, it can be seen that T = 2. 04 Section 10. y (π) = c = 0, and thus λ = 0 is an eigenvalue, with y 0 (x) = 1 as the eigenfunction. For λ > 0 we again have y(x) = c 1 sin λ x + c cos λ x, so y (0) = λ c 1 = 0 and y () = -c λ sin λ

More information

AP Calculus BC - Problem Solving Drill 19: Parametric Functions and Polar Functions

AP Calculus BC - Problem Solving Drill 19: Parametric Functions and Polar Functions AP Calculus BC - Problem Solving Drill 19: Parametric Functions and Polar Functions Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as

More information

Spring 2015 Sample Final Exam

Spring 2015 Sample Final Exam Math 1151 Spring 2015 Sample Final Exam Final Exam on 4/30/14 Name (Print): Time Limit on Final: 105 Minutes Go on carmen.osu.edu to see where your final exam will be. NOTE: This exam is much longer than

More information

Parametric Curves. Calculus 2 Lia Vas

Parametric Curves. Calculus 2 Lia Vas Calculus Lia Vas Parametric Curves In the past, we mostly worked with curves in the form y = f(x). However, this format does not encompass all the curves one encounters in applications. For example, consider

More information

MAT 272 Test 1 Review. 1. Let P = (1,1) and Q = (2,3). Find the unit vector u that has the same

MAT 272 Test 1 Review. 1. Let P = (1,1) and Q = (2,3). Find the unit vector u that has the same 11.1 Vectors in the Plane 1. Let P = (1,1) and Q = (2,3). Find the unit vector u that has the same direction as. QP a. u =< 1, 2 > b. u =< 1 5, 2 5 > c. u =< 1, 2 > d. u =< 1 5, 2 5 > 2. If u has magnitude

More information

1 The Derivative and Differrentiability

1 The Derivative and Differrentiability 1 The Derivative and Differrentiability 1.1 Derivatives and rate of change Exercise 1 Find the equation of the tangent line to f (x) = x 2 at the point (1, 1). Exercise 2 Suppose that a ball is dropped

More information

Unit 1 PreCalculus Review & Limits

Unit 1 PreCalculus Review & Limits 1 Unit 1 PreCalculus Review & Limits Factoring: Remove common factors first Terms - Difference of Squares a b a b a b - Sum of Cubes ( )( ) a b a b a ab b 3 3 - Difference of Cubes a b a b a ab b 3 3 3

More information

Second Midterm Exam Name: Practice Problems Septmber 28, 2015

Second Midterm Exam Name: Practice Problems Septmber 28, 2015 Math 110 4. Treibergs Second Midterm Exam Name: Practice Problems Septmber 8, 015 1. Use the limit definition of derivative to compute the derivative of f(x = 1 at x = a. 1 + x Inserting the function into

More information

Calculus II (Math 122) Final Exam, 19 May 2012

Calculus II (Math 122) Final Exam, 19 May 2012 Name ID number Sections C and D Calculus II (Math 122) Final Exam, 19 May 2012 This is a closed book exam. No notes or calculators are allowed. A table of trigonometric identities is attached. To receive

More information

Math 210, Final Exam, Fall 2010 Problem 1 Solution. v cosθ = u. v Since the magnitudes of the vectors are positive, the sign of the dot product will

Math 210, Final Exam, Fall 2010 Problem 1 Solution. v cosθ = u. v Since the magnitudes of the vectors are positive, the sign of the dot product will Math, Final Exam, Fall Problem Solution. Let u,, and v,,3. (a) Is the angle between u and v acute, obtuse, or right? (b) Find an equation for the plane through (,,) containing u and v. Solution: (a) The

More information

1 Antiderivatives graphically and numerically

1 Antiderivatives graphically and numerically Math B - Calculus by Hughes-Hallett, et al. Chapter 6 - Constructing antiderivatives Prepared by Jason Gaddis Antiderivatives graphically and numerically Definition.. The antiderivative of a function f

More information

Math 132 Exam 3 Fall 2016

Math 132 Exam 3 Fall 2016 Math 3 Exam 3 Fall 06 multiple choice questions worth points each. hand graded questions worth and 3 points each. Exam covers sections.-.6: Sequences, Series, Integral, Comparison, Alternating, Absolute

More information

Math 2930 Worksheet Final Exam Review

Math 2930 Worksheet Final Exam Review Math 293 Worksheet Final Exam Review Week 14 November 3th, 217 Question 1. (* Solve the initial value problem y y = 2xe x, y( = 1 Question 2. (* Consider the differential equation: y = y y 3. (a Find the

More information

Math 147 Exam II Practice Problems

Math 147 Exam II Practice Problems Math 147 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

Math 323 Exam 1 Practice Problem Solutions

Math 323 Exam 1 Practice Problem Solutions Math Exam Practice Problem Solutions. For each of the following curves, first find an equation in x and y whose graph contains the points on the curve. Then sketch the graph of C, indicating its orientation.

More information

f(x 0 + h) f(x 0 ) h slope of secant line = m sec

f(x 0 + h) f(x 0 ) h slope of secant line = m sec Derivatives Using limits, we can define the slope of a tangent line to a function. When given a function f(x), and given a point P (x 0, f(x 0 )) on f, if we want to find the slope of the tangent line

More information

Multiple Choice. Circle the best answer. No work needed. No partial credit available. is continuous.

Multiple Choice. Circle the best answer. No work needed. No partial credit available. is continuous. Multiple Choice. Circle the best answer. No work needed. No partial credit available. + +. Evaluate lim + (a (b (c (d 0 (e None of the above.. Evaluate lim (a (b (c (d 0 (e + + None of the above.. Find

More information

CALCULUS EXAM II Spring 2003

CALCULUS EXAM II Spring 2003 CALCULUS EXAM II Spring 2003 Name: Instructions: WRITE ALL WORK AND ALL ANSWERS ON THIS EXAM PAPER. For all questions, I reserve the right to apply the 'no work means no credit' policy, so make sure you

More information

A-Level Mathematics TRIGONOMETRY. G. David Boswell - R2S Explore 2019

A-Level Mathematics TRIGONOMETRY. G. David Boswell - R2S Explore 2019 A-Level Mathematics TRIGONOMETRY G. David Boswell - R2S Explore 2019 1. Graphs the functions sin kx, cos kx, tan kx, where k R; In these forms, the value of k determines the periodicity of the trig functions.

More information

Final Exam SOLUTIONS MAT 131 Fall 2011

Final Exam SOLUTIONS MAT 131 Fall 2011 1. Compute the following its. (a) Final Exam SOLUTIONS MAT 131 Fall 11 x + 1 x 1 x 1 The numerator is always positive, whereas the denominator is negative for numbers slightly smaller than 1. Also, as

More information

Jim Lambers MAT 169 Fall Semester Practice Final Exam

Jim Lambers MAT 169 Fall Semester Practice Final Exam Jim Lambers MAT 169 Fall Semester 2010-11 Practice Final Exam 1. A ship is moving northwest at a speed of 50 mi/h. A passenger is walking due southeast on the deck at 4 mi/h. Find the speed of the passenger

More information

1. Compute the derivatives of the following functions, by any means necessary. f (x) = (1 x3 )(1/2)(x 2 1) 1/2 (2x) x 2 1( 3x 2 ) (1 x 3 ) 2

1. Compute the derivatives of the following functions, by any means necessary. f (x) = (1 x3 )(1/2)(x 2 1) 1/2 (2x) x 2 1( 3x 2 ) (1 x 3 ) 2 Math 51 Exam Nov. 4, 009 SOLUTIONS Directions 1. SHOW YOUR WORK and be thorough in your solutions. Partial credit will only be given for work shown.. Any numerical answers should be left in exact form,

More information

UNIT 3: DERIVATIVES STUDY GUIDE

UNIT 3: DERIVATIVES STUDY GUIDE Calculus I UNIT 3: Derivatives REVIEW Name: Date: UNIT 3: DERIVATIVES STUDY GUIDE Section 1: Section 2: Limit Definition (Derivative as the Slope of the Tangent Line) Calculating Rates of Change (Average

More information

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014 Solutions to te Multivariable Calculus and Linear Algebra problems on te Compreensive Examination of January 3, 24 Tere are 9 problems ( points eac, totaling 9 points) on tis portion of te examination.

More information

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x Assignment 5 Name Find the indicated derivative. ) Find y(4) if y = sin x. ) A) y(4) = cos x B) y(4) = sin x y(4) = - cos x y(4) = - sin x ) y = (csc x + cot x)(csc x - cot x) ) A) y = 0 B) y = y = - csc

More information

Section 3.5: Implicit Differentiation

Section 3.5: Implicit Differentiation Section 3.5: Implicit Differentiation In the previous sections, we considered the problem of finding the slopes of the tangent line to a given function y = f(x). The idea of a tangent line however is not

More information

Mathematics 2203, Test 1 - Solutions

Mathematics 2203, Test 1 - Solutions Mathematics 220, Test 1 - Solutions F, 2010 Philippe B. Laval Name 1. Determine if each statement below is True or False. If it is true, explain why (cite theorem, rule, property). If it is false, explain

More information

Your exam contains 5 problems. The entire exam is worth 70 points. Your exam should contain 6 pages; please make sure you have a complete exam.

Your exam contains 5 problems. The entire exam is worth 70 points. Your exam should contain 6 pages; please make sure you have a complete exam. MATH 124 (PEZZOLI) WINTER 2017 MIDTERM #2 NAME TA:. Section: Instructions: Your exam contains 5 problems. The entire exam is worth 70 points. Your exam should contain 6 pages; please make sure you have

More information

AP Calculus Related Rates Worksheet

AP Calculus Related Rates Worksheet AP Calculus Related Rates Worksheet 1. A small balloon is released at a point 150 feet from an observer, who is on level ground. If the balloon goes straight up at a rate of 8 feet per second, how fast

More information

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations An Introduction to Partial Differential Equations Ryan C. Trinity University Partial Differential Equations Lecture 1 Ordinary differential equations (ODEs) These are equations of the form where: F(x,y,y,y,y,...)

More information

Final practice, Math 31A - Lec 1, Fall 2013 Name and student ID: Question Points Score Total: 90

Final practice, Math 31A - Lec 1, Fall 2013 Name and student ID: Question Points Score Total: 90 Final practice, Math 31A - Lec 1, Fall 13 Name and student ID: Question Points Score 1 1 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 Total: 9 1. a) 4 points) Find all points x at which the function fx) x 4x + 3 + x

More information

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x).

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x). You should prepare the following topics for our final exam. () Pre-calculus. (2) Inverses. (3) Algebra of Limits. (4) Derivative Formulas and Rules. (5) Graphing Techniques. (6) Optimization (Maxima and

More information

Implicit Differentiation, Related Rates. Goals: Introduce implicit differentiation. Study problems involving related rates.

Implicit Differentiation, Related Rates. Goals: Introduce implicit differentiation. Study problems involving related rates. Unit #5 : Implicit Differentiation, Related Rates Goals: Introduce implicit differentiation. Study problems involving related rates. Tangent Lines to Relations - Implicit Differentiation - 1 Implicit Differentiation

More information

Candidates are expected to have available a calculator. Only division by (x + a) or (x a) will be required.

Candidates are expected to have available a calculator. Only division by (x + a) or (x a) will be required. Revision Checklist Unit C2: Core Mathematics 2 Unit description Algebra and functions; coordinate geometry in the (x, y) plane; sequences and series; trigonometry; exponentials and logarithms; differentiation;

More information

Math 152 Take Home Test 1

Math 152 Take Home Test 1 Math 5 Take Home Test Due Monday 5 th October (5 points) The following test will be done at home in order to ensure that it is a fair and representative reflection of your own ability in mathematics I

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS ORDINARY DIFFERENTIAL EQUATIONS Basic concepts: Find y(x) where x is the independent and y the dependent varible, based on an equation involving x, y(x), y 0 (x),...e.g.: y 00 (x) = 1+y(x) y0 (x) 1+x or,

More information

Workbook for Calculus I

Workbook for Calculus I Workbook for Calculus I By Hüseyin Yüce New York 2007 1 Functions 1.1 Four Ways to Represent a Function 1. Find the domain and range of the function f(x) = 1 + x + 1 and sketch its graph. y 3 2 1-3 -2-1

More information

Math 165 Final Exam worksheet solutions

Math 165 Final Exam worksheet solutions C Roettger, Fall 17 Math 165 Final Exam worksheet solutions Problem 1 Use the Fundamental Theorem of Calculus to compute f(4), where x f(t) dt = x cos(πx). Solution. From the FTC, the derivative of the

More information

AP Calculus AB Chapter 2 Test Review #1

AP Calculus AB Chapter 2 Test Review #1 AP Calculus AB Chapter Test Review # Open-Ended Practice Problems:. Nicole just loves drinking chocolate milk out of her special cone cup which has a radius of inches and a height of 8 inches. Nicole pours

More information

Science One Integral Calculus

Science One Integral Calculus Science One Integral Calculus January 018 Happy New Year! Differential Calculus central idea: The Derivative What is the derivative f (x) of a function f(x)? Differential Calculus central idea: The Derivative

More information

Calculus 1 Exam 1 MAT 250, Spring 2012 D. Ivanšić. Name: Show all your work!

Calculus 1 Exam 1 MAT 250, Spring 2012 D. Ivanšić. Name: Show all your work! Calculus 1 Exam 1 MAT 250, Spring 2012 D. Ivanšić Name: Show all your work! 1. (16pts) Use the graph of the function to answer the following. Justify your answer if a limit does not exist. lim x 1 f(x)

More information

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA Calculus Weijiu Liu Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA 1 Opening Welcome to your Calculus I class! My name is Weijiu Liu. I will guide you

More information

Math 250 Skills Assessment Test

Math 250 Skills Assessment Test Math 5 Skills Assessment Test Page Math 5 Skills Assessment Test The purpose of this test is purely diagnostic (before beginning your review, it will be helpful to assess both strengths and weaknesses).

More information

Mathematics Engineering Calculus III Fall 13 Test #1

Mathematics Engineering Calculus III Fall 13 Test #1 Mathematics 2153-02 Engineering Calculus III Fall 13 Test #1 Instructor: Dr. Alexandra Shlapentokh (1) Which of the following statements is always true? (a) If x = f(t), y = g(t) and f (1) = 0, then dy/dx(1)

More information

C3 Exam Workshop 2. Workbook. 1. (a) Express 7 cos x 24 sin x in the form R cos (x + α) where R > 0 and 0 < α < 2

C3 Exam Workshop 2. Workbook. 1. (a) Express 7 cos x 24 sin x in the form R cos (x + α) where R > 0 and 0 < α < 2 C3 Exam Workshop 2 Workbook 1. (a) Express 7 cos x 24 sin x in the form R cos (x + α) where R > 0 and 0 < α < 2 π. Give the value of α to 3 decimal places. (b) Hence write down the minimum value of 7 cos

More information

Things You Should Know Coming Into Calc I

Things You Should Know Coming Into Calc I Things You Should Know Coming Into Calc I Algebraic Rules, Properties, Formulas, Ideas and Processes: 1) Rules and Properties of Exponents. Let x and y be positive real numbers, let a and b represent real

More information

MAS153/MAS159. MAS153/MAS159 1 Turn Over SCHOOL OF MATHEMATICS AND STATISTICS hours. Mathematics (Materials) Mathematics For Chemists

MAS153/MAS159. MAS153/MAS159 1 Turn Over SCHOOL OF MATHEMATICS AND STATISTICS hours. Mathematics (Materials) Mathematics For Chemists Data provided: Formula sheet MAS53/MAS59 SCHOOL OF MATHEMATICS AND STATISTICS Mathematics (Materials Mathematics For Chemists Spring Semester 203 204 3 hours All questions are compulsory. The marks awarded

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) ±

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) ± Final Review for Pre Calculus 009 Semester Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the equation algebraically. ) v + 5 = 7 - v

More information

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2 AP Physics C Calculus C.1 Name Trigonometric Functions 1. Consider the right triangle to the right. In terms of a, b, and c, write the expressions for the following: c a sin θ = cos θ = tan θ =. Using

More information

Final Exam Review Exercise Set A, Math 1551, Fall 2017

Final Exam Review Exercise Set A, Math 1551, Fall 2017 Final Exam Review Exercise Set A, Math 1551, Fall 2017 This review set gives a list of topics that we explored throughout this course, as well as a few practice problems at the end of the document. A complete

More information

The Big 50 Revision Guidelines for C3

The Big 50 Revision Guidelines for C3 The Big 50 Revision Guidelines for C3 If you can understand all of these you ll do very well 1. Know how to recognise linear algebraic factors, especially within The difference of two squares, in order

More information

Introduction. Math Calculus 1 section 2.1 and 2.2. Julian Chan. Department of Mathematics Weber State University

Introduction. Math Calculus 1 section 2.1 and 2.2. Julian Chan. Department of Mathematics Weber State University Math 1210 Calculus 1 section 2.1 and 2.2 Julian Chan Department of Mathematics Weber State University 2013 Objectives Objectives: to tangent lines to limits What is velocity and how to obtain it from the

More information

We can regard an indefinite integral as representing an entire family of functions (one antiderivative for each value of the constant C).

We can regard an indefinite integral as representing an entire family of functions (one antiderivative for each value of the constant C). 4.4 Indefinite Integrals and the Net Change Theorem Because of the relation given by the Fundamental Theorem of Calculus between antiderivatives and integrals, the notation f(x) dx is traditionally used

More information