Research Article Solving Boundary Value Problem for a Nonlinear Stationary Controllable System with Synthesizing Control

Size: px
Start display at page:

Download "Research Article Solving Boundary Value Problem for a Nonlinear Stationary Controllable System with Synthesizing Control"

Transcription

1 Hdaw Mathematcal Poblems Egeeg Volume 7, Atcle ID 85976, 3 pages Reseach Atcle Solvg Bouday Value Poblem fo a Nolea Statoay Cotollable System wth Sytheszg Cotol Alexade N. Kvto, Osaa S. Fyula, ad Alexey S. Eem Depatmet of Ifomato Systems, Faculty of Appled Mathematcs ad Cotol Pocesses, Sat Petesbug State Uvesty, Uvestets Pospet 35, Petegof, Sat Petesbug 9854, Russa Coespodece should be addessed to Alexade N. Kvto; alvt46@mal.u Receved Mach 7; Revsed 3 July 7; Accepted 8 August 7; Publshed 7 Septembe 7 Academc Edto: Chaudy M. Khalque Copyght 7 Alexade N. Kvto et al. Ths s a ope access atcle dstbuted ude the Ceatve Commos Attbuto Lcese, whch pemts uestcted use, dstbuto, ad epoducto ay medum, povded the ogal wo s popely cted. A algothm fo costuctg a cotol fucto that tasfes a wde class of statoay olea systems of oday dffeetal equatos fom a tal state to a fal state ude ceta cotol estctos s poposed. The algothm s desged to be coveet fo umecal mplemetato. A costuctve cteo of the desed tasfe possblty s peseted. The poblem of a teobtal flght s cosdeed as a test example ad t s smulated umecally wth the peseted method.. Itoducto ad Poblem Fomulato Tasfeg a obect fom a ow tal state to a desed potthephasespacesampotatpoblemofthe moto cotol theoy. It s qute dffcult ad has ot bee solved the geeal case. Two classc appoaches to solve t ae pogam taectoes ad tagetg taectoes. I the fome case, the obect moves alog the fxed taectoy whch caot be chaged (.e., the poblem of ts stablzato ases). Ths leads to stog estctos o the cotol system possbltes. I the latte case, the moto s cotolled costatly (wth some tme step) based o the cuet obect state ode to pefom the desed tasfe. Ths demads costat taget pot tacg wth some techcal meas, whch educes the cotol system depedece. Nowadays, the pogess computes, measuemet tools, ad othe stumets egeeg maes t possble to stat developmet ad poducto of autoomous tellectual cotol systems, whch themselves ca deteme the tasfe taectoy wth oboad computatoal ad avgatoal systems usg oly the tal (o cuet) state of the obect. Ths geatly exteds the capabltes of cotol systems, sce thee s o eed costat taget pot tacg, whch ofte caot be pactcally ealzed. Itellectual cotol systems fo may techcal obects (aeospace vehcles, gyoscopc mechasms, obotc mapulatos, etc.) ae modeled mathematcally wth olea statoay cotollable systems of oday dffeetal equatos (ODEs). The ecessay cotol acto s foud as cotol fuctos, whch povde the oto that phase coodates satsfy the gve bouday codtos. Such poblems of the mathematcal cotol theoy ae called bouday value poblems (BVPs) fo ODEs. They fom a mpotat class of poblems ad ae qute dffcult, especally whe addtoal detals ae toduced to the model, le dscete tme cosdeato, cotol sgal ad measuemet delays, pemaet petubatos, o tegal-dffeetal compoets the obect behavo. Fo the fst tme, the complete soluto of the bouday valuepoblemfoleacotollablesystemsaclassof squae-tegable cotol fuctos was poposed by Kalma et al. [. Dug the followg decades, a lot of papes ad moogaphes studyg BVPs fo lea ad olea cotolled systems of ODEs ad tegal-dffeetal equatos of a specal d have appeaed [ 33. It should be also metoed that the cotol methods based o the classc appoaches cotue to appea, especally the aeas whee models become eve moe complex, as fuzzy cotol systems (see, e.g., [34 37).

2 Mathematcal Poblems Egeeg Today, thee ae thee ma dectos of BVP study. The fst deals wth fdg the ecessay ad suffcet codtos mposedtotheghtpatofthecotolledsystemwhch guaatee the obect tasfe to the desed pot the phase space [ 5, 7, 3 6, 8, 9, 3. The secod poblem s to deteme the fal states set, wheetheobectcabetasfeedfomthetalstate[3,5 8,, 7,, 33. The thd decto coces developmet of exact o appoxmate methods fo costuctg o sytheszg pogam cotol fuctos ad the coespodg taectoes whch coect the gve pots the phase space [, 3 6,,8,,4,6. BVPs soluto s studed suffcetly well fo lea cotollable systems. Fo quas-lea (semlea) ad olea systems of the specal foms, maly teatve methods ad the modfcatos ae used [4, 5. The weaesses of such methods ae stablty to computatoal eos ad oute petubatos ad hgh computatoal tme, sce each stage cludes the soluto of a olea system of fuctoal equatos. Moeove, t s qute dffcult to fd good tal appoxmatos to the cotol fuctos ad tme fuctos of phase coodates to povde fast covegece. Ital appoxmatos ae ofte chose tutvely. Due to the metoed poblems, t s mpossble to use successve appoxmatos to solve BVPs essetally olea cotollable systems. Theoy ad methods of solvg BVPs fo olea systems of geeal fom have yet to be developed. The peset pape s based o the esults peseted [,4.I[,thecodtoofKalmatype,whchguaatees the local cotollablty fo a wde class of olea statoay systems of ODEs, s cosdeed. I [4, the poblem of local cotollablty of a olea statoay system s cosdeed. The otos of auxlay cotollable systems leazed alog the taectoy x(t) ad cotol u(t) ad auxlay cotollable system leazed about the ogal olea system equlbum pot (x ε,u ε ) ae toduced. It s pove that the local cotollablty of the ogal olea system follows fom the full cotollablty of the auxlay systems. I the cuet pape, a olea statoay system local cotollablty codto s foud, whch s aalogous to the codto peseted [, 4. The ma dffeece fom the pevous esults s that we develop a algothm fo costuctg the sytheszg cotol fucto, whch povdes the tasfe fom the og of coodates to a gve fal state fo a wde class of olea statoay systems of ODEs ude estctos o the cotol acto magtude. The algothm s qute easy to mplemet ad t has stable put ad computatoal eos. Moeove, the estmatos of the eachable fal states set ae peseted. The algothm ealzato s smple: the ogal poblem s educed to the stablzato of a olea system of the specal fom ude pemaet petubatos, ad the a tal value poblem (IVP) fo a auxlay system of ODEs s solved. The most complex ad tme-cosumg pat, whch s the auxlay system costucto ad ts stablzato, ca be made wth aalytcal methods ad ealzed wth compute algeba meas. Addtoally, the equed cotol law foud fom the auxlay system stablzato codto povdes the stablty of computatoal pocedues to put ad computatoal eos. The effectveess of the peseted algothm s demostated wth umecal soluto of a pactcal poblem. I the pape, we cosde a cotollable system of oday dffeetal equatos (ODEs): x=f(x, u), () whee x = (x,...,x ) T s a vecto cotag phase coodates ad cotol u s a vecto of the same o lesse dmeso: u=(u,...,u ) T ad. We choose the tme scale so that the cosdeed tme t [,. Theght-had sde s Notce that whee f C 4 (R R ;R ), f=(f,...,f ) T, () f (, ) =. (3) A= f (, ), x B= f (, ), u a S=, (4) S = (B, AB, A B,...,A B). The possble cotol magtude s bouded: (5) u <N. (6) Poblem. Fd a pa of fuctos x(t) C[, ad u(t) C[, that satsfy () ad the bouday codtos x () =, x () = x, x=(x,...,x ) T. We say that the pa x(t) ad u(t) s a soluto of poblems () ad (7). Theoem. If codtos (), (3), ad (4) ae satsfed fo the ght-had sde of (), the ε > such that x R : x < ε thee exsts a soluto of poblems () ad (7), whch ca be foud afte solvg, fst, a poblem of stablzg a lea ostatoay system wth expoetal coeffcets ad, secod, a tal value poblem fo a auxlay ODE system. The ma dea of the poof s to use successve chages of depedet ad depedet vaables to educe the pocess of solvg the ogal system to the poblem of stablzg a olea auxlay system of ODEs of the specal fom ude pemaet petubatos. To solve the latte, we fd a sytheszg cotol, whch povdes expoetal decease of the lea auxlay system fudametal matx. At the fal stage, we etu to the ogal vaables. (7)

3 Mathematcal Poblems Egeeg 3. Auxlay System Costucto We fd the fucto x(t) beg a pat of the soluto of () ad (7) the fom Let us deote c =x+θ c, d =θ d, x (t) =a (t) + x, =,...,. (8) I the ew vaables, system () ad the bouday codtos ae wtte as a=f(x +a,u), (9) a () = x, a () =. () We call the pa of fuctos a(t) ad u(t), whchsatsfy system (9) ad codtos (), a soluto of (9) ad (). Now cosde a poblem of fdg a(t) C[, ad u(t) C[,, whch satsfy (9), such that = m = = =, m,! =!...!, m! = m!... m!. θ [,, =,...,, (6) Usg popety () ad Taylo sees expaso of the ghthad sde of () about (x, ), we ca ewte system (3) as dc dτ =αe ατ f (x, ) +αe ατ f (x, ) c x = a () = x, a (t) as t. () Rema 3. The lmt wth t ofthesolutoof(9)ad() sthesolutoof(9)ad(). We swtch fom the depedet vaable t system (9) to τ accodg to t= e ατ, τ [, +, () whee α > s a ceta costat value to be detemed. The, tems of τ, (9) ad () tae the fom +αe ατ f (x, ) d u + = αe ατ [ (x, ) c = x = x c [ + (x, ) c x u d = = + (x, ) d = u = u d +αe ατ + m =4!m! + m f x x u m u m (x, (7) dc dτ =αe ατ f (x +c,d), τ [, +, (3) c () = x, c (τ) c (τ) =a(t (τ)), d (τ) =u(t (τ)), as τ, c=(c,...,c ) T, d=(d,...,d ) T. (4) (5) Wecallthepaoffuctosc(τ) ad d(τ), whchsatsfy system (3) wth codtos (4), a soluto of poblem (3) ad (4). Wth the soluto of (3) ad (4), oe ca etu to thesolutoof(9)ad()wth()ad(5). ) c c dm d m +αe ατ + m =4!m! + m f x x u m u m d) c c dm d m, =,...,. Let us boud the age of c(τ) wth ( c, c (τ) <C, τ [, ). (8) We wll ow shft the fuctos c (τ), =,...,,aumbe of tmes. Ou am s to get a equvalet system whee all the tems the ght-had sde, whch do ot cota powes of c o d explct fom, would be of the ode O(e 4ατ x ) as τ ad x doma (6) ad (8). Atthefststage,wechagec (τ) to c () (τ) by the followg ule: c (τ) =c () e ατ f (x, ), =,...,. (9)

4 4 Mathematcal Poblems Egeeg Let D + m f + m f / x x um u m fo all =,...,. Afte substtuto of (9) to the left- ad ght-had sdes of (7), we obta the equvalet system dc () dτ = αe ατ f x (x, ) + = αe 3ατ x x (x, ) = = +α[ e ατ f (x, ) c () = x [ +e ατ = x = x (x, ) c () +α[ e ατ f (x, ) d = u [ +e ατ = x = u (x, ) d + αe ατ (x, ) c () c () x x = = +αe ατ (x, ) d x u c () + = = αe ατ (x, ) d u u d + +αe ατ = = + m =4!m! D + m f (x, ) (c () e ατ f (x, )) (c () +αe ατ e ατ f (x, )) d m d m!m! D + m f ( c, d) + m =4 (c () e ατ f (x, )) (c () e ατ f (x, )) d m d m, =,...,. It follows fom (4) ad (9) that () c () () = x +f (x, ), =,...,. () It s easy to see that, the ght-had sde of (), the tems, whch do ot cota the powes of the compoets of c o d explct fom, ae bouded wth O(e ατ x ) as τ ad x (6) ad (8). At the secod stage, we mae a chage of vaables c () (τ) =c () (τ) +e ατ φ () (x), (x) = f x (x, ), φ () = φ () () =, =,...,. () Wth espect to these ew vaables, the ogal system () ad the tal codtos () ae wtte as dc () dτ =α [ [ e 3ατ x x (x, ) = = +e 3ατ f (x, ) φ () x = e 4ατ x x (x, ) φ () + = = e 5ατ (x, ) φ () φ () = x = x +α[ e ατ f (x, ) c () = x [ e ατ x x (x, ) c () = = +e 3ατ (x, ) φ () x x = = c() +α[ e ατ f (x, ) d u = [ e ατ x u (x, ) d = = +e 3ατ (x, ) φ () d = x = u + αe ατ [ (x, ) c () = x = x [ + (x, ) d x u c () = = c ()

5 Mathematcal Poblems Egeeg 5 + = u = u (x, ) d d +αe ατ!m! D + m f (x, ) + m =4 (c () +e ατ φ () e ατ f (x, )) (c () Compaed to the pevous vaables shft, the ght-had sde tems of (3), whch do ot cota the powes of the compoets of c o d explct fom, ae ow of the ode O(e 3ατ x ) as τ ad x doma (6) ad (8). By ducto, at the thstagewth(9) (4),wehavethe ecessay shft of the fom +e ατ φ () +αe ατ e ατ f (x, )) d m d m!m! D + m f ( c, d) + m =4 c ( ) (τ) =c () +e ατ φ () (x), φ () () =, =,...,. (5) (c () +e ατ φ () e ατ f (x, )) (c () +e ατ φ () e ατ f (x, )) d m d m, =,...,. (3) c () () = x +f (x, ) φ () (x), =,...,. (4) We apply (5) 4 tmes ad collect the tems, whch ae lea wth espect to the compoets of c (4 ) ad clude the coeffcets e ατ, =,...,,adalsothetems,whch ae lea wth espect to the compoets of d ad clude the coeffcets e ατ, =,...,.Now,wehavethesystem, whch accodg to () (5) ca be wtte vecto fom as follows: dc (4 ) dτ =Pc (4 ) +Qd+R (c (4 ),d,x, τ) + R (c (4 ),d,x, τ) + R 3 (c (4 ),d,τ)+r 4 (x, c (4 ),d,τ), R =(R,...,R )T, R =(R,...,R )T, R 3 =(R 3,...,R 3 )T, R 4 =(R 4,...,R 4 )T. (6) The fuctos R cludes all the tems whch ae lea wth espect to the compoets of c (4 ) wth coeffcets e ατ, +, ad also the tems of the last sum of the ght-had sde fo whch m = ad =. Thefucto R cludes all the tems whch ae lea wth espect to the compoets of d wth coeffcets e ατ, +,adalso the tems of the last sum of the ght-had sde fo whch m = ad =.IR 3,allthetems,whchaeolea wthespecttothecompoetsofc (4 ) o d,aecotaed. Fally, the fucto R 4 cludes all the tems, whch do ot have powes of c (4 ) ad d compoets.thefuctospad Q have the fom P (x) =αe ατ (P (x) +e ατ P (x) + +e ( )ατ P (x)), P (x) = f (x, ), x P () =A, Q (x) =αe ατ (Q (x) +e ατ Q (x) + +e ( )ατ Q (x)), Q (x) = f (x, ), u Q () =B. c (4 ) () = x+f(x) φ () (x) φ ( ) (x), φ () =(φ (),...,φ() )T, =,...,4, φ () () =. (7) (8) 3. Rght-Had Sde Tems Evaluato It follows fom the costucto of (6) that, doma (6) ad (8), the followg estmatos ae tue: P (x), Q (x) as x, =,...,, =,..., ; R (c (4 ),d,x, τ) e (+)ατ L (x) c(4 ), R (c (4 ),d,x, τ) e (+)ατ L (x) d, L >, L >; R 3 (c (4 ),d,τ) e ατ L 3 ( c(4 ) + d ), Moeove, codtos () ad (3) lead to L 3 >. (9) (3) (3) R 4 (c (4 ),d,x,τ) L 4 x e 4ατ, L 4 >. (3) Estmato (3) follows fom the epesetato f (x, ) = f x (θx, ) x, θ = (θ,...,θ ) T, θ [,, =,...,. (33)

6 6 Mathematcal Poblems Egeeg Rema 4. Let us deote the th colum of Q as q.costuct the matx S ={q,p q,...,p q,q,p q,...,p q,...,q, (34)...,P q }. Hee, fo each =,..., s the maxmal umbe of colums of the fom q,...,p q such that all the vectos q, P q,...,p q, q, P q,...,p q, q,...,p q ae lealy depedet. It follows fom (4) ad (7) that thee exsts ε >so that a S =fo ay x R satsfyg x < ε. We ow cosde the system dc (4 ) dτ 4. Auxlay Lemma =Pc (4 ) +Qd. (35) Lemma 5. Let codtos () ad (4) be satsfed fo system (). The, ε >, ε<ε such that x R : x < ε thee exsts the cotol d(τ) of the fom d (τ) =M(τ) c (4 ) (36) that povdes a expoetal decease of the fudametal matx (35). Poof. We use Kasovs s lea ostatoay systems stablzato method [3 the poof. Let L, =,...,,bethe th colum of Q.Costuctthematx S ={L,L,...,L,L,...,L,...,L,...,L }, L =PL dl dτ, =,...,, =,...,. (37) Hee, fo each s the maxmal umbe of colums L,...,L such that the vectos L, L,...,L, L,...,L, L,...,L ae lealy depedet. We show that a S =. (38) Let L, =,...,,betheth colum of the matx αe ατ Q. Cosde the matx S 3 ={L, L,...,L, L,...,L,...,L,...,L }, L =αe ατ P L dl dτ, =,...,, =,...,, (39) whee ae detemed the same way as fo S. Codtos (), (7), ad (9) povde the oto that S S 3 as x. Ths leads to the exstece of ε >: ε <ε such that x R : x < ε a S = a S3. (4) Now, tag to accout Rema 4 ad equalty (4), we ca pove by cotadcto that x R : x < ε a S 3 =. (4) Fom (4) ad (4), t follows that codto (38) s satsfedthedoma x < ε.moeove,duetothe stuctue of S 3, the estmato S =O(eατ ), τ, (4) s tue that doma. Wth the use of (38), we chage the vaable c (4 ) accodg to the expesso As a esult, we get the system of ODEs: c (4 ) =S (τ) y. (43) dy dτ =S (PS ds dτ )y+s Qd. (44) Accodg to [38 fo the fst tem of the ght-had sde of (44) we have S (PS ds dτ )={e,...,e, φ (τ),...,e + + +,...,e + +, φ (τ)}, (45) whee e sazeovectooflegth wth the oly ut at the th place, φ =( φ,..., φ,..., φ,..., φ,,...,) T, (46) ad φ s the coeffcet of L + expaso to the sum of the vectos L, L,..., L, L,...,L, L,...,L (otce that = =); that s, L + = φ (τ) L φ (τ) L. (47) The secod tem s = = S Q={e,...,e +,...,e γ+ }, γ = Cosde the stablzato of the system dy dτ ={e,...,e, φ }y + e d, y =. (48) =(y,...,y ) T, =,...,, (49)

7 Mathematcal Poblems Egeeg 7 whee e s a zeo vecto of legth wth the oly ut at the th place ad φ =( φ,..., φ ) T. Let y =ψ.thephasevaablesof(49)aecoectedto ψ(τ) ad ts devatves wth the equaltes y =ψ, y y =ψ () +φ ψ, =ψ () +φ ψ () +( dφ dτ +φ )ψ, y =ψ ( ) + (τ) ψ ( ) + + (τ) ψ () + (τ) ψ.. (5) The dffeetato of the last equalty (5) togethe wth (49) leads to ψ ( ) +ε (τ) ψ ( ) + +ε (τ) ψ=d, =,...,. (5) The fuctos (τ),..., (τ), ε (τ),...,ε (τ) (5) ad (5) ae lea combatos of the fuctos φ (τ), =,...,, =,...,, ad the devatves. Rema 6. Fom the stuctue of the matces P ad Q, t follows (see (7) ad epesetato (47)) that the fuctos φ (τ),...,φ (τ) ad the devatves, as well as (τ),..., (τ), ε (τ),...,ε (τ),aebouded.otheelemetsofthe colums φ, =,...,, obey the estmato O(e ( )ατ ), τ. Let d = = (ε (τ) γ )ψ ( ), =,...,, (5) whee γ, =,...,,aechosetomaetheootsλ,...,λ of the equato λ +γ λ + +γ =, =,...,, (53) satsfy the codtos λ =λ (54) f =, λ < ( + ) α fo =,..., =,... Dueto(5)ad(54)adRema6,thecotold = δ T y, =,...,, povdes the expoetal decease of system (44) solutos. Swtchg bac to the ogal vaables (5) ad usg (43), we have d =δ T S c (4 ), =,...,, (55) whee δ = (ε (τ) γ,...,ε (τ) γ ); T s the equalty (5) matx, whch meas that y = T ψ, ψ = (ψ ( ),...,ψ) T ; S s the matx whch cossts of the coespodg ows of S. The desed cotol ca be wtte the fom of (36), whee M (τ) =δ T S (δ T S,...,δ T S ) T. (56) Deote the fudametal matx of system (5) closed wth cotol (5) va Ψ(τ) (Ψ() = I, a detty matx). It s obvous that the elemets of Ψ(τ) ae expoetal fuctos of egatve agumet o the devatves. Cosde system (35) wth cotol (55): dc (4 ) dτ =D(τ) c (4 ), D (τ) =P(τ) +Q(τ) M (τ). (57) Itoduce a bloc-dagoal matx T(τ). Itsdagoalblocs ae matces T, =,...,. The, coespodg to (43) ad (5), the fudametal matx Φ(τ), Φ () = I, of system (57) has the fom The estmato Φ (τ) =S (τ) T (τ) Ψ (τ) T () S (). (58) Φ (τ) Ke ατ e λτ, λ>, K>, (59) follows fom (58), the stuctue of matces S (τ) ad Ψ(τ), ad Rema 6. Let ε=ε. The, the coectess of the lemma becomes clea fom (59). Besdes, o base of (4), (55), ad (58) ad Rema 6, we have Φ (τ) Φ (t) K e λ(τ t) e ( )αt, M (τ) =O(e ατ ), 5. Ma Theoem Poof t τ, τ [, ), K > ; τ. System (6) wth cotol (55) has the fom dc (4 ) dτ =D(τ) c (4 ) +R (c (4 ),M(τ) c (4 ), x, τ) +R (c (4 ),M(τ) c (4 ), x, τ) +R 3 (c (4 ),M(τ) c (4 ),τ) +R 4 (x, c (4 ),M(τ) c (4 ),τ). (6) (6)

8 8 Mathematcal Poblems Egeeg Chage of the vaables z (τ) =Φ (τ) c (4 ) τ () + Φ (τ) Φ (t) e3αt c (4 ) =ze 3ατ, c (4 ) () =z() leads to the followg epesetato: (6) [R (e 3αt z, M (t) e 3αt z, x, t) +R (e 3αt z, M (t) e 3αt z, x, t) +R 3 (e 3αt z, M (t) e 3αt z, t) (67) dz =C(τ) z dτ +e 3ατ R (e 3ατ z, M (τ) e 3ατ z, x, τ) +R 4 (x, e 3αt z, M (t) e 3αt z, t) dt, fo τ [,τ ). +e 3ατ R (e 3ατ z, M (τ) e 3ατ z, x, τ) +e 3ατ R 3 (e 3ατ z, M (τ) e 3ατ z, τ) +e 3ατ R 4 (x, e 3ατ z, M (τ) e 3ατ z, τ), C (τ) =D(τ) +3αE. (63) Now, fom (66) ad (67), usg (3), (3), (3), (36), (6), ad (64) afte chagg c to z, the followg estmatos doma (6) ad (8) ae tue: z (τ) Ke βτ Φ (τ )z(τ ) Letusshowthatallsolutosof(63)wthtalvalues (6) that stat a suffcetly small eghbohood of zeo decease expoetally. Let Φ (τ), Φ () = I, be the fudametal matx of the system dz/dτ = C(τ)z. The,o the bass of (59), (6), ad (6), we have Φ (τ) Ke βτ, z (τ) τ + e β(τ t) K (Le αt z (t) +L 4 x e αt )dt, τ Ke βτ c(4 ) () fo τ [τ, ); (68) Φ (τ) Φ (t) K e β(τ t) e ( )αt, Let us choose α to povde β=λ 3α. (64) β>. (65) The soluto of (63) wth tal values (8) ca be peseted as τ + e β(τ t) K (Le αt z (t) +L 4 x e αt )dt, fo τ [,τ ), L>. The costat L depeds o (6) ad (8). We apply the well-ow esult fom [39 to equaltes (68) ad obta z (τ) Ke μτ Φ (τ )z(τ ) z (τ) =Φ (τ) Φ (τ )z(τ ) τ + Φ (τ) Φ τ (t) e3αt τ +K e μ(τ t) L 4 x e αt dt, τ fo τ [τ, ), μ=β K Le ατ ; (69) [R (e 3αt z, M (t) e 3αt z, x, t) z (τ) Ke μ τ c(4 ) () +R (e 3αt z, M (t) e 3αt z, x, t) +R 3 (e 3αt z, M (t) e 3αt z, t) (66) τ +K e μ(τ t) L 4 x e αt dt, fo τ [,τ, μ =β K L. +R 4 (x, e 3αt z, M (t) e 3αt z, t) dt, fo τ [τ, ), Usg (65), we fx τ satsfed. > so that the equalty μ > s

9 Mathematcal Poblems Egeeg 9 Now, let us boud the choce of α>wth the codto α<μ. The, afte the tegato the ght-had sdes of (69), we have z (τ) Ke μτ Φ (τ ) z(τ ) +K e ατ L 4 x, z (τ) K 3 c(4 ) () +K 4L 4 x, fo τ [τ, ), fo τ [,τ. (7) Note that all K >. O the bass of (8) ad (3), two last estmatos ca be wtte as a sgle equalty the doma x < ε: z (τ) K 5 e ατ x, τ [, ), K 5 >. (7) The costat K 5 depeds o doma (6) ad (8). Wth the use of (36), (6), (6), ad (7), we estmate d(τ) : d (τ) M (τ) e 3ατ K 5 e ατ x K 6 e ( )ατ x, K 6 >, fo τ [, ). (7) Now, we ca set the value ε fom the theoem fomulato, to be m{ε, C /K 5,N/K 6 }. Ths shows that the soluto of system (63) wth tal values (6) ad (8) does ot leave the aea z < C fo x < ε ad deceases expoetally. Besdes, by (7), the coespodg fucto d(τ) obeys estcto (6). Moeove, f we substtute the soluto to (6) ad (36) ad etu to the vaables c(τ) accodg to (9) ad () (5), we get the soluto of (3) ad (4). The, we wte eveythg the ogal vaables wth (5) ad () ad fally (8). Now, accodg to Rema 3, passg to the lmt as t gves the soluto of the ogal poblem () ad (7). Ths poves the theoem. The algothm of solvg poblem () ad (7) cossts of the followg steps: () Costucto of the auxlay system (6); pefomed wth aalytcal methods. () Stablzato of system (35); the sytheszg cotol (55) s foud; pefomed wth aalytcal methods. (3) Soluto of the IVP (6) ad (8) wth cotol (55); ts soluto s substtuted to (55) ad thus the fuctos c (4 ) (τ) ad d(τ) ae foud; pefomed wth umecal tegato methods. (4) Retu to the ogal vaables accodg to () (5), (9), (5), (), ad (8); pefomed wth aalytcal methods. Rema 7. Cosde the system x=f(x, u) +F, (73) whee x=(x,...,x ) T, x R ; u=(u,...,u ) T, u R ; t [,,, F = (F,...,F ) T, F R. F s a costat petubato. Fom the theoem follows Coollay 8. Coollay 8. If codtos () (4) ae satsfed fo system (73), the thee exsts ε>such that, fo ay x R ad F R f x < ε ad F < ε, a soluto of (73) ad (7) exsts a ca be foud afte stablzg a lea ostatoay system wth expoetal coeffcets ad solvg the tal value poblem fo a auxlay system of ODEs. 6. Example of the Algothm Applcato To demostate the effectveess of the poposed method, we cosde a poblem of tasfeg a mateal pot (a satellte) movg a cetal gavtatoal feld to a desed ccula obt wth et powe. Accodg to [3, the systems devatos fom the pescbed ccula moto ad codto (7) tae the fom x =x, x = ( +x ) + (χ +x 3 ) ( +x ) 3 +a u, x 3 =(x + )a ψ u, x () =, x () = x, u <N. =,, 3, (74) (75) Phase coodates x =, x =, adx 3 = χ χ show the devato fom the ogal ccula obt wth adus ; s the adal velocty; χ s the geealzed mometum ad χ = ( ) / ; a ad a ψ ae the elatve velocty vecto poectos oto the adal ad tagetal dectos, espectvely (they ae costat); m s the mass, m s ts chage ate ad the cotol u = m/m; = M,whee s the uvesal gavtatoal costat; M s the mass of Eath. The vecto of phase coodates x=(x,x,x 3 ) T.Thecotolu s scala. System (3) ad codtos (4) fo the poblem have the fom dc dτ =e ατ c, wth dc dτ =e ατ g(c,c 3 )+e ατ a d, dc 3 dτ =e ατ (c + x + )a ψ d, (76) g(c,c 3 )= ( +c + x ) + (χ +c 3 + x 3 ) ( +c + x ) 3, (77) c () = x, c (τ) as τ, =,,3. (78)

10 Mathematcal Poblems Egeeg I the followg, we assume x=(x,,) T.Itsecessayto mae seve tasfoms of type (5) to solve poblem (76) ad (78): c =z e ατ g(x ), c =z + e ατ g(x ), To stablze system (8), we costuct the matx S = {L,L,L 3 },wthl = Q, L = PL (d/dτ)l, L 3 = PL (d/dτ)l ;thats, L =( αe ατ αe ατ (b + e ατ h) ) z =w 6 e 3ατ g c (x )g(x ), z =w + 4 e 4ατ g c (x )g(x ), α e ατ L =( α e ατ (e ατ a 3 b+e 3ατ a 3 h+) ) α e ατ (b + 3e ατ h) (8) w =υ e 5ατ g, w =υ +e 6ατ g, υ =u e 7ατ g, g= ( g (x c )) g(x ) g 4 c (x )g (x ), g= 7 ( g (x c )) g(x )+ g 4 c (x )g (x ), g= 7 { 7 ( g 3 (x c )) g (x ) + 3 g 48 c 3 (x )g 3 (x ) + g (x 4 c ) g c (x) g (x )}. (79) Let a =.ThematcesP ad Q ad the system aalogous to (35) loo le dc dτ =Pc+Qd, c=(υ,u,c 3 ) T, P=αe ατ Q= a a 3 αe ατ αe ατ b+ α e 3ατ a ψ b=( + x )a ψ,,, (8) L 3 α 3 e ατ (e ατ a 3 b+e 3ατ a 3 h+3) =( α 3 e ατ (e ατ a +3e ατ a 3 b+7e 3ατ h+) ) α 3 e ατ (b + 9e ατ h) wth h=a ψ /. Aftetoducgc=Sy,y=(y,y,y 3 ) T, we get dy dτ =φ (τ) y 3 +d, dy dτ =y +φ (τ) y 3, dy 3 dτ =y +φ 3 (τ) y 3. (8) The chage y 3 = ψ(τ) educes (8) to a lea equato of the thd ode: ψ (3) φ 3 (τ) ψ () ( dφ 3 dτ +φ (τ))ψ () ( d φ 3 dτ + dφ 3 dτ +φ (τ))ψ=d. (83) The vaables y, y,ady 3 ae coected to ψ (), ψ (),adψ wth Let y=tψ, Ψ=(ψ (),ψ (),ψ) T, T= φ 3 ( dφ 3 dτ +φ 3) φ 3 d=ψ (3) (6+φ 3 (τ))ψ (). (84) a = g c (x ), a 3 = g c 3 (x ). (+ dφ 3 dτ +φ (τ))ψ () (6+ d φ 3 dτ + dφ 3 dτ +φ (τ))ψ. (85)

11 Mathematcal Poblems Egeeg Afte substtuto of d(τ) to (83), we get the equato wth,,ad 3 as oots of the chaactestc polyomal. The etu to the ogal vaables gves d=γ(τ) T (τ) S (τ) c, Γ=( (6+φ 3 ), (+ dφ 3 dτ +φ ), (6+ d φ 3 dτ + dφ dτ +φ )). (86) It s obvous that (86) povdes a expoetal decease of solutos of (8). At the fal stage, we solve the IVP fo the system obtaed fom (76) afte chagg the phase coodates accodg to (79) wth cotol (86). The, we etu to the ogal vaables. The tal values fo the Cauchy poblem ae υ () = x g(x ) g (x 4 c )g(x ) g, u () =g(x )+ g (x 6 c )g(x )+g+g, c 3 () =. 7. Numecal Smulato (87) Fo umecal smulato, we choose aothe poblem cotol of a sgle-l mapulato. Accodg to [4, the system of equatos descbg the moto of a mapulato ude petubatos has the fom x = x, x = a x a s x +u+μt, (88) whee x s the mapulato devato agle the vetcal axs, x s the deflecto agle chage ate, a = αl m, m =m +M/3, a =gl (m +M/)m, g s the gavty facto, α s the vscous fcto coeffcet, m stheloadmass, L s the mapulato legth, ad M s ts mass. The vecto of phase coodates x=(x,x ) T.Thecotolu s scala. We cosde the bouday codtos x () = x, x () =. (89) System (3) ad codtos (4) fo poblem (88) ad (89) have the fom dc dτ =αe ατ c, dc dτ = αe ατ a s c αe ατ a c +αe ατ d +μαe ατ ( e ατ ), (9) c () = x, c () =, c (τ), c (τ) as τ. (9) Tosolve(9)ad(9),wepefomoetasfomatoof fucto c (τ): c (τ) =c () (τ) μe ατ, (9) whch leads to ew fuctos c () (τ). The system taes the fom dc dτ =αe ατ c () +αμe ατ, dc () dτ = αe ατ a s c αe ατ a c () αe ατ a μ +αe ατ d αμe ατ. The lea pat of (93) s dc dτ =αe ατ Pc+αe ατ Qd, c=(c,c () )T, P=, a a Q=. (93) (94) Afte solvg the stablzato poblem (9), we obta the cotol law d (τ) =M(τ) c, c=(c,c () )T, 6αeατ +4α e ατ +e ατ a α (95) M (τ) =( α ( 3 3α + αe ατ a )e ατ α ). Next, we solve the Cauchy poblem fo (93) ude (95) wth tal data c () = x, c () () = μ. Fally,weetuto ogal vaables x, x, u,adt. Fo umecal smulatos, we choose x =ad, α =., α =.5, L=metes, M=g, m =g, ad μ=..fguesadshow the cotol u(t) ad the coespodg taset plots of the phase coodates x (t), x (t), adx 3 (t) wth espect to the ogal depedet vaable t. 8. Numecal Smulato Dscusso Numecal smulato cossts of the followg stages: () The auxlay system (93) costucto, pefomed wth aalytcal methods ad ealzed wth compute algeba T

12 Mathematcal Poblems Egeeg 9. Coclusos t The aalyss of the theoem poof shows that the most dffcult ad tme-cosumg pat of the algothm mplemetato ca be poceeded wth aalytcal methods of compute algeba pacages. The esults of the umecal smulato of teobtal flght pove that the method ca be used fo costucto ad smulato of vaous techcal obects cotol systems. u x (t) x (t) Fgue : Tme chage of the phase vaables. u Fgue : Tme chage of the cotol u(t). () System (93) stablzato ad cotol law (95) detemato, pefomed wth aalytcal methods ad ealzed wth compute algeba (3) Chage of vaables fom c to c, pefomedwth compute algeba (4) Soluto of the IVP (9) ad (9) wth cotol (95) c vaables, pefomed wth some umecal tegato method (5) Retu to the ogal vaables accodg to (8), (), ad (5) alog wth the IVP soluto. It follows fom the smulato esults that (a) cotol at the tal stage demads the geatest eegy put whch s detemed by the tal stage (x, x ); (b) multple tal data smulatos show that, fo the gve tasfe tme of secod, the eachable aea of tal states s gve by x π/ad x ; (c) the umecal smulato ca be pefomed wth a aveage pesoal compute. t Coflcts of Iteest The authos declae that thee ae o coflcts of teest egadg the publcato of ths pape. Refeeces [ R.E.Kalma,P.L.Falb,adM.A.Abb,Topcs Mathematcal System Theoy, McGaw-Hll Boo Co., New Yo, NY, USA, 969. [ E.B.LeeadL.Maus,FoudatosofOptmalCotolTheoy, R.E. Kege Publshg, Malaba, Ida, d edto, 967. [3N.N.Kasovs,Theoy of Moto Cotol, Naua,Moscow, Russa, 968. [4 I. F. Veeshchag, Methods of Studyg The Flght Regmes of a Vaable Mass Devce, Pem State Uvesty, Pem, Russa, 97. [5 V. I. Zubov, Lectues o Cotol Theoy, Textboo, Naua,La, Moscow, d edto, 975. [6 D. Aeyels, Cotollablty fo polyomal systems, Aalyss ad optmzato of systems, Pat (Nce, 984), vol.63oflect. Notes Cotol If. Sc., pp , Spge, Bel, 984. [7 A. P. Kshcheo, Cotollablty ad eachablty sets of olea cotol systems, Aademya Nau SSSR. Avtomata Telemehaa, o. 6, pp. 3 36, 984. [8 N. L. Lepe, A geometcal appoach to studyg the cotollablty of secod-ode blea systems, Automato ad Remote Cotol,vol.45,o.,pp.4 46,984. [9 S. Walcza, A ote o the cotollablty of olea systems, Mathematcal Systems Theoy. A Iteatoal Joual o Mathematcal Computg Theoy, vol.7,o.4,pp , 984. [ K. Balachada, Global ad local cotollablty of olea systems, Isttuto of Electcal Egees. Poceedgs. D. Cotol Theoy ad Applcatos,vol.3,o.,pp.4 7,985. [ V. A. Komaov, Estmates of eachable sets fo lea systems, MathematcsoftheUSSR-Izvesta,vol.5,o.,pp.93 6, 985. [ V. P. Pateleev, O cotollablty of tme-depedet lea systems, Dffeetal Equatos, vol.,o. 4, pp , 985. [3 H. S. Q, O the cotollablty of a olea cotol system, Computes & Mathematcs wth Applcatos, vol.,o.6,pp (985), 984. [4 V. I. Koobov, The almost-complete cotollablty of a lea statoay system, Uaa Mathematcal Joual, vol. 38, o., pp , 986. [5 Z. Bezad, Global ull cotollablty of petubed lea peodc systems, Isttute of Electcal ad Electocs Egees. Tasactos o Automatc Cotol, vol. 3, o. 7, pp , 987.

13 Mathematcal Poblems Egeeg 3 [6 K. Balachada, Cotollablty of petubed olea systems, IMA Joual of Mathematcal Cotol ad Ifomato, vol. 6, o., pp , 989. [7 D. L. Kodat yev ad A. V. Lotov, Exteal estmates ad costucto of attaablty sets fo cotolled systems, USSR Computatoal Mathematcs ad Mathematcal Physcs,vol.3, o., pp , 99. [8 S. A. Asagalev, O the Theoy of the Cotollablty of Lea Systems, Automato ad Remote Cotol, vol. 5, o., pp. 63 7, 99. [9 K. Balachada ad P. Balasubamaam, Null cotollablty of olea petubatos of lea systems, Dyamc Systems ad Applcatos,vol.,o.,pp.47 6,993. [ S. N. Popova, Local attaablty fo lea cotol systems, Dff. Equatos,vol.39,o.,pp.5 58,3. [ A. N. Kvto, O a cotol poblem, Dffeetal Equatos,vol. 4, o. 6, pp , 86, 4. [ Y. I. Bedyshev, O the costucto of the attaablty doma a olea poblem, Joual of Compute ad Systems Sceces Iteatoal,vol.45,o.4,pp. 6,6. [3 V. I. Koobov, Geometc cteo fo cotollablty ude abtay costats o the cotol, Joual of Optmzato Theoy ad Applcatos,vol.34,o.,pp.6 76,7. [4 J. M. Coo, Cotol ad oleaty, AMS, 7. [5 K. Sathvel, K. Balachada, J.-Y. Pa, ad G. Devpya, Nullcotollabltyofaoleadffusosystemeacto dyamcs, Kybeeta, vol. 46, o. 5, pp ,. [6 A. N. Kvto, O oe method of solvg a bouday poblem fo a olea ostatoay cotollable system tag measuemet esults to accout, Automato ad Remote Cotol, vol.73,o.,pp. 37,. [7 S.V.Emel yaov,a.p.kshcheo,add.a.fetsov, Cotollablty eseach o affe systems, Dolady Mathematcs, vol. 87,o.,pp.45 48,3. [8 K. Balachada ad V. Govdaa, Numecal cotollablty of factoal dyamcal systems, Optmzato. A Joual of Mathematcal Pogammg ad Opeatos Reseach, vol.63, o. 8, pp , 4. [9 B. Radhasha, K. Balachada, ad P. Auola, Cotollablty esults fo factoal tegodffeetal systems Baach spaces, Iteatoal Joual of Computg Scece ad Mathematcs,vol.5,o.,pp.84 97,4. [3 G. Ath ad K. Balachada, Cotollablty of mpulsve secod-ode olea systems wth olocal codtos Baach spaces, Joual of Cotol ad Decso, vol., o. 3, pp.3 8,5. [3 K. Balachada ad S. Dvya, Relatve cotollablty of olea eutal factoal Voltea tegodffeetal systems wth multple delays cotol, Joual of Appled Nolea Dyamcs,vol.5,o.,pp.47 6,6. [3 S. Dvya ad K. Balachada, Costaed cotollablty of olea eutal factoal tegodffeetal systems, Joual of Cotol ad Decso,vol.4,o.,pp.8 99,7. [33 H. Th ad L. V. He, O eachable set estmato of twodmesoal systems descbed by the Roesse model wth tmevayg delays, Iteatoal Joual of Robust ad Nolea Cotol,pp.,7. [34S.Tog,Y.L,adS.Su, Adaptvefuzzyoutputfeedbac cotol fo swtched ostct-feedbac olea systems wth put oleates, IEEE Tasactos o Fuzzy Systems, vol. 4, o. 6, pp , 6. [35 S. Tog, Y. L, ad S. Su, Adaptve fuzzy tacg cotol desg fo uceta o-stct feedbac olea systems, IEEE Tasactos o Fuzzy Systems, vol.4,o.6,pp , 6. [36 Y. L ad S. Tog, Adaptve Fuzzy Output-Feedbac Stablzato Cotol fo a Class of Swtched Nostct-Feedbac Nolea Systems, IEEE Tasactos o Cybeetcs, vol. 47, o. 4, pp. 7 6, 6. [37 Y. L, S. Tog, L. Lu, ad G. Feg, Adaptve output-feedbac cotol desg wth pescbed pefomace fo swtched olea systems, Automatca. A Joual of IFAC, the Iteatoal Fedeato of Automatc Cotol,vol.8,pp.5 3,7. [38 E. Ya. Smov, Stablzato of Pogammed Moto, CRCPess,. [39 E. A. Babash, Itoducto to the theoy of stablty, Goge, The Nethelads, Woltes-Noodhoff, 97. [4 V. N. Afaasev, V. B. Kolmaovsy, ad V. R. Nosov, AMathematcal Theoy of Desgg Cotol Systems, Vysshayashola Publ,Moscow,3dedto,3.

14 Advaces Opeatos Reseach Hdaw Publshg Copoato Volume 4 Advaces Decso Sceces Hdaw Publshg Copoato Volume 4 Joual of Appled Mathematcs Algeba Hdaw Publshg Copoato Hdaw Publshg Copoato Volume 4 Joual of Pobablty ad Statstcs Volume 4 The Scetfc Wold Joual Hdaw Publshg Copoato Hdaw Publshg Copoato Volume 4 Iteatoal Joual of Dffeetal Equatos Hdaw Publshg Copoato Volume 4 Volume 4 Submt you mauscpts at Iteatoal Joual of Advaces Combatocs Hdaw Publshg Copoato Mathematcal Physcs Hdaw Publshg Copoato Volume 4 Joual of Complex Aalyss Hdaw Publshg Copoato Volume 4 Iteatoal Joual of Mathematcs ad Mathematcal Sceces Mathematcal Poblems Egeeg Joual of Mathematcs Hdaw Publshg Copoato Volume 4 Hdaw Publshg Copoato Volume 4 Volume 4 Hdaw Publshg Copoato Volume 4 #HRBQDSDĮ,@SGDL@SHBR Joual of Volume Hdaw Publshg Copoato Dscete Dyamcs Natue ad Socety Joual of Fucto Spaces Hdaw Publshg Copoato Abstact ad Appled Aalyss Volume 4 Hdaw Publshg Copoato Volume 4 Hdaw Publshg Copoato Volume 4 Iteatoal Joual of Joual of Stochastc Aalyss Optmzato Hdaw Publshg Copoato Hdaw Publshg Copoato Volume 4 Volume 4

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER Joual of ppled Mathematcs ad Computatoal Mechacs 4, 3(3), 5- GREE S FUCTIO FOR HET CODUCTIO PROBLEMS I MULTI-LYERED HOLLOW CYLIDER Stasław Kukla, Uszula Sedlecka Isttute of Mathematcs, Czestochowa Uvesty

More information

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx Iteatoal Joual of Mathematcs ad Statstcs Iveto (IJMSI) E-ISSN: 3 4767 P-ISSN: 3-4759 www.jms.og Volume Issue 5 May. 4 PP-44-5 O EP matces.ramesh, N.baas ssocate Pofesso of Mathematcs, ovt. ts College(utoomous),Kumbakoam.

More information

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi Assgmet /MATH 47/Wte Due: Thusday Jauay The poblems to solve ae umbeed [] to [] below Fst some explaatoy otes Fdg a bass of the colum-space of a max ad povg that the colum ak (dmeso of the colum space)

More information

Fairing of Parametric Quintic Splines

Fairing of Parametric Quintic Splines ISSN 46-69 Eglad UK Joual of Ifomato ad omputg Scece Vol No 6 pp -8 Fag of Paametc Qutc Sples Yuau Wag Shagha Isttute of Spots Shagha 48 ha School of Mathematcal Scece Fuda Uvesty Shagha 4 ha { P t )}

More information

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1 Scholas Joual of Egeeg ad Techology (SJET) Sch. J. Eg. Tech. 0; (C):669-67 Scholas Academc ad Scetfc Publshe (A Iteatoal Publshe fo Academc ad Scetfc Resouces) www.saspublshe.com ISSN -X (Ole) ISSN 7-9

More information

XII. Addition of many identical spins

XII. Addition of many identical spins XII. Addto of may detcal sps XII.. ymmetc goup ymmetc goup s the goup of all possble pemutatos of obects. I total! elemets cludg detty opeato. Each pemutato s a poduct of a ceta fte umbe of pawse taspostos.

More information

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

Recent Advances in Computers, Communications, Applied Social Science and Mathematics Recet Advaces Computes, Commucatos, Appled ocal cece ad athematcs Coutg Roots of Radom Polyomal Equatos mall Itevals EFRAI HERIG epatmet of Compute cece ad athematcs Ael Uvesty Cete of amaa cece Pa,Ael,4487

More information

Trace of Positive Integer Power of Adjacency Matrix

Trace of Positive Integer Power of Adjacency Matrix Global Joual of Pue ad Appled Mathematcs. IN 097-78 Volume, Numbe 07), pp. 079-087 Reseach Ida Publcatos http://www.publcato.com Tace of Postve Itege Powe of Adacecy Matx Jagdsh Kuma Pahade * ad Mao Jha

More information

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof MATEC Web of Cofeeces ICIEA 06 600 (06) DOI: 0.05/mateccof/0668600 The ea Pobablty Desty Fucto of Cotuous Radom Vaables the Real Numbe Feld ad Its Estece Poof Yya Che ad Ye Collee of Softwae, Taj Uvesty,

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

Lecture 9 Multiple Class Models

Lecture 9 Multiple Class Models Lectue 9 Multple Class Models Multclass MVA Appoxmate MVA 8.4.2002 Copyght Teemu Keola 2002 1 Aval Theoem fo Multple Classes Wth jobs the system, a job class avg to ay seve sees the seve as equlbum wth

More information

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index Joual of Multdscplay Egeeg Scece ad Techology (JMEST) ISSN: 359-0040 Vol Issue, Febuay - 05 Mmum Hype-Wee Idex of Molecula Gaph ad Some Results o eged Related Idex We Gao School of Ifomato Scece ad Techology,

More information

Non-axial symmetric loading on axial symmetric. Final Report of AFEM

Non-axial symmetric loading on axial symmetric. Final Report of AFEM No-axal symmetc loadg o axal symmetc body Fal Repot of AFEM Ths poject does hamoc aalyss of o-axal symmetc loadg o axal symmetc body. Shuagxg Da, Musket Kamtokat 5//009 No-axal symmetc loadg o axal symmetc

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

An Expanded Method to Robustly Practically. Output Tracking Control. for Uncertain Nonlinear Systems

An Expanded Method to Robustly Practically. Output Tracking Control. for Uncertain Nonlinear Systems It Joual of Math Aalyss, Vol 8, 04, o 8, 865-879 HIKARI Ltd, wwwm-hacom http://ddoog/0988/jma044368 A Epaded Method to Robustly Pactcally Output Tacg Cotol fo Uceta Nolea Systems Keyla Almha, Naohsa Otsua,

More information

Inequalities for Dual Orlicz Mixed Quermassintegrals.

Inequalities for Dual Orlicz Mixed Quermassintegrals. Advaces Pue Mathematcs 206 6 894-902 http://wwwscpog/joual/apm IN Ole: 260-0384 IN Pt: 260-0368 Iequaltes fo Dual Olcz Mxed Quemasstegals jua u chool of Mathematcs ad Computatoal cece Hua Uvesty of cece

More information

An Unconstrained Q - G Programming Problem and its Application

An Unconstrained Q - G Programming Problem and its Application Joual of Ifomato Egeeg ad Applcatos ISS 4-578 (pt) ISS 5-0506 (ole) Vol.5, o., 05 www.ste.og A Ucostaed Q - G Pogammg Poblem ad ts Applcato M. He Dosh D. Chag Tved.Assocate Pofesso, H L College of Commece,

More information

Iterative Algorithm for a Split Equilibrium Problem and Fixed Problem for Finite Asymptotically Nonexpansive Mappings in Hilbert Space

Iterative Algorithm for a Split Equilibrium Problem and Fixed Problem for Finite Asymptotically Nonexpansive Mappings in Hilbert Space Flomat 31:5 (017), 143 1434 DOI 10.98/FIL170543W Publshed by Faculty of Sceces ad Mathematcs, Uvesty of Nš, Seba Avalable at: http://www.pmf..ac.s/flomat Iteatve Algothm fo a Splt Equlbum Poblem ad Fxed

More information

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles.

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles. Seeth Edto CHPTER 4 VECTOR MECHNICS FOR ENINEERS: DYNMICS Fedad P. ee E. Russell Johsto, J. Systems of Patcles Lectue Notes: J. Walt Ole Texas Tech Uesty 003 The Mcaw-Hll Compaes, Ic. ll ghts eseed. Seeth

More information

NUMERICAL SIMULATION OF TSUNAMI CURRENTS AROUND MOVING STRUCTURES

NUMERICAL SIMULATION OF TSUNAMI CURRENTS AROUND MOVING STRUCTURES NUMERICAL SIMULATION OF TSUNAMI CURRENTS AROUND MOVING STRUCTURES Ezo Nakaza 1, Tsuakyo Ibe ad Muhammad Abdu Rouf 1 The pape ams to smulate Tsuam cuets aoud movg ad fxed stuctues usg the movg-patcle semmplct

More information

Lecture 10: Condensed matter systems

Lecture 10: Condensed matter systems Lectue 0: Codesed matte systems Itoducg matte ts codesed state.! Ams: " Idstgushable patcles ad the quatum atue of matte: # Cosequeces # Revew of deal gas etopy # Femos ad Bosos " Quatum statstcs. # Occupato

More information

Journal of Engineering Science and Technology Review 7 (2) (2014) Research Article

Journal of Engineering Science and Technology Review 7 (2) (2014) Research Article Jest Joual of Egeeg Scece ad echology Revew 7 () (4) 75 8 Reseach Atcle JOURNAL OF Egeeg Scece ad echology Revew www.jest.og Fuzzy Backsteppg Sldg Mode Cotol fo Msmatched Uceta System H. Q. Hou,*, Q. Mao,

More information

Application Of Alternating Group Explicit Method For Parabolic Equations

Application Of Alternating Group Explicit Method For Parabolic Equations WSEAS RANSACIONS o INFORMAION SCIENCE ad APPLICAIONS Qghua Feg Applcato Of Alteatg oup Explct Method Fo Paabolc Equatos Qghua Feg School of Scece Shadog uvesty of techology Zhagzhou Road # Zbo Shadog 09

More information

Best Linear Unbiased Estimators of the Three Parameter Gamma Distribution using doubly Type-II censoring

Best Linear Unbiased Estimators of the Three Parameter Gamma Distribution using doubly Type-II censoring Best Lea Ubased Estmatos of the hee Paamete Gamma Dstbuto usg doubly ype-ii cesog Amal S. Hassa Salwa Abd El-Aty Abstact Recetly ode statstcs ad the momets have assumed cosdeable teest may applcatos volvg

More information

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S Fomulae Fo u Pobablty By OP Gupta [Ida Awad We, +91-9650 350 480] Impotat Tems, Deftos & Fomulae 01 Bascs Of Pobablty: Let S ad E be the sample space ad a evet a expemet espectvely Numbe of favouable evets

More information

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures. Lectue 4 8. MRAC Desg fo Affe--Cotol MIMO Systes I ths secto, we cosde MRAC desg fo a class of ult-ut-ult-outut (MIMO) olea systes, whose lat dyacs ae lealy aaetezed, the ucetates satsfy the so-called

More information

The Exponentiated Lomax Distribution: Different Estimation Methods

The Exponentiated Lomax Distribution: Different Estimation Methods Ameca Joual of Appled Mathematcs ad Statstcs 4 Vol. No. 6 364-368 Avalable ole at http://pubs.scepub.com/ajams//6/ Scece ad Educato Publshg DOI:.69/ajams--6- The Expoetated Lomax Dstbuto: Dffeet Estmato

More information

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

University of Pavia, Pavia, Italy. North Andover MA 01845, USA Iteatoal Joual of Optmzato: heoy, Method ad Applcato 27-5565(Pt) 27-6839(Ole) wwwgph/otma 29 Global Ifomato Publhe (HK) Co, Ltd 29, Vol, No 2, 55-59 η -Peudoleaty ad Effcecy Gogo Gog, Noma G Rueda 2 *

More information

χ be any function of X and Y then

χ be any function of X and Y then We have show that whe we ae gve Y g(), the [ ] [ g() ] g() f () Y o all g ()() f d fo dscete case Ths ca be eteded to clude fuctos of ay ube of ado vaables. Fo eaple, suppose ad Y ae.v. wth jot desty fucto,

More information

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit.

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit. tomc uts The atomc uts have bee chose such that the fudametal electo popetes ae all equal to oe atomc ut. m e, e, h/, a o, ad the potetal eegy the hydoge atom e /a o. D3.33564 0-30 Cm The use of atomc

More information

Robust Adaptive Asymptotic Tracking of Nonlinear Systems With Additive Disturbance

Robust Adaptive Asymptotic Tracking of Nonlinear Systems With Additive Disturbance 54 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 5, NO. 3, MARCH 6 Robust Adaptve Asymptotc Tackg of Nolea Systems Wth Addtve Dstubace Z. Ca, M. S. de Queoz, D. M. Dawso Abstact Ths ote deals wth the tackg

More information

Stability Analysis for Linear Time-Delay Systems. Described by Fractional Parameterized. Models Possessing Multiple Internal. Constant Discrete Delays

Stability Analysis for Linear Time-Delay Systems. Described by Fractional Parameterized. Models Possessing Multiple Internal. Constant Discrete Delays Appled Mathematcal Sceces, Vol. 3, 29, o. 23, 5-25 Stablty Aalyss fo Lea me-delay Systems Descbed by Factoal Paametezed Models Possessg Multple Iteal Costat Dscete Delays Mauel De la Se Isttuto de Ivestgacó

More information

APPROXIMATE ANALYTIC WAVE FUNCTION METHOD IN ELECTRON ATOM SCATTERING CALCULATIONS. Budi Santoso

APPROXIMATE ANALYTIC WAVE FUNCTION METHOD IN ELECTRON ATOM SCATTERING CALCULATIONS. Budi Santoso APPROXIMATE ANALYTIC WAVE FUNCTION METHOD IN ELECTRON ATOM SCATTERING CALCULATIONS Bud Satoso ABSTRACT APPROXIMATE ANALYTIC WAVE FUNCTION METHOD IN ELECTRON ATOM SCATTERING CALCULATIONS. Appoxmate aalytc

More information

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses Mmzg sphecal abeatos Explotg the exstece of cojugate pots sphecal leses Let s ecall that whe usg asphecal leses, abeato fee magg occus oly fo a couple of, so called, cojugate pots ( ad the fgue below)

More information

Collocation Method for Ninth order Boundary Value Problems Using Quintic B-Splines

Collocation Method for Ninth order Boundary Value Problems Using Quintic B-Splines Iteatoal Joual of Egeeg Ivetos e-issn: 78-7461, p-issn: 19-6491 Volume 5, Issue 7 [Aug. 16] PP: 8-47 Collocato Metod fo Nt ode Bouday Value Poblems Usg Qutc B-Sples S. M. Reddy Depatmet of Scece ad Humates,

More information

Legendre-coefficients Comparison Methods for the Numerical Solution of a Class of Ordinary Differential Equations

Legendre-coefficients Comparison Methods for the Numerical Solution of a Class of Ordinary Differential Equations IOSR Joual of Mathematcs (IOSRJM) ISS: 78-578 Volume, Issue (July-Aug 01), PP 14-19 Legede-coeffcets Compaso Methods fo the umecal Soluto of a Class of Oday Dffeetal Equatos Olaguju, A. S. ad Olaegu, D.G.

More information

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE O The Covegece Theoems... (Muslm Aso) ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE Muslm Aso, Yosephus D. Sumato, Nov Rustaa Dew 3 ) Mathematcs

More information

A Production Model for Time Dependent Decaying Rate with Probabilistic Demand

A Production Model for Time Dependent Decaying Rate with Probabilistic Demand www.jem.et ISSN (ONLINE: 5-758, ISSN (PRIN: 394-696 Volume-7, Issue-3, May-Jue 7 Iteatoal Joual of Egeeg ad Maagemet Reseach Page Numbe: 4-47 A Poducto Model fo me Depedet Decayg Rate wth Pobablstc Demad

More information

Harmonic Curvatures in Lorentzian Space

Harmonic Curvatures in Lorentzian Space BULLETIN of the Bull Malaya Math Sc Soc Secod See 7-79 MALAYSIAN MATEMATICAL SCIENCES SOCIETY amoc Cuvatue Loetza Space NEJAT EKMEKÇI ILMI ACISALIOĞLU AND KĀZIM İLARSLAN Aaa Uvety Faculty of Scece Depatmet

More information

Hyper-wiener index of gear fan and gear wheel related graph

Hyper-wiener index of gear fan and gear wheel related graph Iteatoal Joual of Chemcal Studes 015; (5): 5-58 P-ISSN 49 858 E-ISSN 1 490 IJCS 015; (5): 5-58 014 JEZS Receed: 1-0-015 Accepted: 15-0-015 We Gao School of Ifomato Scece ad Techology, Yua Nomal Uesty,

More information

FUZZY MULTINOMIAL CONTROL CHART WITH VARIABLE SAMPLE SIZE

FUZZY MULTINOMIAL CONTROL CHART WITH VARIABLE SAMPLE SIZE A. Paduaga et al. / Iteatoal Joual of Egeeg Scece ad Techology (IJEST) FUZZY MUTINOMIA CONTRO CHART WITH VARIABE SAMPE SIZE A. PANDURANGAN Pofesso ad Head Depatmet of Compute Applcatos Vallamma Egeeg College,

More information

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES Joual of Appled Matheatcs ad Coputatoal Mechacs 7, 6(), 59-7 www.ac.pcz.pl p-issn 99-9965 DOI:.75/jac.7..3 e-issn 353-588 FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL

More information

New Vector Description of Kinetic Pressures on Shaft Bearings of a Rigid Body Nonlinear Dynamics with Coupled Rotations around No Intersecting Axes

New Vector Description of Kinetic Pressures on Shaft Bearings of a Rigid Body Nonlinear Dynamics with Coupled Rotations around No Intersecting Axes Acta Polytechca Hugaca Vol. No. 7 3 New Vecto escpto of Ketc Pessues o haft eags of a gd ody Nolea yamcs wth oupled otatos aoud No Itesectg Axes Katca. tevaovć Hedh* Ljljaa Veljovć** *Mathematcal Isttute

More information

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS RNDOM SYSTEMS WTH COMPETE CONNECTONS ND THE GUSS PROBEM FOR THE REGUR CONTNUED FRCTONS BSTRCT Da ascu o Coltescu Naval cademy Mcea cel Bata Costata lascuda@gmalcom coltescu@yahoocom Ths pape peset the

More information

Kinematics. Redundancy. Task Redundancy. Operational Coordinates. Generalized Coordinates. m task. Manipulator. Operational point

Kinematics. Redundancy. Task Redundancy. Operational Coordinates. Generalized Coordinates. m task. Manipulator. Operational point Mapulato smatc Jot Revolute Jot Kematcs Base Lks: movg lk fed lk Ed-Effecto Jots: Revolute ( DOF) smatc ( DOF) Geealzed Coodates Opeatoal Coodates O : Opeatoal pot 5 costats 6 paametes { postos oetatos

More information

14. MRAC for MIMO Systems with Unstructured Uncertainties We consider affine-in-control MIMO systems in the form, x Ax B u f x t

14. MRAC for MIMO Systems with Unstructured Uncertainties We consider affine-in-control MIMO systems in the form, x Ax B u f x t Lectue 8 14. MAC o MIMO Systes wth Ustuctued Ucetates We cosde ae--cotol MIMO systes the o, ABu t (14.1) whee s the syste state vecto, u s the cotol put, B s kow costat at, A ad (a dagoal at wth postve

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

2.1.1 The Art of Estimation Examples of Estimators Properties of Estimators Deriving Estimators Interval Estimators

2.1.1 The Art of Estimation Examples of Estimators Properties of Estimators Deriving Estimators Interval Estimators . ploatoy Statstcs. Itoducto to stmato.. The At of stmato.. amples of stmatos..3 Popetes of stmatos..4 Devg stmatos..5 Iteval stmatos . Itoducto to stmato Samplg - The samplg eecse ca be epeseted by a

More information

VIII Dynamics of Systems of Particles

VIII Dynamics of Systems of Particles VIII Dyacs of Systes of Patcles Cete of ass: Cete of ass Lea oetu of a Syste Agula oetu of a syste Ketc & Potetal Eegy of a Syste oto of Two Iteactg Bodes: The Reduced ass Collsos: o Elastc Collsos R whee:

More information

Chapter 7 Varying Probability Sampling

Chapter 7 Varying Probability Sampling Chapte 7 Vayg Pobablty Samplg The smple adom samplg scheme povdes a adom sample whee evey ut the populato has equal pobablty of selecto. Ude ceta ccumstaces, moe effcet estmatos ae obtaed by assgg uequal

More information

Second Geometric-Arithmetic Index and General Sum Connectivity Index of Molecule Graphs with Special Structure

Second Geometric-Arithmetic Index and General Sum Connectivity Index of Molecule Graphs with Special Structure Iteatoal Joual of Cotempoay Mathematcal Sceces Vol 0 05 o 9-00 HIKARI Ltd wwwm-hacom http://dxdoog/0988/cms0556 Secod Geometc-Athmetc Idex ad Geeal Sum Coectty Idex of Molecule Gaphs wth Specal Stuctue

More information

This may involve sweep, revolution, deformation, expansion and forming joints with other curves.

This may involve sweep, revolution, deformation, expansion and forming joints with other curves. 5--8 Shapes ae ceated by cves that a sface sch as ooftop of a ca o fselage of a acaft ca be ceated by the moto of cves space a specfed mae. Ths may volve sweep, evolto, defomato, expaso ad fomg jots wth

More information

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES Mathematcal ad Computatoal Applcatos, Vol. 3, No., pp. 9-36 008. Assocato fo Scetfc Reseach A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES Ahmed M.

More information

Randomly Weighted Averages on Order Statistics

Randomly Weighted Averages on Order Statistics Apple Mathematcs 3 4 34-346 http://oog/436/am3498 Publshe Ole Septembe 3 (http://wwwscpog/joual/am Raomly Weghte Aveages o Oe Statstcs Home Haj Hasaaeh Lela Ma Ghasem Depatmet of Statstcs aculty of Mathematcal

More information

Quasi-Rational Canonical Forms of a Matrix over a Number Field

Quasi-Rational Canonical Forms of a Matrix over a Number Field Avace Lea Algeba & Matx Theoy, 08, 8, -0 http://www.cp.og/joual/alamt ISSN Ole: 65-3348 ISSN Pt: 65-333X Qua-Ratoal Caocal om of a Matx ove a Numbe el Zhueg Wag *, Qg Wag, Na Q School of Mathematc a Stattc,

More information

Robust Stabilization of Uncertain Nonlinear Systems via Fuzzy Modeling and Numerical Optimization Programming

Robust Stabilization of Uncertain Nonlinear Systems via Fuzzy Modeling and Numerical Optimization Programming Iteatoal Robust Joual Stablzato of Cotol, of Uceta Autoato, Nolea ad Systes, va vol Fuzzy 3, o Modelg, pp 5-35, ad Nuecal Jue 5 Optzato 5 Robust Stablzato of Uceta Nolea Systes va Fuzzy Modelg ad Nuecal

More information

Estimation of Parameters of the Exponential Geometric Distribution with Presence of Outliers Generated from Uniform Distribution

Estimation of Parameters of the Exponential Geometric Distribution with Presence of Outliers Generated from Uniform Distribution ustala Joual of Basc ad ppled Sceces, 6(: 98-6, ISSN 99-878 Estmato of Paametes of the Epoetal Geometc Dstbuto wth Pesece of Outles Geeated fom Ufom Dstbuto Pavz Nas, l Shadoh ad Hassa Paza Depatmet of

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Motion and Flow II. Structure from Motion. Passive Navigation and Structure from Motion. rot

Motion and Flow II. Structure from Motion. Passive Navigation and Structure from Motion. rot Moto ad Flow II Sce fom Moto Passve Navgato ad Sce fom Moto = + t, w F = zˆ t ( zˆ ( ([ ] =? hesystemmoveswth a gd moto wth aslat oal velocty t = ( U, V, W ad atoalvelocty w = ( α, β, γ. Scee pots R =

More information

Exponential Generating Functions - J. T. Butler

Exponential Generating Functions - J. T. Butler Epoetal Geeatg Fuctos - J. T. Butle Epoetal Geeatg Fuctos Geeatg fuctos fo pemutatos. Defto: a +a +a 2 2 + a + s the oday geeatg fucto fo the sequece of teges (a, a, a 2, a, ). Ep. Ge. Fuc.- J. T. Butle

More information

Lecture 12: Spiral: Domain Specific HLS. Housekeeping

Lecture 12: Spiral: Domain Specific HLS. Housekeeping 8 643 ectue : Spal: Doma Specfc HS James C. Hoe Depatmet of ECE Caege Mello Uvesty 8 643 F7 S, James C. Hoe, CMU/ECE/CACM, 7 Houseeepg You goal today: see a eample of eally hghlevel sythess (ths lectue

More information

Numerical Solution of Non-equilibrium Hypersonic Flows of Diatomic Gases Using the Generalized Boltzmann Equation

Numerical Solution of Non-equilibrium Hypersonic Flows of Diatomic Gases Using the Generalized Boltzmann Equation Recet Advaces Flud Mechacs, Heat & Mass asfe ad Bology Numecal Soluto of No-equlbum Hypesoc Flows of Datomc Gases Usg the Geealzed Boltzma Equato RAMESH K. AGARWAL Depatmet of Mechacal Egeeg ad Mateals

More information

FULLY RIGHT PURE GROUP RINGS (Gelanggang Kumpulan Tulen Kanan Penuh)

FULLY RIGHT PURE GROUP RINGS (Gelanggang Kumpulan Tulen Kanan Penuh) Joual of Qualty Measuemet ad Aalyss JQMA 3(), 07, 5-34 Jual Pegukua Kualt da Aalss FULLY IGHT PUE GOUP INGS (Gelaggag Kumpula Tule Kaa Peuh) MIKHLED ALSAAHEAD & MOHAMED KHEI AHMAD ABSTACT I ths pape, we

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Consider two masses m 1 at x = x 1 and m 2 at x 2.

Consider two masses m 1 at x = x 1 and m 2 at x 2. Chapte 09 Syste of Patcles Cete of ass: The cete of ass of a body o a syste of bodes s the pot that oes as f all of the ass ae cocetated thee ad all exteal foces ae appled thee. Note that HRW uses co but

More information

AIRCRAFT EQUIVALENT VULNERABLE AREA CALCULATION METHODS

AIRCRAFT EQUIVALENT VULNERABLE AREA CALCULATION METHODS 4 TH ITERATIOAL COGRESS OF THE AEROAUTICAL SCIECES AIRCRAFT EQUIVALET VULERABLE AREA CALCULATIO METHODS PEI Yag*, SOG B-Feg*, QI Yg ** *College of Aeoautcs, othweste Polytechcal Uvesty, X a, Cha, ** Depatmet

More information

Counting pairs of lattice paths by intersections

Counting pairs of lattice paths by intersections Coutg pas of lattce paths by tesectos Ia Gessel 1, Bades Uvesty, Waltham, MA 02254-9110, USA Waye Goddad 2, Uvesty of Natal, Duba 4000, South Afca Walte Shu, New Yo Lfe Isuace Co., New Yo, NY 10010, USA

More information

Council for Innovative Research

Council for Innovative Research Geometc-athmetc Idex ad Zageb Idces of Ceta Specal Molecula Gaphs efe X, e Gao School of Tousm ad Geogaphc Sceces, Yua Nomal Uesty Kumg 650500, Cha School of Ifomato Scece ad Techology, Yua Nomal Uesty

More information

PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM

PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM Joual o Mathematcal Sceces: Advaces ad Applcatos Volume 6 Numbe 00 Pages 77-9 PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM DAU XUAN LUONG ad TRAN VAN AN Depatmet o Natual Sceces Quag Nh

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 54 Detecto ad Etmato Theoy Joeph A. O Sullva Samuel C. Sach Pofeo Electoc Sytem ad Sgal Reeach Laboatoy Electcal ad Sytem Egeeg Wahgto Uvety Ubaue Hall 34-935-473 (Lyda awe) jao@wutl.edu J. A. O'S.

More information

Sandwich Theorems for Mcshane Integration

Sandwich Theorems for Mcshane Integration It Joual of Math alyss, Vol 5, 20, o, 23-34 adwch Theoems fo Mcshae Itegato Ismet Temaj Pshta Uvesty Educato Faculty, Pshta, Kosovo temaj63@yahoocom go Tato Taa Polytechc Uvesty Mathematcs Egeeg Faculty,

More information

Allocations for Heterogenous Distributed Storage

Allocations for Heterogenous Distributed Storage Allocatos fo Heteogeous Dstbuted Stoage Vasleos Ntaos taos@uscedu Guseppe Cae cae@uscedu Alexados G Dmaks dmaks@uscedu axv:0596v [csi] 8 Feb 0 Abstact We study the poblem of stog a data object a set of

More information

Distributed Nonlinear Model Predictive Control by Sequential Linearization and Accelerated Gradient Method

Distributed Nonlinear Model Predictive Control by Sequential Linearization and Accelerated Gradient Method Dstbuted Nolea odel Pedctve Cotol by Sequetal Leazato ad cceleated Gadet ethod lexada Gachaova, o. Johase, Valea Petova Depatmet of Idustal utomato, Uvesty of Chemcal echology ad etallugy, Bul. Kl. Ohdsk

More information

The calculation of the characteristic and non-characteristic harmonic current of the rectifying system

The calculation of the characteristic and non-characteristic harmonic current of the rectifying system The calculato of the chaactestc a o-chaactestc hamoc cuet of the ectfyg system Zhag Ruhua, u Shagag, a Luguag, u Zhegguo The sttute of Electcal Egeeg, Chese Acaemy of Sceces, ejg, 00080, Cha. Zhag Ruhua,

More information

Objectives of Meeting Movements - Application for Ship in Maneuvering

Objectives of Meeting Movements - Application for Ship in Maneuvering Iteatoal Joual of Mechacal Egeeg ad Applcatos 25; 3(3-): 49-56 Publshed ole May 6, 25 (http://www.scecepublshggoup.com//mea) do:.648/.mea.s.2533.8 ISSN: 233-23X (Pt); ISSN: 233-248 (Ole) Obectves of Meetg

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

VIKOR Method for Group Decision Making Problems with Ordinal Interval Numbers

VIKOR Method for Group Decision Making Problems with Ordinal Interval Numbers Iteatoal Joual of Hybd Ifomato Techology, pp 67-74 http://dxdoog/04257/ht2069206 VIKOR Method fo Goup Decso Makg Poblems wth Odal Iteval Numbes Wazhe u Chagsha Vocatoal & Techcal College, Chagsha, 4000

More information

The Deformation of Cylindrical Shells Subjected to Radial Loads Using Mixed Formulation and Analytic Solutions

The Deformation of Cylindrical Shells Subjected to Radial Loads Using Mixed Formulation and Analytic Solutions Uvesal Joual of Mechacal Egeeg (4): 8-3, 03 DOI: 0.389/ujme.03.00404 http://www.hpub.og The Defomato of Cyldcal Shells Subjected to Radal Loads Usg Mxed Fomulato ad Aalytc Solutos Lusa R. Maduea,*, Elza

More information

Beam Warming Second-Order Upwind Method

Beam Warming Second-Order Upwind Method Beam Warmg Secod-Order Upwd Method Petr Valeta Jauary 6, 015 Ths documet s a part of the assessmet work for the subject 1DRP Dfferetal Equatos o Computer lectured o FNSPE CTU Prague. Abstract Ths documet

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Analysis of Lagrange Interpolation Formula

Analysis of Lagrange Interpolation Formula P IJISET - Iteratoal Joural of Iovatve Scece, Egeerg & Techology, Vol. Issue, December 4. www.jset.com ISS 348 7968 Aalyss of Lagrage Iterpolato Formula Vjay Dahya PDepartmet of MathematcsMaharaja Surajmal

More information

Lecture 24: Observability and Constructibility

Lecture 24: Observability and Constructibility ectue 24: Obsevability ad Costuctibility 7 Obsevability ad Costuctibility Motivatio: State feedback laws deped o a kowledge of the cuet state. I some systems, xt () ca be measued diectly, e.g., positio

More information

Decentralized Algorithms for Sequential Network Time Synchronization

Decentralized Algorithms for Sequential Network Time Synchronization Decetalzed Algothms fo Sequetal etwok me Sychozato Maxme Cohe Depatmet of Electcal Egeeg echo Hafa 32, Isael maxcohe@tx.techo.ac.l Abstact Accuate clock sychozato s mpotat may dstbuted applcatos. Stadad

More information

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK Far East Joural of Appled Mathematcs Volume, Number, 2008, Pages Ths paper s avalable ole at http://www.pphm.com 2008 Pushpa Publshg House ANALYSIS ON THE NATURE OF THE ASI EQUATIONS IN SYNERGETI INTER-REPRESENTATION

More information

An Algorithm of a Longest of Runs Test for Very Long. Sequences of Bernoulli Trials

An Algorithm of a Longest of Runs Test for Very Long. Sequences of Bernoulli Trials A Algothm of a Logest of Rus Test fo Vey Log equeces of Beoull Tals Alexade I. KOZYNCHENKO Faculty of cece, Techology, ad Meda, Md wede Uvesty, E-857, udsvall, wede alexade_kozycheko@yahoo.se Abstact A

More information

The Infinite Square Well Problem in the Standard, Fractional, and Relativistic Quantum Mechanics

The Infinite Square Well Problem in the Standard, Fractional, and Relativistic Quantum Mechanics Iteatoal Joual of Theoetcal ad Mathematcal Physcs 015, 5(4): 58-65 DOI: 10.593/j.jtmp.0150504.0 The Ifte Squae Well Poblem the Stadad, Factoal, ad Relatvstc Quatum Mechacs Yuchua We 1, 1 Iteatoal Cete

More information

Probability. Stochastic Processes

Probability. Stochastic Processes Pobablty ad Stochastc Pocesses Weless Ifomato Tasmsso System Lab. Isttute of Commucatos Egeeg g Natoal Su Yat-se Uvesty Table of Cotets Pobablty Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes Statstcal

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

A Convergence Analysis of Discontinuous Collocation Method for IAEs of Index 1 Using the Concept Strongly Equivalent

A Convergence Analysis of Discontinuous Collocation Method for IAEs of Index 1 Using the Concept Strongly Equivalent Appled ad Coputatoal Matheatcs 27; 7(-): 2-7 http://www.scecepublshggoup.co//ac do:.648/.ac.s.287.2 ISSN: 2328-565 (Pt); ISSN: 2328-563 (Ole) A Covegece Aalyss of Dscotuous Collocato Method fo IAEs of

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

A New Approach to Moments Inequalities for NRBU and RNBU Classes With Hypothesis Testing Applications

A New Approach to Moments Inequalities for NRBU and RNBU Classes With Hypothesis Testing Applications Iteatoal Joual of Basc & Appled Sceces IJBAS-IJENS Vol: No:6 7 A New Appoach to Momets Iequaltes fo NRBU ad RNBU Classes Wth Hypothess Testg Applcatos L S Dab Depatmet of Mathematcs aculty of Scece Al-Azha

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

Lecture 11: Introduction to nonlinear optics I.

Lecture 11: Introduction to nonlinear optics I. Lectue : Itoducto to olea optcs I. Pet Kužel Fomulato of the olea optcs: olea polazato Classfcato of the olea pheomea Popagato of wea optc sgals stog quas-statc felds (descpto usg eomalzed lea paametes)!

More information

Fuzzy Time Series Forecasting based on Grey Model and Markov Chain

Fuzzy Time Series Forecasting based on Grey Model and Markov Chain IAENG Iteatoal Joual of Appled athematcs 46:4 IJA_46_4_08 Fuzzy Tme Sees Foecastg based o Gey odel ad akov Cha Xagya Zeg a Shu Jg Jag Abstact Ths atcle deals wth the foecastg of teval ad tagula fuzzy umbe

More information

DERIVATION OF THE BASIC LAWS OF GEOMETRIC OPTICS

DERIVATION OF THE BASIC LAWS OF GEOMETRIC OPTICS DERIVATION OF THE BASIC LAWS OF GEOMETRIC OPTICS It s well kow that a lght ay eflectg off of a suface has ts agle of eflecto equal to ts agle of cdece ad that f ths ay passes fom oe medum to aothe that

More information

Uniform asymptotical stability of almost periodic solution of a discrete multispecies Lotka-Volterra competition system

Uniform asymptotical stability of almost periodic solution of a discrete multispecies Lotka-Volterra competition system Iteratoal Joural of Egeerg ad Advaced Research Techology (IJEART) ISSN: 2454-9290, Volume-2, Issue-1, Jauary 2016 Uform asymptotcal stablty of almost perodc soluto of a dscrete multspeces Lotka-Volterra

More information

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Numercal Computg -I UNIT SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Structure Page Nos..0 Itroducto 6. Objectves 7. Ital Approxmato to a Root 7. Bsecto Method 8.. Error Aalyss 9.4 Regula Fals Method

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

CISC 203: Discrete Mathematics for Computing II Lecture 2, Winter 2019 Page 9

CISC 203: Discrete Mathematics for Computing II Lecture 2, Winter 2019 Page 9 Lectue, Wte 9 Page 9 Combatos I ou dscusso o pemutatos wth dstgushable elemets, we aved at a geeal fomula by dvdg the total umbe of pemutatos by the umbe of ways we could pemute oly the dstgushable elemets.

More information