1 x 7/6 + x dx. Solution: We begin by factoring the denominator, and substituting u = x 1/6. Hence, du = 1/6x 5/6 dx, so dx = 6x 5/6 du = 6u 5 du.

Size: px
Start display at page:

Download "1 x 7/6 + x dx. Solution: We begin by factoring the denominator, and substituting u = x 1/6. Hence, du = 1/6x 5/6 dx, so dx = 6x 5/6 du = 6u 5 du."

Transcription

1 Circle One: Name: 7:45-8:35 (36) 8:5-9:4 (36) Math-4, Spring 7 Quiz #3 (Take Home): 6 7 Due: 9 7 You may discuss this quiz solely with me or other students in my discussion sessions only. Use a new sheet of paper for each problem. Write on one side only. Illegible solutions will not be graded. Do not cite an integral table as justification for your answer. All of these problems can be done using the standard methods used for homework problems.. ( Points) Compute: Hint: x 7/6 + x = x(x /6 + ). x 7/6 + x dx. Solution: We begin by factoring the denominator, and substituting u = x /6. Hence, du = /6x 5/6 dx, so dx = 6x 5/6 du = 6u 5 du. x 7/6 + x dx = x(x /6 + ) dx = 6u 5 u 6 (u + ) du = 6 u(u + ) du. The integral involving u s can be solved using partial fractions. 6 u + du = 6(ln u ln u + ) + C = 6 ln u/(u + ) + C u + = 6 ln x /6 /(x /6 + ) + C.. ( Points) Integrate: dθ + θ. Solution: We d like to get rid of the ugliest part of this integral, the θ part. Let s try substituting x = θ. Then dx = /( θ) dθ, so dθ = x dx. We have: dθ + θ = x x dx = dx. + x x + Now this integral looks slightly simpler. Let s sub in for the part inside the square root sign. Put u = x +, so that du = dx and x = u. u du = (u / u / ) du = (/3u 3/ u / ) + C u = 4(/3(x + ) 3/ (x + ) / ) + C = 4(/3(x + ) 3/ (x + ) / ) + C = 4(/3( θ + ) 3/ ( θ + ) / ) + C.

2 3. ( Points) Compute: 3 4x 7 x + 3 dx. Solution: You should immediately recognize that this problem can be solved using partial fractions. Secondly, over the interval [, 3] the denominator is never, so we can proceed as usual. We need to do long division: x 3 x + 3 ) 4x 7 4x 6x 6x 7 6x + 9 This gives us 3 4x 7 x + 3 dx = 3 (x 3 + x + 3 ) dx = 3 (x 3 + x + 3/ ) dx = (x 3x + ln x + 3/ ) 3 = (9 9 + ln 3 + 3/ ) ( ln + 3/ ) = ln 9/ 4 ln 5/ = ln 9/ ( Points) Integrate: (r + ) r + r dr. Solution: First, let s complete the square on the inside of the radical. We know r +r = (r + ), so it is tempting to make a sub for this r +. Let x = r +, then dx = dr. The integral becomes: (r + ) r + r dr = x x dx. We should recognize that this can be solved using a trig-substitution. Put x = sec(θ), so that dx = sec(θ) tan(θ) dθ. Then, sec(θ) tan(θ) dθ sec(θ) sec (θ) = tan(θ) tan (θ) dθ = dθ = θ + C = sec (x) + C = sec (r + ) + C. 5. ( Points) Compute: ln() e t e t + 3e t + dt. Solution: Substitute u = e t, du = e t dt. The denominator factors becomes u +3u+ = (u + )(u + ). At t =, u = and at t = ln(), u =, so we have (u + )(u + ) du.

3 The problem in now reduced to a partial fractions problem. We put (u + )(u + ) = A u + + B u + and solving for the coefficients using your favorite method, we have A = and B =. Therefore, ( u + + ) du = ln (u + )/(u + ) = ln(3/4) ln(/3). u + 6. ( Points) The region in the first quadrant that is enclosed by the x-axis, the curve y = 5/x 5 x, and the lines x = and x = 4 is revolved about the x-axis to generate a solid. Find the volume of the solid. Solution: To find the volume, we need use the washer method and compute V = π 4 y dx = π 4 This integral can be solved using partial fractions: 5 x (5 x) dx. 5 x (5 x) = A x + B x + C (5 x) Multiplying through by the denominator gives: 5 = Ax(5 x)+b(5 x)+cx. Plugging in x = and x = 5 we get B and C for free: B = 5 and C =. This reduces the equation to 5 = Ax(5 x) + 5(5 x) + x. Plugging in x =, we have 5 = 4A + +, so that A = as well. We have, 4 ( V = π x + 5 ) x + dx = ln x 5/x ln 5 x 4 (5 x) = ln(4) 5/4 ln() ln() ln(4) = ln(4) + 5/4. 7. ( Points) Suppose n, m {,, 3,...}, the set of positive integers. Calculate π sin(mx) sin(nx) dx. Hint: Treat the case n = m as a special case. π Solution: For the case n = m, this problem reduces to finding /π π sin (nx) dx = /(π) π ( cos(nx)) dx = /(π) (x /(n) sin(nx)) π. Since for any integer n, we have sin(4πn) = sin() =, we have /π sin (nx) =. In the case n m we use the angle sum formulas for sin(x). We have π π cos((m n)x) cos((m + n)x) sin(mx) sin(nx) dx = dx ( ) sin((m n)x) sin((m + n)x) π = / = m n m + n 3

4 since both sin() = sin(integer π) =. Note that it is important to split this problem up into two parts. The angle sum formula is valid when n = m, but when we did the integration for the term involving cos((n m)x), we had to divide by n m. In fact, when n = m, we precisely recover the formula used when we integrated sin (nx). 8. ( Points) Suppose f(x) dx = where f(x) = for some k >. Hint: For C x e kx each of these parts, calculate f(x) dx and f(x) dx separately. Add your answers. (a) Find C. (b) Find the value µ := xf(x) dx. Solution: We seek f(x) dx = f(x) dx + f(x) dx = I + J where I is the integral over the negative part and J is the integral over the positive part. We first compute C x e kx dx. For positive x, x = x, so we can drop the absolute value signs. Let u = kx, then du = kx dx. We have Cxe kx dx = C x=r x= xe u du/(kx) = C/(k) x=r = C k e u x=r x= = C k e kx x=r x= = C k (e Rk ) = C k. The term e kr as R since k >. For negative x, we have that x = x. Then J = x e kx dx = If we substitute y = x, we actually have x= x= R ( x)e kx dx. x= e u du Therefore so C = k. J = y= y=r = ye ky dy = y=r y= f(x) dx = I + J = C k, ye ky dy = I. For part (b), you really need to calculate these integrals separately. Again, we split up = +. R R xf(x) dx = x x ke kx = kx e kx dx. This can be solved using integration by parts: u = kx du = kdx dv = xe kx dx v = /(k)e. kx 4

5 ( xe kx Re kr = x=r x= ) R + / e kx R + / e kx dx = k The first term vanishes if you apply L Hospital s rule one time: R e kr = L.H. kre kr =. kr The second term is evaluated using the substitution y = x k. We have /( π k) e y dy = 4 k. e y dy. If we compute J = xf(x) dx using the same exact methods, we get J = π 4, so the k total integral is xf(x) dx =. 9. (4 Points) The Laplace Transform is defined as L{f(t)}(s) := f(t)e st dt. It is common to write ˆf(s) := L{f(t)}(s). (a) If f(t) = t, find ˆf(s), where s >. (b) If f(t) = e αt, find ˆf(s), where s > α. (c) If f(t) = sin(αt), find ˆf(s), where s >. (d) If f(t) = cos(αt), find ˆf(s), where s >. Why must we assume these restrictions on s? Solution (a): We need to compute te st dt. This can be done by parts: u = t du = dt dv = e st dt v = e( st). s R ( t t=r ) R te ( st) dt = te ( st) dt = se st + e st /s dt t= ( R = se ) t=r ( ) R R sr s e st = + sesr s e sr s = /s. All the terms involving an R go to zero. You can verify this using L Hospital s rule. Solution (b): R e αt e st dt = e (α s)t e (α s)t t=r dt = α s t= ( = /(α s) e (α s)r ) = /(s α). 5 t=

6 Since α s <, the term involving R goes to zero. Solution (c): Using integration by parts twice, one can verify that e st sin(αt) dt = e st s + α( s sin(αt) α cos(αt)) + C. To do this, start with picking u = e st, and dv = sin(αt) dt. The integral that gets pushed out can be integrated again by parts, this time setting u = e st, and dv = cos(αt) dt. You ll recover the original integral the second time. Add it to both sides and divide by the number that s produced. We have, R e st sin(αt) dt = = = e st s + α α s + α. ( s sin(αt) α cos(αt)) t=r t= e sr α s + α( s sin(αr) α cos(αr)) + s + α Solution (d): This problem is essentially the same. as the previous one. First, you need to show e st cos(αt) dt = e st s + α( s cos(αt) + α sin(αt)) + C. Use the same exact methods you used to do part (c). We have, e st e st cos(αt) dt = s + α( s cos(αt) + α sin(αt)) R = = s s + α. t=r t= e sr s s + α( s cos(αr) + α sin(αr)) + s + α We need to make the assumptions we did on s otherwise the integrals wouldn t converge. 6

Math Final Exam Review

Math Final Exam Review Math - Final Exam Review. Find dx x + 6x +. Name: Solution: We complete the square to see if this function has a nice form. Note we have: x + 6x + (x + + dx x + 6x + dx (x + + Note that this looks a lot

More information

Spring 2015, MA 252, Calculus II, Final Exam Preview Solutions

Spring 2015, MA 252, Calculus II, Final Exam Preview Solutions Spring 5, MA 5, Calculus II, Final Exam Preview Solutions I will put the following formulas on the front of the final exam, to speed up certain problems. You do not need to put them on your index card,

More information

Solutions to Exam 1, Math Solution. Because f(x) is one-to-one, we know the inverse function exists. Recall that (f 1 ) (a) =

Solutions to Exam 1, Math Solution. Because f(x) is one-to-one, we know the inverse function exists. Recall that (f 1 ) (a) = Solutions to Exam, Math 56 The function f(x) e x + x 3 + x is one-to-one (there is no need to check this) What is (f ) ( + e )? Solution Because f(x) is one-to-one, we know the inverse function exists

More information

Chapter 7: Techniques of Integration

Chapter 7: Techniques of Integration Chapter 7: Techniques of Integration MATH 206-01: Calculus II Department of Mathematics University of Louisville last corrected September 14, 2013 1 / 43 Chapter 7: Techniques of Integration 7.1. Integration

More information

Homework Solutions: , plus Substitutions

Homework Solutions: , plus Substitutions Homework Solutions: 2.-2.2, plus Substitutions Section 2. I have not included any drawings/direction fields. We can see them using Maple or by hand, so we ll be focusing on getting the analytic solutions

More information

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx.

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx. Mathematics 14 Fall Term 26 Solutions to Final Exam 1. Evaluate sin(ln t) dt. Solution. We first make the substitution t = e x, for which dt = e x. This gives sin(ln t) dt = e x sin(x). To evaluate the

More information

Fall 2016, MA 252, Calculus II, Final Exam Preview Solutions

Fall 2016, MA 252, Calculus II, Final Exam Preview Solutions Fall 6, MA 5, Calculus II, Final Exam Preview Solutions I will put the following formulas on the front of the final exam, to speed up certain problems. You do not need to put them on your index card, and

More information

Techniques of Integration

Techniques of Integration Chapter 8 Techniques of Integration 8. Trigonometric Integrals Summary (a) Integrals of the form sin m x cos n x. () sin k+ x cos n x = ( cos x) k cos n x (sin x ), then apply the substitution u = cos

More information

2t t dt.. So the distance is (t2 +6) 3/2

2t t dt.. So the distance is (t2 +6) 3/2 Math 8, Solutions to Review for the Final Exam Question : The distance is 5 t t + dt To work that out, integrate by parts with u t +, so that t dt du The integral is t t + dt u du u 3/ (t +) 3/ So the

More information

b n x n + b n 1 x n b 1 x + b 0

b n x n + b n 1 x n b 1 x + b 0 Math Partial Fractions Stewart 7.4 Integrating basic rational functions. For a function f(x), we have examined several algebraic methods for finding its indefinite integral (antiderivative) F (x) = f(x)

More information

Turn off all cell phones, pagers, radios, mp3 players, and other similar devices.

Turn off all cell phones, pagers, radios, mp3 players, and other similar devices. Math 25 B and C Midterm 2 Palmieri, Autumn 26 Your Name Your Signature Student ID # TA s Name and quiz section (circle): Cady Cruz Jacobs BA CB BB BC CA CC Turn off all cell phones, pagers, radios, mp3

More information

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2 Math 8, Exam, Study Guide Problem Solution. Use the trapezoid rule with n to estimate the arc-length of the curve y sin x between x and x π. Solution: The arclength is: L b a π π + ( ) dy + (cos x) + cos

More information

Math 230 Mock Final Exam Detailed Solution

Math 230 Mock Final Exam Detailed Solution Name: Math 30 Mock Final Exam Detailed Solution Disclaimer: This mock exam is for practice purposes only. No graphing calulators TI-89 is allowed on this test. Be sure that all of your work is shown and

More information

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS EXAM Practice for Second Eam Math 135-006, Fall 003 Nov 4, 003 ANSWERS i Problem 1. In each part, find the integral. A. d (4 ) 3/ Make the substitution sin(θ). d cos(θ) dθ. We also have Then, we have d/dθ

More information

x 2 y = 1 2. Problem 2. Compute the Taylor series (at the base point 0) for the function 1 (1 x) 3.

x 2 y = 1 2. Problem 2. Compute the Taylor series (at the base point 0) for the function 1 (1 x) 3. MATH 8.0 - FINAL EXAM - SOME REVIEW PROBLEMS WITH SOLUTIONS 8.0 Calculus, Fall 207 Professor: Jared Speck Problem. Consider the following curve in the plane: x 2 y = 2. Let a be a number. The portion of

More information

Math 226 Calculus Spring 2016 Exam 2V1

Math 226 Calculus Spring 2016 Exam 2V1 Math 6 Calculus Spring 6 Exam V () (35 Points) Evaluate the following integrals. (a) (7 Points) tan 5 (x) sec 3 (x) dx (b) (8 Points) cos 4 (x) dx Math 6 Calculus Spring 6 Exam V () (Continued) Evaluate

More information

DRAFT - Math 102 Lecture Note - Dr. Said Algarni

DRAFT - Math 102 Lecture Note - Dr. Said Algarni Math02 - Term72 - Guides and Exercises - DRAFT 7 Techniques of Integration A summery for the most important integrals that we have learned so far: 7. Integration by Parts The Product Rule states that if

More information

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x).

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x). You should prepare the following topics for our final exam. () Pre-calculus. (2) Inverses. (3) Algebra of Limits. (4) Derivative Formulas and Rules. (5) Graphing Techniques. (6) Optimization (Maxima and

More information

MA 114 Worksheet # 1: Improper Integrals

MA 114 Worksheet # 1: Improper Integrals MA 4 Worksheet # : Improper Integrals. For each of the following, determine if the integral is proper or improper. If it is improper, explain why. Do not evaluate any of the integrals. (c) 2 0 2 2 x x

More information

Math 152 Take Home Test 1

Math 152 Take Home Test 1 Math 5 Take Home Test Due Monday 5 th October (5 points) The following test will be done at home in order to ensure that it is a fair and representative reflection of your own ability in mathematics I

More information

Practice Final Exam Solutions

Practice Final Exam Solutions Important Notice: To prepare for the final exam, study past exams and practice exams, and homeworks, quizzes, and worksheets, not just this practice final. A topic not being on the practice final does

More information

Math 142, Final Exam. 12/7/10.

Math 142, Final Exam. 12/7/10. Math 4, Final Exam. /7/0. No notes, calculator, or text. There are 00 points total. Partial credit may be given. Write your full name in the upper right corner of page. Number the pages in the upper right

More information

MATH QUIZ 3 1/2. sin 1 xdx. π/2. cos 2 (x)dx. x 3 4x 10 x 2 x 6 dx.

MATH QUIZ 3 1/2. sin 1 xdx. π/2. cos 2 (x)dx. x 3 4x 10 x 2 x 6 dx. NAME: I.D.: MATH 56 - QUIZ 3 Instruction: Each problem is worth of point in this take home project. Circle your answers and show all your work CLEARLY. Use additional paper if needed. Solutions with answer

More information

Math 21B - Homework Set 8

Math 21B - Homework Set 8 Math B - Homework Set 8 Section 8.:. t cos t dt Let u t, du t dt and v sin t, dv cos t dt Let u t, du dt and v cos t, dv sin t dt t cos t dt u v v du t sin t t sin t dt [ t sin t u v ] v du [ ] t sin t

More information

PRELIM 2 REVIEW QUESTIONS Math 1910 Section 205/209

PRELIM 2 REVIEW QUESTIONS Math 1910 Section 205/209 PRELIM 2 REVIEW QUESTIONS Math 9 Section 25/29 () Calculate the following integrals. (a) (b) x 2 dx SOLUTION: This is just the area under a semicircle of radius, so π/2. sin 2 (x) cos (x) dx SOLUTION:

More information

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x +

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x + MATH 06 0 Practice Exam #. (0 points) Evaluate the following integrals: (a) (0 points). t +t+7 This is an irreducible quadratic; its denominator can thus be rephrased via completion of the square as a

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 8.2, 8.3, 8.5 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 8.2, 8.3, 8.5 Fall 2016 HOMEWORK SOLUTIONS MATH 191 Sections 8., 8., 8.5 Fall 16 Problem 8..19 Evaluate using methods similar to those that apply to integral tan m xsec n x. cot x SOLUTION. Using the reduction formula for cot

More information

Ma 221 Final Exam Solutions 5/14/13

Ma 221 Final Exam Solutions 5/14/13 Ma 221 Final Exam Solutions 5/14/13 1. Solve (a) (8 pts) Solution: The equation is separable. dy dx exy y 1 y0 0 y 1e y dy e x dx y 1e y dy e x dx ye y e y dy e x dx ye y e y e y e x c The last step comes

More information

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x MATH 3B: MIDTERM REVIEW JOE HUGHES. Evaluate sin x and cos x. Solution: Recall the identities cos x = + cos(x) Using these formulas gives cos(x) sin x =. Trigonometric Integrals = x sin(x) sin x = cos(x)

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.3 The Fundamental Theorem of Calculus Sec. 5.3: The Fundamental Theorem of Calculus Fundamental Theorem of Calculus: Sec. 5.3: The Fundamental Theorem of Calculus Fundamental

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.5 The Substitution Rule (u-substitution) Sec. 5.5: The Substitution Rule We know how to find the derivative of any combination of functions Sum rule Difference rule Constant

More information

MATH1120 Calculus II Solution to Supplementary Exercises on Improper Integrals Alex Fok November 2, 2013

MATH1120 Calculus II Solution to Supplementary Exercises on Improper Integrals Alex Fok November 2, 2013 () Solution : MATH Calculus II Solution to Supplementary Eercises on Improper Integrals Ale Fok November, 3 b ( + )( + tan ) ( + )( + tan ) +tan b du u ln + tan b ( = ln + π ) (Let u = + tan. Then du =

More information

Math 180 Written Homework Assignment #10 Due Tuesday, December 2nd at the beginning of your discussion class.

Math 180 Written Homework Assignment #10 Due Tuesday, December 2nd at the beginning of your discussion class. Math 18 Written Homework Assignment #1 Due Tuesday, December 2nd at the beginning of your discussion class. Directions. You are welcome to work on the following problems with other MATH 18 students, but

More information

Fall 2013 Hour Exam 2 11/08/13 Time Limit: 50 Minutes

Fall 2013 Hour Exam 2 11/08/13 Time Limit: 50 Minutes Math 8 Fall Hour Exam /8/ Time Limit: 5 Minutes Name (Print): This exam contains 9 pages (including this cover page) and 7 problems. Check to see if any pages are missing. Enter all requested information

More information

Math 222 Spring 2013 Exam 3 Review Problem Answers

Math 222 Spring 2013 Exam 3 Review Problem Answers . (a) By the Chain ule, Math Spring 3 Exam 3 eview Problem Answers w s w x x s + w y y s (y xy)() + (xy x )( ) (( s + 4t) (s 3t)( s + 4t)) ((s 3t)( s + 4t) (s 3t) ) 8s 94st + 3t (b) By the Chain ule, w

More information

Calculus II/III Summer Packet

Calculus II/III Summer Packet Calculus II/III Summer Packet First of all, have a great summer! Enjoy your time away from school. Come back fired up and ready to learn. I know that I will be ready to have a great year of calculus with

More information

Course Notes for Calculus , Spring 2015

Course Notes for Calculus , Spring 2015 Course Notes for Calculus 110.109, Spring 2015 Nishanth Gudapati In the previous course (Calculus 110.108) we introduced the notion of integration and a few basic techniques of integration like substitution

More information

MATH 1231 MATHEMATICS 1B Calculus Section 1: - Integration.

MATH 1231 MATHEMATICS 1B Calculus Section 1: - Integration. MATH 1231 MATHEMATICS 1B 2007. For use in Dr Chris Tisdell s lectures: Tues 11 + Thur 10 in KBT Calculus Section 1: - Integration. 1. Motivation 2. What you should already know 3. Useful integrals 4. Integrals

More information

CK- 12 Algebra II with Trigonometry Concepts 1

CK- 12 Algebra II with Trigonometry Concepts 1 14.1 Graphing Sine and Cosine 1. A.,1 B. (, 1) C. 3,0 D. 11 1, 6 E. (, 1) F. G. H. 11, 4 7, 1 11, 3. 3. 5 9,,,,,,, 4 4 4 4 3 5 3, and, 3 3 CK- 1 Algebra II with Trigonometry Concepts 1 4.ans-1401-01 5.

More information

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n.

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n. .8 Power Series. n x n x n n Using the ratio test. lim x n+ n n + lim x n n + so r and I (, ). By the ratio test. n Then r and I (, ). n x < ( ) n x n < x < n lim x n+ n (n + ) x n lim xn n (n + ) x

More information

Grade: The remainder of this page has been left blank for your workings. VERSION E. Midterm E: Page 1 of 12

Grade: The remainder of this page has been left blank for your workings. VERSION E. Midterm E: Page 1 of 12 First Name: Student-No: Last Name: Section: Grade: The remainder of this page has been left blank for your workings. Midterm E: Page of Indefinite Integrals. 9 marks Each part is worth 3 marks. Please

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12 First Name: Student-No: Last Name: Section: Grade: The remainder of this page has been left blank for your workings. Midterm D: Page of 2 Indefinite Integrals. 9 marks Each part is worth marks. Please

More information

Arc Length and Surface Area in Parametric Equations

Arc Length and Surface Area in Parametric Equations Arc Length and Surface Area in Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2011 Background We have developed definite integral formulas for arc length

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

Essex County College Division of Mathematics MTH-122 Assessments. Honor Code

Essex County College Division of Mathematics MTH-122 Assessments. Honor Code Essex County College Division of Mathematics MTH-22 Assessments Last Name: First Name: Phone or email: Honor Code The Honor Code is a statement on academic integrity, it articulates reasonable expectations

More information

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx Millersville University Name Answer Key Mathematics Department MATH 2, Calculus II, Final Examination May 4, 2, 8:AM-:AM Please answer the following questions. Your answers will be evaluated on their correctness,

More information

Integration by parts Integration by parts is a direct reversal of the product rule. By integrating both sides, we get:

Integration by parts Integration by parts is a direct reversal of the product rule. By integrating both sides, we get: Integration by parts Integration by parts is a direct reversal of the proct rule. By integrating both sides, we get: u dv dx x n sin mx dx (make u = x n ) dx = uv v dx dx When to use integration by parts

More information

Worksheet Week 7 Section

Worksheet Week 7 Section Worksheet Week 7 Section 8.. 8.4. This worksheet is for improvement of your mathematical writing skill. Writing using correct mathematical epression and steps is really important part of doing math. Please

More information

Math 181, Exam 1, Study Guide Problem 1 Solution. xe x2 dx = e x2 xdx. = e u 1 2 du = 1. e u du. = 1 2 eu + C. = 1 2 ex2 + C

Math 181, Exam 1, Study Guide Problem 1 Solution. xe x2 dx = e x2 xdx. = e u 1 2 du = 1. e u du. = 1 2 eu + C. = 1 2 ex2 + C Math 8, Exam, Study Guide Problem Solution. Evaluate xe x dx. Solution: We evaluate the integral using the u-substitution method. Let u x. Then du xdx du xdx and we get: xe x dx e x xdx e u du e u du eu

More information

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10 Calculus II Practice Test Problems: 6.-6.3, 6.5, 7.-7.3 Page of This is in no way an inclusive set of problems there can be other types of problems on the actual test. To prepare for the test: review homework,

More information

Math 226 Calculus Spring 2016 Practice Exam 1. (1) (10 Points) Let the differentiable function y = f(x) have inverse function x = f 1 (y).

Math 226 Calculus Spring 2016 Practice Exam 1. (1) (10 Points) Let the differentiable function y = f(x) have inverse function x = f 1 (y). Math 6 Calculus Spring 016 Practice Exam 1 1) 10 Points) Let the differentiable function y = fx) have inverse function x = f 1 y). a) Write down the formula relating the derivatives f x) and f 1 ) y).

More information

Integration by Parts

Integration by Parts Calculus 2 Lia Vas Integration by Parts Using integration by parts one transforms an integral of a product of two functions into a simpler integral. Divide the initial function into two parts called u

More information

Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 4 Solutions

Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 4 Solutions Math 0: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 30 Homework 4 Solutions Please write neatly, and show all work. Caution: An answer with no work is wrong! Problem A. Use Weierstrass (ɛ,δ)-definition

More information

Final Exam 2011 Winter Term 2 Solutions

Final Exam 2011 Winter Term 2 Solutions . (a Find the radius of convergence of the series: ( k k+ x k. Solution: Using the Ratio Test, we get: L = lim a k+ a k = lim ( k+ k+ x k+ ( k k+ x k = lim x = x. Note that the series converges for L

More information

Integration Techniques

Integration Techniques Review for the Final Exam - Part - Solution Math Name Quiz Section The following problems should help you review for the final exam. Don t hesitate to ask for hints if you get stuck. Integration Techniques.

More information

The above statement is the false product rule! The correct product rule gives g (x) = 3x 4 cos x+ 12x 3 sin x. for all angles θ.

The above statement is the false product rule! The correct product rule gives g (x) = 3x 4 cos x+ 12x 3 sin x. for all angles θ. Math 7A Practice Midterm III Solutions Ch. 6-8 (Ebersole,.7-.4 (Stewart DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual exam. You

More information

M152: Calculus II Midterm Exam Review

M152: Calculus II Midterm Exam Review M52: Calculus II Midterm Exam Review Chapter 4. 4.2 : Mean Value Theorem. - Know the statement and idea of Mean Value Theorem. - Know how to find values of c making the theorem true. - Realize the importance

More information

Methods of Integration

Methods of Integration Methods of Integration Essential Formulas k d = k +C sind = cos +C n d = n+ n + +C cosd = sin +C e d = e +C tand = ln sec +C d = ln +C cotd = ln sin +C + d = tan +C lnd = ln +C secd = ln sec + tan +C cscd

More information

Main topics for the First Midterm

Main topics for the First Midterm Main topics for the First Midterm Midterm 2 will cover Sections 7.7-7.9, 8.1-8.5, 9.1-9.2, 11.1-11.2. This is roughly the material from the first five homeworks and and three quizzes. In particular, I

More information

8.3 Partial Fraction Decomposition

8.3 Partial Fraction Decomposition 8.3 partial fraction decomposition 575 8.3 Partial Fraction Decomposition Rational functions (polynomials divided by polynomials) and their integrals play important roles in mathematics and applications,

More information

Math 162: Calculus IIA

Math 162: Calculus IIA Math 62: Calculus IIA Final Exam ANSWERS December 9, 26 Part A. (5 points) Evaluate the integral x 4 x 2 dx Substitute x 2 cos θ: x 8 cos dx θ ( 2 sin θ) dθ 4 x 2 2 sin θ 8 cos θ dθ 8 cos 2 θ cos θ dθ

More information

Mathematics 136 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 19 and 21, 2016

Mathematics 136 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 19 and 21, 2016 Mathematics 36 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 9 and 2, 206 Every rational function (quotient of polynomials) can be written as a polynomial

More information

Calculus I Review Solutions

Calculus I Review Solutions Calculus I Review Solutions. Compare and contrast the three Value Theorems of the course. When you would typically use each. The three value theorems are the Intermediate, Mean and Extreme value theorems.

More information

Friday 09/15/2017 Midterm I 50 minutes

Friday 09/15/2017 Midterm I 50 minutes Fa 17: MATH 2924 040 Differential and Integral Calculus II Noel Brady Friday 09/15/2017 Midterm I 50 minutes Name: Student ID: Instructions. 1. Attempt all questions. 2. Do not write on back of exam sheets.

More information

Prelim 1 Solutions V2 Math 1120

Prelim 1 Solutions V2 Math 1120 Feb., Prelim Solutions V Math Please show your reasoning and all your work. This is a 9 minute exam. Calculators are not needed or permitted. Good luck! Problem ) ( Points) Calculate the following: x a)

More information

Name: AK-Nummer: Ergänzungsprüfung January 29, 2016

Name: AK-Nummer: Ergänzungsprüfung January 29, 2016 INSTRUCTIONS: The test has a total of 32 pages including this title page and 9 questions which are marked out of 10 points; ensure that you do not omit a page by mistake. Please write your name and AK-Nummer

More information

Math 131 Exam 2 Spring 2016

Math 131 Exam 2 Spring 2016 Math 3 Exam Spring 06 Name: ID: 7 multiple choice questions worth 4.7 points each. hand graded questions worth 0 points each. 0. free points (so the total will be 00). Exam covers sections.7 through 3.0

More information

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions. Partial Fractions June 7, 04 In this section, we will learn to integrate another class of functions: the rational functions. Definition. A rational function is a fraction of two polynomials. For example,

More information

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C Math 6 Fall 4 Exam. October 3, 4. The following questions have to do with the integral (a) Evaluate dx. Use integration by parts (x 3 dx = ) ( dx = ) x3 x dx = x x () dx = x + x x dx = x + x 3 dx dx =

More information

Solutions Serie 1 - preliminary exercises

Solutions Serie 1 - preliminary exercises D-MAVT D-MATL Prof. A. Iozzi ETH Zürich Analysis III Autumn 08 Solutions Serie - preliminary exercises. Compute the following primitive integrals using partial integration. a) cos(x) cos(x) dx cos(x) cos(x)

More information

Assignment 11 Assigned Mon Sept 27

Assignment 11 Assigned Mon Sept 27 Assignment Assigned Mon Sept 7 Section 7., Problem 4. x sin x dx = x cos x + x cos x dx ( = x cos x + x sin x ) sin x dx u = x dv = sin x dx du = x dx v = cos x u = x dv = cos x dx du = dx v = sin x =

More information

Review Problems for the Final

Review Problems for the Final Review Problems for the Final Math -3 5 7 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the

More information

f(x) g(x) = [f (x)g(x) dx + f(x)g (x)dx

f(x) g(x) = [f (x)g(x) dx + f(x)g (x)dx Chapter 7 is concerned with all the integrals that can t be evaluated with simple antidifferentiation. Chart of Integrals on Page 463 7.1 Integration by Parts Like with the Chain Rule substitutions with

More information

Exam 1 Review SOLUTIONS

Exam 1 Review SOLUTIONS 1. True or False (and give a short reason): Exam 1 Review SOLUTIONS (a) If the parametric curve x = f(t), y = g(t) satisfies g (1) = 0, then it has a horizontal tangent line when t = 1. FALSE: To make

More information

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6 Calculus II Practice Test Problems for Chapter 7 Page of 6 This is a set of practice test problems for Chapter 7. This is in no way an inclusive set of problems there can be other types of problems on

More information

CALCULUS II ASSIGNMENT 4 SOLUTIONS. (v) (vi) x arctan(x) dx, (vii) (viii) e u du = e u = e arctan(y).

CALCULUS II ASSIGNMENT 4 SOLUTIONS. (v) (vi) x arctan(x) dx, (vii) (viii) e u du = e u = e arctan(y). CALCULUS II ASSIGNMENT 4 SOLUTIONS. Evaluate the integrals e arctan(y) (i) + y dy, (ii) (iii) (iv) t cos(t)dt, ( + x ) 8 dx, ue u du, (v) (vi) (vii) (viii) sec(θ) tan(θ) 6 dθ, φtan(φ) dφ, x arctan(x) dx,

More information

Math 121. Exam II. November 28 th, 2018

Math 121. Exam II. November 28 th, 2018 Math 121 Exam II November 28 th, 2018 Name: Section: The following rules apply: This is a closed-book exam. You may not use any books or notes on this exam. For free response questions, you must show all

More information

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36 We saw in Example 5.4. that we sometimes need to apply integration by parts several times in the course of a single calculation. Example 5.4.4: For n let S n = x n cos x dx. Find an expression for S n

More information

Math 3150 HW 3 Solutions

Math 3150 HW 3 Solutions Math 315 HW 3 Solutions June 5, 18 3.8, 3.9, 3.1, 3.13, 3.16, 3.1 1. 3.8 Make graphs of the periodic extensions on the region x [ 3, 3] of the following functions f defined on x [, ]. Be sure to indicate

More information

Chapter 8 Integration Techniques and Improper Integrals

Chapter 8 Integration Techniques and Improper Integrals Chapter 8 Integration Techniques and Improper Integrals 8.1 Basic Integration Rules 8.2 Integration by Parts 8.4 Trigonometric Substitutions 8.5 Partial Fractions 8.6 Numerical Integration 8.7 Integration

More information

Assignment 13 Assigned Mon Oct 4

Assignment 13 Assigned Mon Oct 4 Assignment 3 Assigned Mon Oct 4 We refer to the integral table in the back of the book. Section 7.5, Problem 3. I don t see this one in the table in the back of the book! But it s a very easy substitution

More information

Math 113/113H Winter 2006 Departmental Final Exam

Math 113/113H Winter 2006 Departmental Final Exam Name KEY Instructor Section No. Student Number Math 3/3H Winter 26 Departmental Final Exam Instructions: The time limit is 3 hours. Problems -6 short-answer questions, each worth 2 points. Problems 7 through

More information

Math 234 Final Exam (with answers) Spring 2017

Math 234 Final Exam (with answers) Spring 2017 Math 234 Final Exam (with answers) pring 217 1. onsider the points A = (1, 2, 3), B = (1, 2, 2), and = (2, 1, 4). (a) [6 points] Find the area of the triangle formed by A, B, and. olution: One way to solve

More information

MATH 18.01, FALL PROBLEM SET #5 SOLUTIONS (PART II)

MATH 18.01, FALL PROBLEM SET #5 SOLUTIONS (PART II) MATH 8, FALL 7 - PROBLEM SET #5 SOLUTIONS (PART II (Oct ; Antiderivatives; + + 3 7 points Recall that in pset 3A, you showed that (d/dx tanh x x Here, tanh (x denotes the inverse to the hyperbolic tangent

More information

Test 2 - Answer Key Version A

Test 2 - Answer Key Version A MATH 8 Student s Printed Name: Instructor: CUID: Section: Fall 27 8., 8.2,. -.4 Instructions: You are not permitted to use a calculator on any portion of this test. You are not allowed to use any textbook,

More information

1. Evaluate the integrals. a. (9 pts) x e x/2 dx. Solution: Using integration by parts, let u = x du = dx and dv = e x/2 dx v = 2e x/2.

1. Evaluate the integrals. a. (9 pts) x e x/2 dx. Solution: Using integration by parts, let u = x du = dx and dv = e x/2 dx v = 2e x/2. MATH 8 Test -SOLUTIONS Spring 4. Evaluate the integrals. a. (9 pts) e / Solution: Using integration y parts, let u = du = and dv = e / v = e /. Then e / = e / e / e / = e / + e / = e / 4e / + c MATH 8

More information

Mathematics 1052, Calculus II Exam 1, April 3rd, 2010

Mathematics 1052, Calculus II Exam 1, April 3rd, 2010 Mathematics 5, Calculus II Exam, April 3rd,. (8 points) If an unknown function y satisfies the equation y = x 3 x + 4 with the condition that y()=, then what is y? Solution: We must integrate y against

More information

Practice Exam 1 Solutions

Practice Exam 1 Solutions Practice Exam 1 Solutions 1a. Let S be the region bounded by y = x 3, y = 1, and x. Find the area of S. What is the volume of the solid obtained by rotating S about the line y = 1? Area A = Volume 1 1

More information

MATH 2250 Final Exam Solutions

MATH 2250 Final Exam Solutions MATH 225 Final Exam Solutions Tuesday, April 29, 28, 6: 8:PM Write your name and ID number at the top of this page. Show all your work. You may refer to one double-sided sheet of notes during the exam

More information

Without fully opening the exam, check that you have pages 1 through 11.

Without fully opening the exam, check that you have pages 1 through 11. MTH 33 Solutions to Final Exam May, 8 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through. Show

More information

Substitution and change of variables Integration by parts

Substitution and change of variables Integration by parts Substitution and change of variables Integration by parts Math 1A October 11, 216 Announcements I have been back since Friday night but will be leaving for another short trip on Thursday. James will preside

More information

Math Makeup Exam - 3/14/2018

Math Makeup Exam - 3/14/2018 Math 22 - Makeup Exam - 3/4/28 Name: Section: The following rules apply: This is a closed-book exam. You may not use any books or notes on this exam. For free response questions, you must show all work.

More information

MATH141: Calculus II Exam #4 review solutions 7/20/2017 Page 1

MATH141: Calculus II Exam #4 review solutions 7/20/2017 Page 1 MATH4: Calculus II Exam #4 review solutions 7/0/07 Page. The limaçon r = + sin θ came up on Quiz. Find the area inside the loop of it. Solution. The loop is the section of the graph in between its two

More information

Mathematics 1 Lecture Notes Chapter 1 Algebra Review

Mathematics 1 Lecture Notes Chapter 1 Algebra Review Mathematics 1 Lecture Notes Chapter 1 Algebra Review c Trinity College 1 A note to the students from the lecturer: This course will be moving rather quickly, and it will be in your own best interests to

More information

Math221: HW# 7 solutions

Math221: HW# 7 solutions Math22: HW# 7 solutions Andy Royston November 7, 25.3.3 let x = e u. Then ln x = u, x2 = e 2u, and dx = e 2u du. Furthermore, when x =, u, and when x =, u =. Hence x 2 ln x) 3 dx = e 2u u 3 e u du) = e

More information

Final Exam SOLUTIONS MAT 131 Fall 2011

Final Exam SOLUTIONS MAT 131 Fall 2011 1. Compute the following its. (a) Final Exam SOLUTIONS MAT 131 Fall 11 x + 1 x 1 x 1 The numerator is always positive, whereas the denominator is negative for numbers slightly smaller than 1. Also, as

More information