A.1. Member capacities A.2. Limit analysis A.2.1. Tributary weight.. 7. A.2.2. Calculations. 7. A.3. Direct design 13

Size: px
Start display at page:

Download "A.1. Member capacities A.2. Limit analysis A.2.1. Tributary weight.. 7. A.2.2. Calculations. 7. A.3. Direct design 13"

Transcription

1 APPENDIX A

2 APPENDIX A Due to its extension, the dissertation ould not inlude all the alulations and graphi explanantions whih, being not essential, are neessary to omplete the researh. This appendix inludes the explanations, figures and tables not inluded in hapter III of the previous dissertation. The ontent of this appendix is: A.. Member apaities.... A.. Limit analysis... 7 A... Tributary weight.. 7 A... Calulations. 7 A... Linear load onfiguration. 8 A... Uniform load onfiguration... 0 A.3. Diret design 3 A.4. Struture drawings... 5

3 A.. Member apaities For the study is neessary to alulate the moment apaity of multiple reinfored onrete setions. Instead of alulate the apaities by hand, omputer software was used. It is an exell sheet developed by Santiago Pujol at Purdue University in 000. This sheet alulates the moment urvature diagram when the parameters of the setion are introdued. There is no unit onvention; all the units must be onsistent in the data introdued. Next are shown the exel sheets used, there is two for the slab members (positive and negative) and two for olumn apaity, one with three reinforement layers and one with these layers distributed in two. The olumns have different axial load depending on its loation at the building, here is only the example for the first story entral olumn. All these examples are for the definitely onfiguration of the struture after the design. (next page)

4 Figure A.. Negative apity of the slab 3

5 Figure A.. Positive apity of the slab 4

6 Figure A.3. Column apity for three reinforement layers 5

7 Figure A.4. Column apity for two reinforement layers 6

8 A.. Limit analysis This setion explains, first the detailed alulation for the total tributary weight of the struture, and an explanation for the different axial load of eah olumn. Then summarize the alulations for the base shear for both if the loads onfigurations. All the alulations are for the definitely onfiguration of the struture. Finally presents a results table with all the onfigurations tried in the design in order to find the most appropriate one. A... Tributary weight Is based on the next onsiderations: Self weight of the onrete: 45 p ft in ft in Live load: 5 psf 73. g m Dead load: 0 psf 48.8 g m This makes a total of 0 psf 537 g m psf g m The tributary area for eah floor is 9.4 m (30 ft) by 5.4 m (50 ft) thus eah floor 734 N (65 ip). The whole building then is 0 N (495 ip). The weight of the olumns has been ignored. A... Calulations In table A. there are the apaities of all the members in the struture; all this apaities orresponds to the definitely struture onfiguration. Table A. Members apaity Slab Columns Negative moment Positive moment Position Exterior Interior 88 N-m 77 N-m 3rd Story 90 N-m 96 N-m nd Story 308 N-m 39 N-m st Story 35 N-m 34 N-m Slab Columns Negative moment Positive moment Position Exterior Interior 66 -in 680 -in 3rd Story 565 -in 60 -in nd Story 75 -in 87 -in st Story 880 -in in 7

9 It has been analyzed only one frame, so the total base shear will be twie as the obtained below. A... Linear load onfiguration The fores at eah story are: F V F V F 0. 5 V 3 Base shear for Mehanism I: Internal Work: Θ in 0 IW 880 in in Θ ( ) k 4 External Work: EW 0.67 V V V V Base Shear: IW 46.5 V EW Base Shear Strength Coeffiient: V TTW Base shear for Mehanism II: Internal Work: Θ in in in + 75 in + IW Θ in + 66 in in External Work: k 8

10 EW V V V V 40 Base Shear: IW 9. V EW Base Shear Strength Coeffiient: V TTW Base shear for Mehanism III: Internal Work: Θ3 in 880 in in in + IW3 Θ in in in External Work: k EW V V V V Base Shear: IW3 74. V EW Base Shear Strength Coeffiient: V TTW Base shear for Mehanism IV: Internal Work: Θ4 in IW 880 in in in in Θ ( ) k 4 4 9

11 External Work: EW V V V V Base Shear: IW V EW Base Shear Strength Coeffiient: V TTW A... Uniform load onfiguration The fores at eah story are: F V F V F V 3 Base shear for Mehanism I: Internal Work: Θ in 0 IW 880 in in Θ ( ) k 4 External Work: EW V V V V Base Shear: IW 46.5 V EW Base Shear Strength Coeffiient: 0

12 V TTW Base shear for Mehanism II: Internal Work: Θ in in in + 75 in + IW Θ in + 66 in in External Work: k EW V V V V 40 Base Shear: IW 9. V 0. 8 EW Base Shear Strength Coeffiient: V TTW Base shear for Mehanism III: Internal Work: Θ3 in 880 in in in + IW3 Θ in in in k External Work: EW V V V V Base Shear:

13 IW3 74. V. 3 EW Base Shear Strength Coeffiient: V TTW Base shear for Mehanism IV: Internal Work: Θ4 in IW 880 in in in in Θ ( ) k 4 4 External Work: EW V V V V Base Shear: IW V EW Base Shear Strength Coeffiient: V TTW

14 A.3. Diret design This setion ontains the alulations to hek if the definitely onfiguration of the struture aomplishes with main ACI requirements. It is divided in two parts. The first one is the most important, is to hek if the slab has enough strength to support design loads. The seond is to find out if the loads an ause a punhing failure of the slabs. The table A. summarizes the proess to find the flexural apaity of the slab, in that table the following formulas have been used: M o w l u n 8 l M u Coeff Coeff M o φm n 0.9 As f y A s f y d b f ' Table A.. Slab design Setion properties f ' 4000 psi LL design 5psf f y psi LL design 50 psf Loads h 7 in w u 88 psf d 6 in M o 95 k-in Slab Region Coeffiients Size of bars Number of bars As (in ) ρ Mu (k-in) ΠMn (k-in) Column Strip Negative # < 0 Column Strip Positive # < 0 Middle Strip Negative # < 0 Middle Strip Positive # < 0 In the table A.3 are the alulations for the punhing shear failure. For that table the followings formulas were used: V max Vg A γ v M + J u AB 3

15 V max 4 f ' ( d) b o 4 + A v b 0 d γ γ f + 3 b b 3 3 ( + d ) d ( + d ) d ( + d ) ( ) d + J d + d AB Table A.3. Punhing shear design Loads Setion properties DL design 5 psf DL test 0 psf LL design 50 psf Design Test LL test 5 psf M o 95 k- in M o 5 k- in w test 0 psf Mu - 5 k- in Mu - 73 k- in k- k- w u 88 psf Mu in Mu in Vu 56 k Vu 56 k f ' 4000 psi v u 05 psi v u 60 psi f y psi φv n 09 k V n 46 k h 7 in φv n 90 psi v n 53 psi d 6 in 8 in φv n < v u φv n > v u 8 in b o 96 in A 576 in J 5660 in 4 AB in γ f 0.6 γ v 0.4 In the results the ACI design for the punhing shear alulation is not valid. However the differene between the ultimate shear stress and the nominal shear stress is not exaggerated. The ultimate shear is still lower than the non-fatored nominal shear stress. Also the same hek for the testing loads gives a shear stress below the nominal apaity. 4

16 A.4. Struture drawings In this setion are all the drawings plotted after the design of the struture. They do inlude the drawings result of this dissertation and also the drawings onerning to the future test. There are the figures neessary to have a detailed idea of the struture and its reinforement onfiguration. Figure A.5. Foundation lined with the holes at the laboratory floor 5

17 Figure A.6. Longitudinal reinforement details 6

18 Figure A.7. Transverse reinforement details 7

19 Figure A.8. Slab loading at the top floor 8

20 Figure A.9. Struture setion 9

21 Figure A.0. Details of the footings and olumns reinforement bars 0

22 Figure A.. Loading onnetion details

23 Figure A.. Slab detail for load onnetion

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method Slenderness Effets for Conrete Columns in Sway Frame - Moment Magnifiation Method Slender Conrete Column Design in Sway Frame Buildings Evaluate slenderness effet for olumns in a sway frame multistory

More information

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method Slenderness Effets for Conrete Columns in Sway Frame - Moment Magnifiation Method Slender Conrete Column Design in Sway Frame Buildings Evaluate slenderness effet for olumns in a sway frame multistory

More information

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. ARCH 631 Note Set 11 F015abn Case Study in Reinfored Conrete adapted from Simplified Design of Conrete Strutures, James Ambrose, 7 th ed. Building desription The building is a three-story offie building

More information

Two-Way Flat Slab (Concrete Floor with Drop Panels) System Analysis and Design

Two-Way Flat Slab (Concrete Floor with Drop Panels) System Analysis and Design Two-Way Flat Slab (Conrete Floor with Drop Panels) System Analysis and Design Two-Way Flat Slab (Conrete Floor with Drop Panels) System Analysis and Design Design the onrete floor slab system shown below

More information

Chapter 6. Compression Reinforcement - Flexural Members

Chapter 6. Compression Reinforcement - Flexural Members Chapter 6. Compression Reinforement - Flexural Members If a beam ross setion is limite beause of arhitetural or other onsierations, it may happen that the onrete annot evelop the ompression fore require

More information

WRAP-AROUND GUSSET PLATES

WRAP-AROUND GUSSET PLATES WRAP-AROUND GUSSET PLATES Where a horizontal brae is loated at a beam-to-olumn intersetion, the gusset plate must be ut out around the olumn as shown in Figure. These are alled wrap-around gusset plates.

More information

fib Model Code 2020 Shear and punching provisions, needs for improvements with respect to new and existing structures

fib Model Code 2020 Shear and punching provisions, needs for improvements with respect to new and existing structures fib Model Code 2020 Shear and punhing provisions, needs for improvements with respet to new and existing strutures Aurelio Muttoni Workshop fib Sao Paulo, 29.9.2017 Éole Polytehnique Fédérale de Lausanne,

More information

Strength of Materials

Strength of Materials Strength of Materials Session Pure Bending 04 Leture note : Praudianto, M.Eng. g{ V ä Ä tçw ÄtÇÇ Çz XÇz ÇÜ Çz Xwâvtà ÉÇ WÑtÜàÅÇà g{ V ä Ä tçw ÄtÇÇ Çz XÇz ÇÜ Çz Xwâvtà ÉÇ WÑtÜàÅÇà Pure Bending: Prisati

More information

BEHAVIOR OF SQUARE CONCRETE-FILLED TUBULAR COLUMNS UNDER ECCENTRIC COMPRESSION WITH DOUBLE CURVATURE DEFLECTION

BEHAVIOR OF SQUARE CONCRETE-FILLED TUBULAR COLUMNS UNDER ECCENTRIC COMPRESSION WITH DOUBLE CURVATURE DEFLECTION Otober 2-7, 28, Beijing, China BEHAVIOR OF SQARE CONCRETE-FILLED TBLAR COLNS NDER ECCENTRIC COPRESSION WITH DOBLE CRVATRE DEFLECTION T. Fujinaga, H. Doi 2 and Y.P. Sun 3 Assoiate Professor, Researh Center

More information

1. INTRODUCTION. l t t r. h t h w. t f t w. h p h s. d b D F. b b d c. L D s

1. INTRODUCTION. l t t r. h t h w. t f t w. h p h s. d b D F. b b d c. L D s Rapid Assessment of Seismi Safety of Elevated ater Tanks with FRAME Staging 1. NTRODUCTON 1.1 ntrodution ater tanks are lifeline items in the aftermath of earthquakes. The urrent pratie of designing elevated

More information

Sway Column Example. PCA Notes on ACI 318

Sway Column Example. PCA Notes on ACI 318 Sway Column Example PCA Notes on ACI 318 ASDIP Concrete is available for purchase online at www.asdipsoft.com Example 11.2 Slenderness Effects for Columns in a Sway Frame Design columns C1 and C2 in the

More information

Two-Way Concrete Floor Slab with Beams Design and Detailing (CSA A )

Two-Way Concrete Floor Slab with Beams Design and Detailing (CSA A ) Two-Way Conrete Floor Slab with Beams Design and Detailing (CSA A.-14) Two-Way Conrete Floor Slab with Beams Design and Detailing (CSA A.-14) Design the slab system shown in Figure 1 for an intermediate

More information

Wood Design. = theoretical allowed buckling stress

Wood Design. = theoretical allowed buckling stress Wood Design Notation: a = name for width dimension A = name for area A req d-adj = area required at allowable stress when shear is adjusted to inlude self weight b = width of a retangle = name for height

More information

Masonry Beams. Ultimate Limit States: Flexure and Shear

Masonry Beams. Ultimate Limit States: Flexure and Shear Masonry Beams 4:30 PM 6:30 PM Bennett Banting Ultimate Limit States: Flexure and Shear Leture Outline 1. Overview (5) 2. Design for Flexure a) Tension Reinforement (40) b) Compression Reinforement (20)

More information

RC DEEP BEAMS ANALYSIS CONSIDERING LOCALIZATION IN COMPRESSION

RC DEEP BEAMS ANALYSIS CONSIDERING LOCALIZATION IN COMPRESSION RC DEEP BEAMS ANAYSIS CONSIDERING OCAIZATION IN COMPRESSION Manakan ERTSAMATTIYAKU* 1, Torsak ERTSRISAKURAT* 1, Tomohiro MIKI* 1 and Junihiro NIWA* ABSTRACT: It has been found that RC deep beams usually

More information

City, University of London Institutional Repository

City, University of London Institutional Repository City Researh Online City, University of London Institutional Repository Citation: Labib, M., Moslehy, Y. & Ayoub, A. (07). Softening Coeffiient of Reinfored Conrete Elements Subjeted to Three-Dimensional

More information

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2018 lecture

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2018 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS Cor-Ten Steel Sulpture By Rihard Serra Museum of Modern Art Fort Worth, TX (AISC - Steel Strutures of the Everyday) FALL 2018 leture

More information

STRUCTURAL BEHAVIOR OF R/C DEEP BEAM WITH HEADED LONGITUDINAL REINFORCEMENTS

STRUCTURAL BEHAVIOR OF R/C DEEP BEAM WITH HEADED LONGITUDINAL REINFORCEMENTS 13 th World Conferene on Earthquake Engineering anouver, B.C., Canada August 1-6, 24 Paper No. 58 STRUCTURAL BEHAIOR OF R/C DEEP BEAM WITH HEADED LONGITUDINAL REINFORCEMENTS Soo-Yeon SEO 1, Seung-Joe YOON

More information

FORCE DISTRIBUTION OF REINFORCED CONCRETE COUPLING BEAMS WITH DIAGONAL REINFORCEMENT

FORCE DISTRIBUTION OF REINFORCED CONCRETE COUPLING BEAMS WITH DIAGONAL REINFORCEMENT FORCE DISTRIBUTION OF REINFORCED CONCRETE COULING BEAMS WITH DIAGONAL REINFORCEMENT Yenny Nurhasanah Jurusan Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Surakarta Jl. A. Yani Tromol os 1 abelan

More information

Flexural Drift Capacity of Reinforced Concrete Wall with Limited Confinement

Flexural Drift Capacity of Reinforced Concrete Wall with Limited Confinement ACI STRUCTURAL JOURNAL TECHNICAL PAPER Title no. 110-S10 Flexural Drift Capaity of Reinfored Conrete Wall with Limited Confinement by S. Takahashi, K. Yoshida, T. Ihinose, Y. Sanada, K. Matsumoto, H. Fukuyama,

More information

Lecture 7 Two-Way Slabs

Lecture 7 Two-Way Slabs Lecture 7 Two-Way Slabs Two-way slabs have tension reinforcing spanning in BOTH directions, and may take the general form of one of the following: Types of Two-Way Slab Systems Lecture 7 Page 1 of 13 The

More information

Reinforced Concrete Design

Reinforced Concrete Design Reinfored Conrete Design Notation: a = depth of the effetive ompression blok in a onrete beam A = name for area A g = gross area, equal to the total area ignoring any reinforement A s = area of steel reinforement

More information

The Serviceability Considerations of HSC Heavily Steel Reinforced Members under Bending

The Serviceability Considerations of HSC Heavily Steel Reinforced Members under Bending Amerian Journal of Applied Sienes 5 (9): 115-114, 8 ISSN 1546-99 8 Siene Publiations The Servieability Considerations of HSC Heavily Steel Reinfored Members under Bending 1 Ali Akbar ghsoudi and Yasser

More information

Advances in Engineering Research, volume 93 International Symposium on Mechanical Engineering and Material Science (ISMEMS 2016)

Advances in Engineering Research, volume 93 International Symposium on Mechanical Engineering and Material Science (ISMEMS 2016) International Symposium on Mehanial Engineering and Material Siene ISMEMS 06 Punhing Shear Strength Model for RC Slab-Column Connetion Based on Multiaxial Strength Theory of Conrete H. Y. PANG, a, Z. J.

More information

Drift Capacity of Lightly Reinforced Concrete Columns

Drift Capacity of Lightly Reinforced Concrete Columns Australian Earthquake Engineering Soiety Conferene, Perth, Western Australia Drift Capaity of ightly Reinfored Conrete Columns A Wibowo, J Wilson, NTK am, EF Gad,, M Fardipour, K Rodsin, P ukkunaprasit

More information

Moment Curvature Characteristics for Structural Elements of RC Building

Moment Curvature Characteristics for Structural Elements of RC Building Moment Curvature Charateristis for Strutural Elements of RC Building Ravi Kumar C M 1,*, Vimal Choudhary 2, K S Babu Narayan 3 and D. Venkat Reddy 3 1 Researh Sholar, 2 PG Student, 3 Professors, Department

More information

BEAMS: SHEARING STRESS

BEAMS: SHEARING STRESS LECTURE Third Edition BEAMS: SHEARNG STRESS A. J. Clark Shool of Engineering Department of Civil and Environmental Engineering 14 Chapter 6.1 6.4 b Dr. brahim A. Assakkaf SPRNG 200 ENES 220 Mehanis of

More information

Reinforced Concrete Design

Reinforced Concrete Design Reinfored Conrete Design Notation: a = depth of the effetive ompression blok in a onrete beam A = name for area A g = gross area, equal to the total area ignoring any reinforement A s = area of steel reinforement

More information

Lecture-08 Gravity Load Analysis of RC Structures

Lecture-08 Gravity Load Analysis of RC Structures Lecture-08 Gravity Load Analysis of RC Structures By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Contents Analysis Approaches Point of Inflection Method Equivalent

More information

Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames

Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames IL 32 /9 ppling the virtual work equations to a frame struture is as simple as separating the frame into a series of beams and summing the virtual work for eah setion. In addition, when evaluating the

More information

Torsion. Torsion is a moment that twists/deforms a member about its longitudinal axis

Torsion. Torsion is a moment that twists/deforms a member about its longitudinal axis Mehanis of Solids I Torsion Torsional loads on Cirular Shafts Torsion is a moment that twists/deforms a member about its longitudinal axis 1 Shearing Stresses due to Torque o Net of the internal shearing

More information

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. ARCH 631 Note Set 11 F013abn Case Stdy Refored Conrete adapted from Simplified Design of Conrete Strtres, James Ambrose, 7 th ed. Bildg desription The bildg is a three-story offie bildg tended for spelative

More information

NON-LINEAR BENDING CHARACTERISTICS OF PHC PILES UNDER VARYING AXIAL LOAD

NON-LINEAR BENDING CHARACTERISTICS OF PHC PILES UNDER VARYING AXIAL LOAD 13 th World Conferene on Earthquake Engineering Vanouver, B.C., Canada August 1-6, 24 aper No. 356 NON-LINEAR BENDING CHARACTERISTICS OF HC ILES UNDER VARYING AXIAL LOAD Toshihiko ASO 1 Fusanori MIURA

More information

Design of Reinforced Concrete Structures (II)

Design of Reinforced Concrete Structures (II) Design of Reinforced Concrete Structures (II) Discussion Eng. Mohammed R. Kuheil Review The thickness of one-way ribbed slabs After finding the value of total load (Dead and live loads), the elements are

More information

Shear Strength of Squat Reinforced Concrete Walls with Flanges and Barbells

Shear Strength of Squat Reinforced Concrete Walls with Flanges and Barbells Transations, SMiRT 19, Toronto, August 2007 Shear Strength of Squat Reinfored Conrete Walls with Flanges and Barbells Cevdet K. Gule 1), Andrew S. Whittaker 1), Bozidar Stojadinovi 2) 1) Dept. of Civil,

More information

Design of a Multi-Storied RC Building

Design of a Multi-Storied RC Building Design of a Multi-Storied RC Building 16 14 14 3 C 1 B 1 C 2 B 2 C 3 B 3 C 4 13 B 15 (S 1 ) B 16 (S 2 ) B 17 (S 3 ) B 18 7 B 4 B 5 B 6 B 7 C 5 C 6 C 7 C 8 C 9 7 B 20 B 22 14 B 19 (S 4 ) C 10 C 11 B 23

More information

The Design of Fiber Reinforced Polymers for Structural Strengthening An Overview of ACI 440 Guidelines. Sarah Witt Fyfe Company November 7, 2008

The Design of Fiber Reinforced Polymers for Structural Strengthening An Overview of ACI 440 Guidelines. Sarah Witt Fyfe Company November 7, 2008 The Design o Fiber Reinored Polymers or Strutural Strengthening An Overview o ACI 440 Guidelines Sarah Witt Fye Company November 7, 2008 1 GUIDE FOR THE DESIGN AND CONSTRUCTION OF EXTERNALLY BONDED FRP

More information

A Time-Dependent Model For Predicting The Response Of A Horizontally Loaded Pile Embedded In A Layered Transversely Isotropic Saturated Soil

A Time-Dependent Model For Predicting The Response Of A Horizontally Loaded Pile Embedded In A Layered Transversely Isotropic Saturated Soil IOSR Journal of Mehanial and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 232-334X, Volume 16, Issue 2 Ser. I (Mar. - Apr. 219), PP 48-53 www.iosrjournals.org A Time-Dependent Model For Prediting

More information

Strengthening Concrete Slabs for Punching Shear with Carbon Fiber-Reinforced Polymer Laminates

Strengthening Concrete Slabs for Punching Shear with Carbon Fiber-Reinforced Polymer Laminates ACI STRUCTURAL JOURNAL Title no. 104-S06 TECHNICAL PAPER Strengthening Conrete Slabs for Punhing Shear with Carbon Fiber-Reinfored Polymer Laminates by Kyriakos Sissakis and Shamim A. Sheikh This paper

More information

SIMULATION OF BEHAVIOR OF REINFORCED CONCRETE COLUMNS SUBJECTED TO CYCLIC LATERAL LOADS

SIMULATION OF BEHAVIOR OF REINFORCED CONCRETE COLUMNS SUBJECTED TO CYCLIC LATERAL LOADS SIMULATION OF BEHAVIOR OF REINFORCED CONCRETE COLUMNS SUBJECTED TO CYCLIC LATERAL LOADS H. Sezen 1, M.S. Lodhi 2, E. Setzler 3, and T. Chowdhury 4 1,2 Department of Civil and Environmental Engineering

More information

OUTLINE. CHAPTER 7: Flexural Members. Types of beams. Types of loads. Concentrated load Distributed load. Moment

OUTLINE. CHAPTER 7: Flexural Members. Types of beams. Types of loads. Concentrated load Distributed load. Moment OUTLINE CHTER 7: Fleural embers -Tpes of beams, loads and reations -Shear fores and bending moments -Shear fore and bending - -The fleure formula -The elasti urve -Slope and defletion b diret integration

More information

Shear Force and Bending Moment

Shear Force and Bending Moment Shear Fore and Bending oent Shear Fore: is the algebrai su of the vertial fores ating to the left or right of a ut setion along the span of the bea Bending oent: is the algebrai su of the oent of the fores

More information

Design of AAC floor slabs according to EN 12602

Design of AAC floor slabs according to EN 12602 Design of AAC floor slabs aording to EN 160 Example 1: Floor slab with uniform load 1.1 Issue Design of a floor slab under a living room Materials Component with a ompressive strength lass AAC 4,5, densit

More information

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. ARCH 631 Note Set 11 S017abn Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. Building description The building is a three-story office building

More information

DEFLECTION CALCULATIONS (from Nilson and Nawy)

DEFLECTION CALCULATIONS (from Nilson and Nawy) DEFLECTION CALCULATIONS (from Nilson and Nawy) The deflection of a uniformly loaded flat plate, flat slab, or two-way slab supported by beams on column lines can be calculated by an equivalent method that

More information

Analysis of Leakage Paths Induced by Longitudinal Differential Settlement of the Shield-driven Tunneling

Analysis of Leakage Paths Induced by Longitudinal Differential Settlement of the Shield-driven Tunneling 2016 rd International Conferene on Engineering Tehnology and Appliation (ICETA 2016) ISBN: 978-1-60595-8-0 Analysis of Leakage Paths Indued by Longitudinal Differential Settlement of the Shield-driven

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 006 The Graw-Hill Copanies, n. ll rights reserved. Fourth E CHTER ure ECHNCS OF TERLS Ferdinand. Beer E. Russell Johnston, Jr. John T. DeWolf Bending Leture Notes: J. Walt Oler Teas Teh Universit ECHNCS

More information

Reinforced Concrete Design

Reinforced Concrete Design Reinfored Conrete Design Notation: a = depth of the effetive ompression blok in a onrete beam A = name for area Ag = gross area, equal to the total area ignoring any reinforement As = area of steel reinforement

More information

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b Consider the pure initial value problem for a homogeneous system of onservation laws with no soure terms in one spae dimension: Where as disussed previously we interpret solutions to this partial differential

More information

STATISTICAL MODEL FOR THE PREDICTION OF SHEAR STRENGTH OF HIGH STRENGTH REINFORCED CONCRETE BEAMS

STATISTICAL MODEL FOR THE PREDICTION OF SHEAR STRENGTH OF HIGH STRENGTH REINFORCED CONCRETE BEAMS STATISTICAL MODEL FOR THE PREDICTION OF SHEAR STRENGTH OF HIGH STRENGTH REINFORCED CONCRETE BEAMS Attaullah Shah* Allama Iqbal Open University Islamabad Pakistan Saeed Ahmad Department of Civil Engineering,

More information

3.4 Reinforced Concrete Beams - Size Selection

3.4 Reinforced Concrete Beams - Size Selection CHAPER 3: Reinforced Concrete Slabs and Beams 3.4 Reinforced Concrete Beams - Size Selection Description his application calculates the spacing for shear reinforcement of a concrete beam supporting a uniformly

More information

EVALUATION OF EXISTING REINFORCED CONCRETE COLUMNS

EVALUATION OF EXISTING REINFORCED CONCRETE COLUMNS 13 th World Conferene on Earthquake Engineering Vanouver, B.C., Canada August 1-6, 2004 Paper No. 579 EVALUATION OF EXISTING REINFORCED CONCRETE COLUMNS Kenneth J. ELWOOD 1 and Jak P. MOEHLE 2 SUMMARY

More information

Rectangular Filament-Wound GFRP Tubes Filled with Concrete under Flexural. and Axial Loading: Analytical Modeling ABSTRACT

Rectangular Filament-Wound GFRP Tubes Filled with Concrete under Flexural. and Axial Loading: Analytical Modeling ABSTRACT Retangular Filament-Wound GFRP Tubes Filled with Conrete under Flexural and Axial Loading: Analytial Modeling Amir Fam 1, Siddhwartha Mandal 2, and Sami Rizkalla 3 ABSTRACT This paper presents an analytial

More information

Simplified Buckling Analysis of Skeletal Structures

Simplified Buckling Analysis of Skeletal Structures Simplified Bukling Analysis of Skeletal Strutures B.A. Izzuddin 1 ABSRAC A simplified approah is proposed for bukling analysis of skeletal strutures, whih employs a rotational spring analogy for the formulation

More information

Two Way Beam Supported Slab

Two Way Beam Supported Slab Two Way Beam Supported Slab Part 2 The following example was done by Mr. Naim Hassan, 3 rd Year 2 nd Semester Student of CE Dept., AUST 16 The following Example was done by Md. Mahmudun Nobe, ID -.01.03.078,

More information

Universities of Leeds, Sheffield and York

Universities of Leeds, Sheffield and York promoting aess to White Rose researh papers Universities of Leeds, Sheffield and York http://eprints.whiterose.a.uk/ This is an author produed version of a paper published in Journal of Composites for

More information

Experimental Investigation and FE Analysis of Fiber Woven Layered Composites under Dynamic Loading

Experimental Investigation and FE Analysis of Fiber Woven Layered Composites under Dynamic Loading 2th International LS-DYNA Users Conferene Constitutive Modeling(2) xperimental Investigation and F Analysis of Fiber Woven Layered Composites under Dynami Loading Pavel A. Mossakovsky, Fedor K. Antonov,

More information

Software Verification

Software Verification EC-4-004 Example-001 STEEL DESIGNERS MANUAL SEVENTH EDITION - DESIGN OF SIMPLY SUPPORTED COMPOSITE BEAM EXAMPLE DESCRIPTION Consider an internal seondary omposite beam of 1-m span between olumns and subjet

More information

Canimals. borrowed, with thanks, from Malaspina University College/Kwantlen University College

Canimals. borrowed, with thanks, from Malaspina University College/Kwantlen University College Canimals borrowed, with thanks, from Malaspina University College/Kwantlen University College http://ommons.wikimedia.org/wiki/file:ursus_maritimus_steve_amstrup.jpg Purpose Investigate the rate of heat

More information

Flexural Strength Design of RC Beams with Consideration of Strain Gradient Effect

Flexural Strength Design of RC Beams with Consideration of Strain Gradient Effect World Aademy of Siene, Engineering and Tehnology Vol:8, No:6, 04 Flexural Strength Design of RC Beams with Consideration of Strain Gradient Effet Mantai Chen, Johnny Ching Ming Ho International Siene Index,

More information

Two-Way Flat Plate Concrete Floor System Analysis and Design

Two-Way Flat Plate Concrete Floor System Analysis and Design Two-Way Flat Plate Concrete Floor System Analysis and Design Version: Aug-10-017 Two-Way Flat Plate Concrete Floor System Analysis and Design The concrete floor slab system shown below is for an intermediate

More information

Maintenance Planning Of Reinforced Concrete Structures: Redesign In A Probabilistic Environment Inspection Update And Derived Decision Making

Maintenance Planning Of Reinforced Concrete Structures: Redesign In A Probabilistic Environment Inspection Update And Derived Decision Making Maintenane Planning Of Reinfored Conrete Strutures: Redesign In A Probabilisti Environment Inspetion Update And Derived Deision Making C Gehlen & C Sodeikat Consulting Bureau Professor Shiessl Germany

More information

Dr. Hazim Dwairi 10/16/2008

Dr. Hazim Dwairi 10/16/2008 10/16/2008 Department o Civil Engineering Flexural Design o R.C. Beams Tpes (Modes) o Failure Tension Failure (Dutile Failure): Reinorement ields eore onrete ruses. Su a eam is alled under- reinored eam.

More information

thirteen wood construction: column design ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

thirteen wood construction: column design ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 leture thirteen wood onstrution: olumn design Wood Columns 1 Compression Members (revisited) designed for strength & stresses

More information

What are the locations of excess energy in open channels?

What are the locations of excess energy in open channels? Leture 26 Energy Dissipation Strutures I. Introdution Exess energy should usually be dissipated in suh a way as to avoid erosion in unlined open hannels In this ontext, exess energy means exess water veloity

More information

Shear-Friction Strength of RC Walls with 550 MPa Bars

Shear-Friction Strength of RC Walls with 550 MPa Bars Proeedings of the Tenth Paifi Conferene on Earthquake Engineering Building an Earthquake-Resilient Paifi 6-8 November 215, Sydney, Australia Shear-Frition Strength of RC Walls with 55 MPa Bars Jang-woon

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 00 The Graw-Hill Copanies, n. All rights reserved. Third E CHAPTER Pure ECHANCS OF ATERALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Bending Leture Notes: J. Walt Oler Teas Teh Universit

More information

Exercise 3: Quadratic sequences

Exercise 3: Quadratic sequences Exerise 3: s Problem 1: Determine whether eah of the following sequenes is: a linear sequene; a quadrati sequene; or neither.. 3. 4. 5. 6. 7. 8. 8;17;3;53;80; 3 p ;6 p ;9 p ;1 p ;15 p ; 1;,5;5;8,5;13;

More information

Ch. 10 Design of Short Columns Subject to Axial Load and Bending

Ch. 10 Design of Short Columns Subject to Axial Load and Bending Ch. 10 Design o Short Columns Subjet to Axial Load and Bending Axial Loading and Bending Development o Interation Diagram Column Design Using P-M Interation Diagram Shear in Columns Biaxial Bending Examples

More information

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion Millennium Relativity Aeleration Composition he Relativisti Relationship between Aeleration and niform Motion Copyright 003 Joseph A. Rybzyk Abstrat he relativisti priniples developed throughout the six

More information

Uniaxial Concrete Material Behavior

Uniaxial Concrete Material Behavior COMPUTERS AND STRUCTURES, INC., JULY 215 TECHNICAL NOTE MODIFIED DARWIN-PECKNOLD 2-D REINFORCED CONCRETE MATERIAL MODEL Overview This tehnial note desribes the Modified Darwin-Peknold reinfored onrete

More information

4 Puck s action plane fracture criteria

4 Puck s action plane fracture criteria 4 Puk s ation plane frature riteria 4. Fiber frature riteria Fiber frature is primarily aused by a stressing σ whih ats parallel to the fibers. For (σ, σ, τ )-ombinations the use of a simple maximum stress

More information

Bending resistance of high performance concrete elements

Bending resistance of high performance concrete elements High Performane Strutures and Materials IV 89 Bending resistane of high performane onrete elements D. Mestrovi 1 & L. Miulini 1 Faulty of Civil Engineering, University of Zagreb, Croatia Faulty of Civil

More information

Q2. [40 points] Bishop-Hill Model: Calculation of Taylor Factors for Multiple Slip

Q2. [40 points] Bishop-Hill Model: Calculation of Taylor Factors for Multiple Slip 27-750, A.D. Rollett Due: 20 th Ot., 2011. Homework 5, Volume Frations, Single and Multiple Slip Crystal Plastiity Note the 2 extra redit questions (at the end). Q1. [40 points] Single Slip: Calulating

More information

Developing Excel Macros for Solving Heat Diffusion Problems

Developing Excel Macros for Solving Heat Diffusion Problems Session 50 Developing Exel Maros for Solving Heat Diffusion Problems N. N. Sarker and M. A. Ketkar Department of Engineering Tehnology Prairie View A&M University Prairie View, TX 77446 Abstrat This paper

More information

Purpose of reinforcement P/2 P/2 P/2 P/2

Purpose of reinforcement P/2 P/2 P/2 P/2 Department o Civil Engineering Purpose o reinorement Consider a simpl supported beam: P/2 P/2 3 1 2 P/2 P/2 3 2 1 1 Purpose o Reinorement Steel reinorement is primaril use beause o the nature o onrete

More information

Lecture-04 Design of RC Members for Shear and Torsion

Lecture-04 Design of RC Members for Shear and Torsion Lecture-04 Design of RC Members for Shear and Torsion By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Topics Addressed Design of

More information

PREDICTING THE SHEAR STRENGTH OF CONCRETE STRUCTURES

PREDICTING THE SHEAR STRENGTH OF CONCRETE STRUCTURES PREDICTING THE SHEAR STRENGTH OF CONCRETE STRUCTURES M.P.COLLINS; E.C.BENTZ; P.T.QUACH; A.W.FISHER; G.T. PROESTOS Department of Civil Engineering, University of Toronto, Canada SUMMARY Beause many shear

More information

STUDY OF INTERFACIAL BEHAVIOR OF CNT/POLYMER COMPOSITE BY CFE METHOD

STUDY OF INTERFACIAL BEHAVIOR OF CNT/POLYMER COMPOSITE BY CFE METHOD THE 19TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS STUDY OF INTERFACIAL BEHAVIOR OF CNT/POLYMER COMPOSITE BY CFE METHOD Q. S. Yang*, X. Liu, L. D. Su Department of Engineering Mehanis, Beijing University

More information

Ching Chiaw Choo, Issam Harik Published online on: 26 Sep 2013

Ching Chiaw Choo, Issam Harik Published online on: 26 Sep 2013 Tis artile was downloaded y: 10.3.98.93 On: 27 De 2018 Aess details: susription numer Puliser: CRC Press Informa Ltd Registered in England and Wales Registered Numer: 1072954 Registered offie: 5 Howik

More information

Reinforced Concrete Design

Reinforced Concrete Design Reinored Conrete Design Notation: a = depth o the eetive ompression blok in a onrete beam A g = gross area, equal to the total area ignoring any reinorement A s = area o steel reinorement in onrete beam

More information

Compression Members Local Buckling and Section Classification

Compression Members Local Buckling and Section Classification Compression Memers Loal Bukling and Setion Classifiation Summary: Strutural setions may e onsidered as an assemly of individual plate elements. Plate elements may e internal (e.g. the wes of open eams

More information

A NORMALIZED EQUATION OF AXIALLY LOADED PILES IN ELASTO-PLASTIC SOIL

A NORMALIZED EQUATION OF AXIALLY LOADED PILES IN ELASTO-PLASTIC SOIL Journal of Geongineering, Vol. Yi-Chuan 4, No. 1, Chou pp. 1-7, and April Yun-Mei 009 Hsiung: A Normalized quation of Axially Loaded Piles in lasto-plasti Soil 1 A NORMALIZD QUATION OF AXIALLY LOADD PILS

More information

An Adaptive Optimization Approach to Active Cancellation of Repeated Transient Vibration Disturbances

An Adaptive Optimization Approach to Active Cancellation of Repeated Transient Vibration Disturbances An aptive Optimization Approah to Ative Canellation of Repeated Transient Vibration Disturbanes David L. Bowen RH Lyon Corp / Aenteh, 33 Moulton St., Cambridge, MA 138, U.S.A., owen@lyonorp.om J. Gregory

More information

Diagonal Tensile Failure Mechanism of Reinforced Concrete Beams

Diagonal Tensile Failure Mechanism of Reinforced Concrete Beams Journal of Advaned Conrete Tehnology Vol., No. 3, 37-34, Otober 4 / Copyright 4 Japan Conrete Institute 37 Diagonal Tensile Failure Mehanism of Reinfored Conrete Beams Yasuhiko Sato, Toshiya Tadokoro and

More information

FREQUENCY DOMAIN FEEDFORWARD COMPENSATION. F.J. Pérez Castelo and R. Ferreiro Garcia

FREQUENCY DOMAIN FEEDFORWARD COMPENSATION. F.J. Pérez Castelo and R. Ferreiro Garcia FREQUENCY DOMAIN FEEDFORWARD COMPENSATION F.J. Pérez Castelo and R. Ferreiro Garia Dept. Ingeniería Industrial. Universidad de La Coruña javierp@ud.es, Phone: 98 7.Fax: -98-7 ferreiro@ud.es, Phone: 98

More information

Structural Integrity of Composite Laminates with Embedded Microsensors

Structural Integrity of Composite Laminates with Embedded Microsensors Strutural Integrity of Composite Laminates with Embedded Mirosensors Yi Huang, Sia Nemat-Nasser Department of Mehanial and Aerospae Engineering, Center of Exellene for Advaned Materials, University of

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 4, 2012

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 4, 2012 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume, No 4, 01 Copyright 010 All rights reserved Integrated Publishing servies Researh artile ISSN 0976 4399 Strutural Modelling of Stability

More information

Lecture 11 Buckling of Plates and Sections

Lecture 11 Buckling of Plates and Sections Leture Bukling of lates and Setions rolem -: A simpl-supported retangular plate is sujeted to a uniaxial ompressive load N, as shown in the sketh elow. a 6 N N a) Calulate and ompare ukling oeffiients

More information

Figure 1: Representative strip. = = 3.70 m. min. per unit length of the selected strip: Own weight of slab = = 0.

Figure 1: Representative strip. = = 3.70 m. min. per unit length of the selected strip: Own weight of slab = = 0. Example (8.1): Using the ACI Code approximate structural analysis, design for a warehouse, a continuous one-way solid slab supported on beams 4.0 m apart as shown in Figure 1. Assume that the beam webs

More information

IMPEDANCE EFFECTS OF LEFT TURNERS FROM THE MAJOR STREET AT A TWSC INTERSECTION

IMPEDANCE EFFECTS OF LEFT TURNERS FROM THE MAJOR STREET AT A TWSC INTERSECTION 09-1289 Citation: Brilon, W. (2009): Impedane Effets of Left Turners from the Major Street at A TWSC Intersetion. Transportation Researh Reord Nr. 2130, pp. 2-8 IMPEDANCE EFFECTS OF LEFT TURNERS FROM THE

More information

Natural Convection Experiment Measurements from a Vertical Surface

Natural Convection Experiment Measurements from a Vertical Surface OBJECTIVE Natural Convetion Experiment Measurements from a Vertial Surfae 1. To demonstrate te basi priniples of natural onvetion eat transfer inluding determination of te onvetive eat transfer oeffiient.

More information

PUNCHING SHEAR CALCULATIONS 1 ACI 318; ADAPT-PT

PUNCHING SHEAR CALCULATIONS 1 ACI 318; ADAPT-PT Structural Concrete Software System TN191_PT7_punching_shear_aci_4 011505 PUNCHING SHEAR CALCULATIONS 1 ACI 318; ADAPT-PT 1. OVERVIEW Punching shear calculation applies to column-supported slabs, classified

More information

THE EQUATION CONSIDERING CONCRETE STRENGTH AND STIRRUPS FOR DIAGONAL COMPRESSIVE CAPACITY OF RC BEAM

THE EQUATION CONSIDERING CONCRETE STRENGTH AND STIRRUPS FOR DIAGONAL COMPRESSIVE CAPACITY OF RC BEAM - Tehnial Paper - THE EQUATION CONSIDERING CONCRETE STRENGTH AND STIRRUPS FOR DIAGONAL COMPRESSIE CAPACITY OF RC BEAM Patarapol TANTIPIDOK *, Koji MATSUMOTO *, Ken WATANABE *3 and Junihiro NIWA *4 ABSTRACT

More information

COMPARISON OF COASTAL FLOODING PROBABILITY CALCULATION MODELS FOR FLOOD DEFENCES

COMPARISON OF COASTAL FLOODING PROBABILITY CALCULATION MODELS FOR FLOOD DEFENCES COMPARISON OF COASTAL FLOODING PROBABILITY CALCULATION MODELS FOR FLOOD DEFENCES Elisabet de Boer 1, Andreas Kortenhaus 2 and Pieter van Gelder 3 Reliability alulations for oastal flood defene systems

More information

Design of a Balanced-Cantilever Bridge

Design of a Balanced-Cantilever Bridge Design of a Balanced-Cantilever Bridge CL (Bridge is symmetric about CL) 0.8 L 0.2 L 0.6 L 0.2 L 0.8 L L = 80 ft Bridge Span = 2.6 L = 2.6 80 = 208 Bridge Width = 30 No. of girders = 6, Width of each girder

More information

DETERMINATION OF MATERIAL PARAMETERS OF A TEXTILE REINFORCED COMPOSITE USING AN INVERSE METHOD

DETERMINATION OF MATERIAL PARAMETERS OF A TEXTILE REINFORCED COMPOSITE USING AN INVERSE METHOD DETERMINATION OF MATERIAL PARAMETERS OF A TEXTILE REINFORCED COMPOSITE USING AN INVERSE METHOD J. Blom, H. Cuypers, P. Van Itterbeek and J. Wastiels VUB in Brussels -Faulty of Engineering, Department of

More information

UC Berkeley CE 123 Fall 2017 Instructor: Alan Kren

UC Berkeley CE 123 Fall 2017 Instructor: Alan Kren CE 123 - Reinforced Concrete Midterm Examination No. 2 Instructions: Read these instructions. Do not turn the exam over until instructed to do so. Work all problems. Pace yourself so that you have time

More information

Evaluation of effect of blade internal modes on sensitivity of Advanced LIGO

Evaluation of effect of blade internal modes on sensitivity of Advanced LIGO Evaluation of effet of blade internal modes on sensitivity of Advaned LIGO T0074-00-R Norna A Robertson 5 th Otober 00. Introdution The urrent model used to estimate the isolation ahieved by the quadruple

More information

1/29/2010 Page 2 of 65 1/29/2010 Page 3 of 65 1/29/2010 Page 4 of 65 Project Information 1/29/2010 Page 5 of 65 Muckleshoot Indian Tribe Project Number 09-118 West Detention Vault West Vault City of Auburn

More information