On the Development of Implicit Solvers for Time-Dependent Systems

Size: px
Start display at page:

Download "On the Development of Implicit Solvers for Time-Dependent Systems"

Transcription

1 School o something FACULTY School OF OTHER o Computing On the Development o Implicit Solvers or Time-Dependent Systems Peter Jimack School o Computing, University o Leeds In collaboration with: P.H. Gaskell, C.E. Goodyer, J.R. Green, Y.-Y. Koh, A.M. Mullis, J. Rosam, M. Sellier, H.M. Thompson & M.A. Walkley. AMMW03, October 2012

2 Introduction 1. Introduction 2. Time-dependent partial dierential equations/systems 3. Explicit versus implicit temporal discretisation 4. Multigrid solvers 5. Thin-ilm models or the spreading o viscous drops 6. Phase-ield models or simulating solidiication o a binary alloy 7. Parallel scalability 8. Summary and discussion

3 Time-dependent PDEs and systems Models o this type occur in a very wide range o applications including weather and climate modelling My experience is primarily with viscous low and phase-change problems and so I use examples rom these applications here (sorry!) We will ollow the approach o discretising separately in space and time: Spatial discretization leads to a large system o initial value ODEs (oten reerred to as method o lines) The examples used here are inite dierence but we have similar experiences with inite element/volume schemes in space I hope that I am able to present some ideas that can be o value to the discussions at this meeting!

4 Explicit versus implicit temporal discretisations Explicit schemes are simplest to implement but always come with conditional stability restrictions on the time step size As the spatial resolution grows these can be prohibitive This is especially true i ast transients are present and we do not wish to resolve them Unconditionally stable implicit schemes can allow the time step size to be selected based upon accuracy criteria alone but this comes at the expense o having to solve a very large algebraic system at each step! Semi-implicit schemes are can give best o both worlds e.g. treat nonlinear terms explicitly and linear terms implicitly to increase maximum stable step size Can also treat nonlinear terms implicitly however...

5 Multigrid solvers A quick overview Consider model equation u Discretization leads to an algebraic system N unknowns but number o non-zeros per row is independent o N So iterative scheme costs O(N) per sweep BUT the error reduces slowly with the number o sweeps... It typically takes a long time or the lowest requency components o the error to be damped however... the highest requency components o the error that can be represented on this grid are damped almost immediately...

6 Multigrid solvers linear example Using the dierential equation s structure Discretization on a ine grid gives: A ew sweeps o Jacobi gives: The algebraic error satisies: Approximate this error on a coarse grid: Interpolate this coarse grid correction back to the ine grid: Take a ew more sweeps o Jacobi: Note that it is possible to solve the coarse grid equation using this same algorithm recursively this is multigrid... u A û u A r e A ˆ u u e ˆ c c c c r I r e A c c e I u u ˆ ˆ u ~

7 Multigrid solvers Theory This gives an MG cycle: There exists a rigorous convergence theory, or this and similar cycles, showing mesh-independent convergence rates (e.g. Hackbusch, 1985): requires a smoothing property on the iteration requires an approximation property on The cost o each V-cycle is Hence the total cost is also O(N) O(N) c ( I, I c )

8 Example I: A thin ilm model or viscous droplets We consider a thin-ilm model or a viscous droplet lowing down an inclined plane. Lubrication approximation based upon H 0 L0

9 This leads to the Reynolds equation or the non-dimensional ilm thickness h and an associated pressure equation or p: A thin ilm model or viscous droplets cos 3 sin s h Bo h s h p y p y Bo x p x t h h h This is a nonlinear time-dependent system in h(x,y,t) A very ine spatial mesh is required to represent a thin precursor ilm Implicit time-stepping overcomes excessive conditional stability conditions allowing step selection based upon error control...

10 Nonlinear multigrid solver At each time step a large nonlinear algebraic system o equations must be n1 n1 solved or the new values: hij and p ij. Unless this can be done eiciently the method is worthless A ully coupled nonlinear Multigrid solver is used to achieve this: based upon the FAS (ull approximation scheme) approach to resolve the non-linearity this is a slight variation on the linear multigrid approach outlined above. a pointwise weighted nonlinear Jacobi iterative scheme is seen to be an adequate smoother. Excellent, h-independent, convergence results are obtained (see below).

11 Multigrid perormance or implicit time stepping Convergence rate is mesh independent...

12 Multigrid perormance or implicit time stepping Cost o solution is optimal O(N)...

13 Example II: Phase-ield model or alloy solidiication Basic Idea o Phase-Field Introduce an artiicial phase-ield variable to describes the state (Φ = -1 or liquid and φ = +1 or solid). At the interace φ varies smoothly between these bulk values the motion o this interace is determined rom the geometry and a concentration ield U.

14 Binary alloy phase-ield model (2-d or simplicity) Karma s Phase-ield model ) ( ) (1 ) '( ) ( ) '( ) ( ) '( ) ( 2 ) ( ) ( U Mc x A A y y A A x y y x x A A A t A ix Phase Equation Properties: highly nonlinear noise introduced by anisotropy unction A(Ψ) where arctan( x) y

15 Binary alloy phase-ield model (2-d or simplicity) Karma s Phase-ield Model t U k t y U t x U k t y t x U k U y U y x U x D t U k k y x y x ) ) (1 (1 2 1 ) (1 ) ( Concentration Equation Also highly nonlinear and coupled to the phase equation

16 Evolution o a typical solution in 3-d For a model o an isothermal alloy (concentration and phase ields) An example o the growth o a dendritic structure this animation plots the φ = 0 isosurace at dierent time intervals. Begins with a small solid seed. Here we impose preerred growth along the axis through our choice o anisotropy unction A...

17 Adaptive spatial discretization (3-d) Adaptive mesh reinement From the solution proiles there is an obvious need or adaptive mesh reinement. Here this is based upon hierarchical hexahedral meshes with local reinement and coarsening using PARAMESH. Have implemented a number o dierent Finite Dierence stencils all 2 nd order (based upon 7, 19 and 27 points). Adaptive remeshing is controlled by a simple gradient criterion. The ollowing diagram illustrates a typical mesh with reinement concentrated in the regions where the phase variable and the concentration variable have the highest gradients at a particular snapshot in time...

18 Adaptive spatial discretization (3-d) Adaptive mesh reinement Here we see local mesh reinement around the φ = 0 isosurace...

19 Implicit temporal discretization Explicit time integration methods Explicit methods are "easy" to apply but impose a time step restriction: t C h 2 2 Very ine mesh resolution is needed,so the time steps become excessively small (not viable). This plot shows the maximum stable time step or an isothermal model...

20 Implicit temporal discretisation Adaptive time step control Fully implicit BDF2 method, combined with variable time stepping (based upon a local error estimator), is used to overcome time-step restrictions... The adaption o the time step leads to a much larger time step than the maximum stable time step or the explicit Euler method!!

21 Nonlinear multigrid solver Nonlinear multigrid solver or adaptive meshes At each time step a large nonlinear algebraic system o equations must be n1 n1 solved or the new values: ijk and U ijk. Unless this can be done eiciently the method is worthless A ully coupled nonlinear Multigrid solver is used to achieve this: based upon the FAS (ull approximation scheme) approach to resolve the non-linearity and the MultiLevel AdapTive (MLAT) scheme o Brandt to handle the adaptivity a pointwise weighted nonlinear Jacobi iterative scheme is seen to be an adequate smoother. Excellent, h-independent, convergence results are obtained (see below).

22 Nonlinear multigrid solver Nonlinear multigrid solver or adaptive meshes Here we see close to an optimal convergence rate or the nonlinear multigrid solver applied to the isothermal problem in 3-d...

23 Nonlinear multigrid solver Nonlinear multigrid solver or adaptive meshes Here we see that the solver displays almost linear run time:

24 Results in 3-d For a model o an isothermal alloy Altering the run-time parameters gives rise to dierent dendrite morphologies in these two images a dierent under-cooling has been used, with all other parameters held constant...

25 Results in 3-d For a model o an isothermal alloy Altering the run-time parameters gives rise to dierent dendrite morphologies in these two images a dierent under-cooling has been used, with all other parameters held constant...

26 Parallel perormance o multigrid For very large time-dependent models eicient parallel implementations are essential... The bottlenecks or multigrid come rom: the need to update on each grid in a sequential manner; the limited amount o computational work on the coarsest grids. A geometric partition can help with the load balancing on each grid (though this is considerably more complex when local adaptivity is used) The issues o how to deal with the coarsest grids are very much open questions: How coarse? How accurate? Are all processors needed at this level?

27 Parallel perormance thin ilm example Illustration o domain decomposition approach Here we illustrate the geometric decomposition o the problem Only neighbour to neighbour communication is required... P0 P1 P2 P3... P9 P10 P11 P12 P13...

28 Parallel perormance thin ilm example Illustration o domain decomposition approach Here we illustrate the geometric decomposition o the problem on the coarsest grid Finer grid levels obey the same geometric partition Only neighbour to neighbour communication is required

29 Parallel perormance thin ilm example Illustration o additional capability due to parallel implementation This table illustrates the weak scalability o the nonlinear multigrid Cores Size o Grid Solver Time Multigrid levels x s x s x s x s 5 This is or a ixed number o time steps coarse grid solve is the bottleneck.

30 Parallel perormance phase ield example Illustration o additional capability due to parallel implementation Here we demonstrate the capability o combining parallelism and adaptivity Cores Uniorm Grid Adapted Grid Level (Cells) Level (Equiv Cells) 1 7 (262k) 8 (2.1M) 2 9 (16.8M) 8 8 (2 097k) 10 (134.2M) (1073.7M) 64 9 (16.8M) (8.59B) But what about scalability?

31 Parallel perormance phase ield example Partitioning strategy is key or good parallel perormance Here we demonstrate the importance o ensuring a good load balance at each mesh level in the MG hierarchy This plot shows the wallclock time per 1000 DoF or a parallel adaptive run with two loadbalancing strategies...

32 Parallel perormance algebraic multigrid Illustration o parallel perormance o AGMGv2.3 with MUMPS on coarsest level Here we demonstrate the parallel perormance o algebraic MG Cores DoF Iterations Setup Solve 32 31M s 40.4s 64 63M s 40.8s M s 41.5s M s 41.8s M s 42.5s M s 44.0s M s 48.2s M s 59.4s

33 Discussion 1. (Semi-)Implicit time-stepping is only practical i we have an eicient algebraic equation solver (nonlinear or linear) 2. We make use o multigrid (nonlinear/linear and geometric/algebraic) 3. Can combine with adaptivity and with parallel implementation 4. Scales well to thousands o cores: Coarse grid solver becomes an issue eventually May need to sacriice exact coarse grid solve (thereore optimal convergence) or eicient parallel implementation Adaptivity adds to the challenges o scalability 5. Current research is ocusing on scaling our (optimal complexity) implicit solvers to tens o thousands o cores...

Solving PDEs with Multigrid Methods p.1

Solving PDEs with Multigrid Methods p.1 Solving PDEs with Multigrid Methods Scott MacLachlan maclachl@colorado.edu Department of Applied Mathematics, University of Colorado at Boulder Solving PDEs with Multigrid Methods p.1 Support and Collaboration

More information

1. Fast Iterative Solvers of SLE

1. Fast Iterative Solvers of SLE 1. Fast Iterative Solvers of crucial drawback of solvers discussed so far: they become slower if we discretize more accurate! now: look for possible remedies relaxation: explicit application of the multigrid

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2018/19 Part 4: Iterative Methods PD

More information

Kasetsart University Workshop. Multigrid methods: An introduction

Kasetsart University Workshop. Multigrid methods: An introduction Kasetsart University Workshop Multigrid methods: An introduction Dr. Anand Pardhanani Mathematics Department Earlham College Richmond, Indiana USA pardhan@earlham.edu A copy of these slides is available

More information

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II Elliptic Problems / Multigrid Summary of Hyperbolic PDEs We looked at a simple linear and a nonlinear scalar hyperbolic PDE There is a speed associated with the change of the solution Explicit methods

More information

A Simple Explanation of the Sobolev Gradient Method

A Simple Explanation of the Sobolev Gradient Method A Simple Explanation o the Sobolev Gradient Method R. J. Renka July 3, 2006 Abstract We have observed that the term Sobolev gradient is used more oten than it is understood. Also, the term is oten used

More information

Multigrid solvers for equations arising in implicit MHD simulations

Multigrid solvers for equations arising in implicit MHD simulations Multigrid solvers for equations arising in implicit MHD simulations smoothing Finest Grid Mark F. Adams Department of Applied Physics & Applied Mathematics Columbia University Ravi Samtaney PPPL Achi Brandt

More information

Iterative Methods and Multigrid

Iterative Methods and Multigrid Iterative Methods and Multigrid Part 1: Introduction to Multigrid 1 12/02/09 MG02.prz Error Smoothing 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Initial Solution=-Error 0 10 20 30 40 50 60 70 80 90 100 DCT:

More information

Bootstrap AMG. Kailai Xu. July 12, Stanford University

Bootstrap AMG. Kailai Xu. July 12, Stanford University Bootstrap AMG Kailai Xu Stanford University July 12, 2017 AMG Components A general AMG algorithm consists of the following components. A hierarchy of levels. A smoother. A prolongation. A restriction.

More information

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall J. Basic. Appl. Sci. Res., 2(7)7270-7275, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal o Basic and Applied Scientiic Research www.textroad.com Controlling the Heat Flux Distribution by Changing

More information

Lecture : Feedback Linearization

Lecture : Feedback Linearization ecture : Feedbac inearization Niola Misovic, dipl ing and Pro Zoran Vuic June 29 Summary: This document ollows the lectures on eedbac linearization tought at the University o Zagreb, Faculty o Electrical

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 24: Preconditioning and Multigrid Solver Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 5 Preconditioning Motivation:

More information

Aspects of Multigrid

Aspects of Multigrid Aspects of Multigrid Kees Oosterlee 1,2 1 Delft University of Technology, Delft. 2 CWI, Center for Mathematics and Computer Science, Amsterdam, SIAM Chapter Workshop Day, May 30th 2018 C.W.Oosterlee (CWI)

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

Robust solution of Poisson-like problems with aggregation-based AMG

Robust solution of Poisson-like problems with aggregation-based AMG Robust solution of Poisson-like problems with aggregation-based AMG Yvan Notay Université Libre de Bruxelles Service de Métrologie Nucléaire Paris, January 26, 215 Supported by the Belgian FNRS http://homepages.ulb.ac.be/

More information

arxiv: v1 [math.na] 29 Oct 2018

arxiv: v1 [math.na] 29 Oct 2018 A Multirate Approach or Fluid-Structure Interaction Computation with Decoupled Methods Lian Zhang 1, Mingchao Cai 2 Mo Mu 3, arxiv:1810.11933v1 [math.na] 29 Oct 2018 Abstract We investigate a multirate

More information

University of Illinois at Urbana-Champaign. Multigrid (MG) methods are used to approximate solutions to elliptic partial differential

University of Illinois at Urbana-Champaign. Multigrid (MG) methods are used to approximate solutions to elliptic partial differential Title: Multigrid Methods Name: Luke Olson 1 Affil./Addr.: Department of Computer Science University of Illinois at Urbana-Champaign Urbana, IL 61801 email: lukeo@illinois.edu url: http://www.cs.uiuc.edu/homes/lukeo/

More information

Research Article Evaluation of the Capability of the Multigrid Method in Speeding Up the Convergence of Iterative Methods

Research Article Evaluation of the Capability of the Multigrid Method in Speeding Up the Convergence of Iterative Methods International Scholarly Research Network ISRN Computational Mathematics Volume 212, Article ID 172687, 5 pages doi:1.542/212/172687 Research Article Evaluation of the Capability of the Multigrid Method

More information

Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts 1 and Stephan Matthai 2 3rd Febr

Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts 1 and Stephan Matthai 2 3rd Febr HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts and Stephan Matthai Mathematics Research Report No. MRR 003{96, Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL

More information

Adaptive algebraic multigrid methods in lattice computations

Adaptive algebraic multigrid methods in lattice computations Adaptive algebraic multigrid methods in lattice computations Karsten Kahl Bergische Universität Wuppertal January 8, 2009 Acknowledgements Matthias Bolten, University of Wuppertal Achi Brandt, Weizmann

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

AMG for a Peta-scale Navier Stokes Code

AMG for a Peta-scale Navier Stokes Code AMG for a Peta-scale Navier Stokes Code James Lottes Argonne National Laboratory October 18, 2007 The Challenge Develop an AMG iterative method to solve Poisson 2 u = f discretized on highly irregular

More information

IMPLEMENTATION OF A PARALLEL AMG SOLVER

IMPLEMENTATION OF A PARALLEL AMG SOLVER IMPLEMENTATION OF A PARALLEL AMG SOLVER Tony Saad May 2005 http://tsaad.utsi.edu - tsaad@utsi.edu PLAN INTRODUCTION 2 min. MULTIGRID METHODS.. 3 min. PARALLEL IMPLEMENTATION PARTITIONING. 1 min. RENUMBERING...

More information

ENSEEIHT, 2, rue Camichel, Toulouse, France. CERFACS, 42, avenue Gaspard Coriolis, Toulouse, France

ENSEEIHT, 2, rue Camichel, Toulouse, France. CERFACS, 42, avenue Gaspard Coriolis, Toulouse, France Adaptive Observations And Multilevel Optimization In Data Assimilation by S. Gratton, M. M. Rincon-Camacho and Ph. L. Toint Report NAXYS-05-203 2 May 203 ENSEEIHT, 2, rue Camichel, 3000 Toulouse, France

More information

A primal-dual mixed finite element method. for accurate and efficient atmospheric. modelling on massively parallel computers

A primal-dual mixed finite element method. for accurate and efficient atmospheric. modelling on massively parallel computers A primal-dual mixed finite element method for accurate and efficient atmospheric modelling on massively parallel computers John Thuburn (University of Exeter, UK) Colin Cotter (Imperial College, UK) AMMW03,

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

Multigrid Methods and their application in CFD

Multigrid Methods and their application in CFD Multigrid Methods and their application in CFD Michael Wurst TU München 16.06.2009 1 Multigrid Methods Definition Multigrid (MG) methods in numerical analysis are a group of algorithms for solving differential

More information

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems P.-O. Persson and J. Peraire Massachusetts Institute of Technology 2006 AIAA Aerospace Sciences Meeting, Reno, Nevada January 9,

More information

2.6 Two-dimensional continuous interpolation 3: Kriging - introduction to geostatistics. References - geostatistics. References geostatistics (cntd.

2.6 Two-dimensional continuous interpolation 3: Kriging - introduction to geostatistics. References - geostatistics. References geostatistics (cntd. .6 Two-dimensional continuous interpolation 3: Kriging - introduction to geostatistics Spline interpolation was originally developed or image processing. In GIS, it is mainly used in visualization o spatial

More information

The achievable limits of operational modal analysis. * Siu-Kui Au 1)

The achievable limits of operational modal analysis. * Siu-Kui Au 1) The achievable limits o operational modal analysis * Siu-Kui Au 1) 1) Center or Engineering Dynamics and Institute or Risk and Uncertainty, University o Liverpool, Liverpool L69 3GH, United Kingdom 1)

More information

Multigrid finite element methods on semi-structured triangular grids

Multigrid finite element methods on semi-structured triangular grids XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, -5 septiembre 009 (pp. 8) Multigrid finite element methods on semi-structured triangular grids F.J.

More information

Estimation and detection of a periodic signal

Estimation and detection of a periodic signal Estimation and detection o a periodic signal Daniel Aronsson, Erik Björnemo, Mathias Johansson Signals and Systems Group, Uppsala University, Sweden, e-mail: Daniel.Aronsson,Erik.Bjornemo,Mathias.Johansson}@Angstrom.uu.se

More information

An efficient multigrid solver based on aggregation

An efficient multigrid solver based on aggregation An efficient multigrid solver based on aggregation Yvan Notay Université Libre de Bruxelles Service de Métrologie Nucléaire Graz, July 4, 2012 Co-worker: Artem Napov Supported by the Belgian FNRS http://homepages.ulb.ac.be/

More information

New Multigrid Solver Advances in TOPS

New Multigrid Solver Advances in TOPS New Multigrid Solver Advances in TOPS R D Falgout 1, J Brannick 2, M Brezina 2, T Manteuffel 2 and S McCormick 2 1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O.

More information

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points Roberto s Notes on Dierential Calculus Chapter 8: Graphical analysis Section 1 Extreme points What you need to know already: How to solve basic algebraic and trigonometric equations. All basic techniques

More information

Algebraic Multigrid as Solvers and as Preconditioner

Algebraic Multigrid as Solvers and as Preconditioner Ò Algebraic Multigrid as Solvers and as Preconditioner Domenico Lahaye domenico.lahaye@cs.kuleuven.ac.be http://www.cs.kuleuven.ac.be/ domenico/ Department of Computer Science Katholieke Universiteit Leuven

More information

Multigrid Approaches to Non-linear Diffusion Problems on Unstructured Meshes

Multigrid Approaches to Non-linear Diffusion Problems on Unstructured Meshes NASA/CR-2001-210660 ICASE Report No. 2001-3 Multigrid Approaches to Non-linear Diffusion Problems on Unstructured Meshes Dimitri J. Mavriplis ICASE, Hampton, Virginia ICASE NASA Langley Research Center

More information

Lecture 8 Optimization

Lecture 8 Optimization 4/9/015 Lecture 8 Optimization EE 4386/5301 Computational Methods in EE Spring 015 Optimization 1 Outline Introduction 1D Optimization Parabolic interpolation Golden section search Newton s method Multidimensional

More information

A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS

A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS MICHAEL HOLST AND FAISAL SAIED Abstract. We consider multigrid and domain decomposition methods for the numerical

More information

6. Iterative Methods for Linear Systems. The stepwise approach to the solution...

6. Iterative Methods for Linear Systems. The stepwise approach to the solution... 6 Iterative Methods for Linear Systems The stepwise approach to the solution Miriam Mehl: 6 Iterative Methods for Linear Systems The stepwise approach to the solution, January 18, 2013 1 61 Large Sparse

More information

An Overview of Fluid Animation. Christopher Batty March 11, 2014

An Overview of Fluid Animation. Christopher Batty March 11, 2014 An Overview of Fluid Animation Christopher Batty March 11, 2014 What distinguishes fluids? What distinguishes fluids? No preferred shape. Always flows when force is applied. Deforms to fit its container.

More information

Pressure-correction algorithm to solve Poisson system with constant coefficients for fast two-phase simulations

Pressure-correction algorithm to solve Poisson system with constant coefficients for fast two-phase simulations Center or Turbulence Research Annual Research Bries 2009 367 Pressure-correction algorithm to solve Poisson system with constant coeicients or ast two-phase simulations By D. Kim AND P. Moin 1. Motivation

More information

Computational Methods for Domains with! Complex Boundaries-I!

Computational Methods for Domains with! Complex Boundaries-I! http://www.nd.edu/~gtrggva/cfd-course/ Computational Methods or Domains with Comple Boundaries-I Grétar Trggvason Spring For most engineering problems it is necessar to deal with comple geometries, consisting

More information

Solution Methods. Steady State Diffusion Equation. Lecture 04

Solution Methods. Steady State Diffusion Equation. Lecture 04 Solution Methods Steady State Diffusion Equation Lecture 04 1 Solution methods Focus on finite volume method. Background of finite volume method. Discretization example. General solution method. Convergence.

More information

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a Chapter 4 CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS Convective heat transer analysis o nanoluid lowing inside a straight tube o circular cross-section under laminar and turbulent conditions

More information

Fast algorithms for the inverse medium problem. George Biros University of Pennsylvania

Fast algorithms for the inverse medium problem. George Biros University of Pennsylvania Fast algorithms for the inverse medium problem George Biros University of Pennsylvania Acknowledgments S. Adavani, H. Sundar, S. Rahul (grad students) C. Davatzikos, D. Shen, H. Litt (heart project) Akcelic,

More information

SOE3213/4: CFD Lecture 3

SOE3213/4: CFD Lecture 3 CFD { SOE323/4: CFD Lecture 3 @u x @t @u y @t @u z @t r:u = 0 () + r:(uu x ) = + r:(uu y ) = + r:(uu z ) = @x @y @z + r 2 u x (2) + r 2 u y (3) + r 2 u z (4) Transport equation form, with source @x Two

More information

Multigrid and Domain Decomposition Methods for Electrostatics Problems

Multigrid and Domain Decomposition Methods for Electrostatics Problems Multigrid and Domain Decomposition Methods for Electrostatics Problems Michael Holst and Faisal Saied Abstract. We consider multigrid and domain decomposition methods for the numerical solution of electrostatics

More information

Multigrid Methods for Linear Systems with Stochastic Entries Arising in Lattice QCD. Andreas Frommer

Multigrid Methods for Linear Systems with Stochastic Entries Arising in Lattice QCD. Andreas Frommer Methods for Linear Systems with Stochastic Entries Arising in Lattice QCD Andreas Frommer Collaborators The Dirac operator James Brannick, Penn State University Björn Leder, Humboldt Universität Berlin

More information

Adjoint Error Estimation for Elastohydrodynamic Lubrication

Adjoint Error Estimation for Elastohydrodynamic Lubrication Adjoint Error Estimation for Elastohydrodynamic Lubrication by Daniel Edward Hart Submitted in accordance with the requirements for the degree of Doctor of Philosophy. The University of Leeds School of

More information

Scattered Data Approximation of Noisy Data via Iterated Moving Least Squares

Scattered Data Approximation of Noisy Data via Iterated Moving Least Squares Scattered Data Approximation o Noisy Data via Iterated Moving Least Squares Gregory E. Fasshauer and Jack G. Zhang Abstract. In this paper we ocus on two methods or multivariate approximation problems

More information

An Algebraic Multigrid Method for Eigenvalue Problems

An Algebraic Multigrid Method for Eigenvalue Problems An Algebraic Multigrid Method for Eigenvalue Problems arxiv:1503.08462v1 [math.na] 29 Mar 2015 Xiaole Han, Yunhui He, Hehu Xie and Chunguang You Abstract An algebraic multigrid method is proposed to solve

More information

Constrained Minimization and Multigrid

Constrained Minimization and Multigrid Constrained Minimization and Multigrid C. Gräser (FU Berlin), R. Kornhuber (FU Berlin), and O. Sander (FU Berlin) Workshop on PDE Constrained Optimization Hamburg, March 27-29, 2008 Matheon Outline Successive

More information

Numerical Solution of Ordinary Differential Equations in Fluctuationlessness Theorem Perspective

Numerical Solution of Ordinary Differential Equations in Fluctuationlessness Theorem Perspective Numerical Solution o Ordinary Dierential Equations in Fluctuationlessness Theorem Perspective NEJLA ALTAY Bahçeşehir University Faculty o Arts and Sciences Beşiktaş, İstanbul TÜRKİYE TURKEY METİN DEMİRALP

More information

An Immersed Interface Method for the Incompressible Navier-Stokes Equations in Irregular Domains

An Immersed Interface Method for the Incompressible Navier-Stokes Equations in Irregular Domains An Immersed Interace Method or the Incompressible Navier-Stokes Equations in Irregular Domains Duc-Vinh Le, Boo Cheong Khoo, Jaime Peraire Singapore-MIT Alliance Department o Mechanical Engineering, National

More information

Introduction to Heat and Mass Transfer. Week 9

Introduction to Heat and Mass Transfer. Week 9 Introduction to Heat and Mass Transfer Week 9 補充! Multidimensional Effects Transient problems with heat transfer in two or three dimensions can be considered using the solutions obtained for one dimensional

More information

1 General description of the OpenFOAM suite

1 General description of the OpenFOAM suite Santiago Márquez Damián-Final Work-Computational Fluid Dynamics Description and utilization o interfoam multiphase solver 1 General description o the OpenFOAM suite OpenFOAM Open Field Operation and Manipulation

More information

Parallel-in-Time Optimization with the General-Purpose XBraid Package

Parallel-in-Time Optimization with the General-Purpose XBraid Package Parallel-in-Time Optimization with the General-Purpose XBraid Package Stefanie Günther, Jacob Schroder, Robert Falgout, Nicolas Gauger 7th Workshop on Parallel-in-Time methods Wednesday, May 3 rd, 2018

More information

PDE Solvers for Fluid Flow

PDE Solvers for Fluid Flow PDE Solvers for Fluid Flow issues and algorithms for the Streaming Supercomputer Eran Guendelman February 5, 2002 Topics Equations for incompressible fluid flow 3 model PDEs: Hyperbolic, Elliptic, Parabolic

More information

Linear Solvers. Andrew Hazel

Linear Solvers. Andrew Hazel Linear Solvers Andrew Hazel Introduction Thus far we have talked about the formulation and discretisation of physical problems...... and stopped when we got to a discrete linear system of equations. Introduction

More information

Non-newtonian Rabinowitsch Fluid Effects on the Lubrication Performances of Sine Film Thrust Bearings

Non-newtonian Rabinowitsch Fluid Effects on the Lubrication Performances of Sine Film Thrust Bearings International Journal o Mechanical Engineering and Applications 7; 5(): 6-67 http://www.sciencepublishinggroup.com/j/ijmea doi:.648/j.ijmea.75.4 ISSN: -X (Print); ISSN: -48 (Online) Non-newtonian Rabinowitsch

More information

Fluid Animation. Christopher Batty November 17, 2011

Fluid Animation. Christopher Batty November 17, 2011 Fluid Animation Christopher Batty November 17, 2011 What distinguishes fluids? What distinguishes fluids? No preferred shape Always flows when force is applied Deforms to fit its container Internal forces

More information

6. Multigrid & Krylov Methods. June 1, 2010

6. Multigrid & Krylov Methods. June 1, 2010 June 1, 2010 Scientific Computing II, Tobias Weinzierl page 1 of 27 Outline of This Session A recapitulation of iterative schemes Lots of advertisement Multigrid Ingredients Multigrid Analysis Scientific

More information

Proceedings of Eight SIAM Conference on Parallel Processing for Scientific Computing, 10 pages, CD-ROM Format, Minneapolis, Minnesota, March 14-17,

Proceedings of Eight SIAM Conference on Parallel Processing for Scientific Computing, 10 pages, CD-ROM Format, Minneapolis, Minnesota, March 14-17, Three Dimensional Monte Carlo Device imulation with Parallel Multigrid olver Can K. andalc 1 C. K. Koc 1. M. Goodnick 2 Abstract We present the results in embedding a multigrid solver for Poisson's equation

More information

INTRODUCTION TO MULTIGRID METHODS

INTRODUCTION TO MULTIGRID METHODS INTRODUCTION TO MULTIGRID METHODS LONG CHEN 1. ALGEBRAIC EQUATION OF TWO POINT BOUNDARY VALUE PROBLEM We consider the discretization of Poisson equation in one dimension: (1) u = f, x (0, 1) u(0) = u(1)

More information

A Fourier Transform Model in Excel #1

A Fourier Transform Model in Excel #1 A Fourier Transorm Model in Ecel # -This is a tutorial about the implementation o a Fourier transorm in Ecel. This irst part goes over adjustments in the general Fourier transorm ormula to be applicable

More information

Simulating Solid Tumor Growth Using Multigrid Algorithms

Simulating Solid Tumor Growth Using Multigrid Algorithms Simulating Solid Tumor Growth Using Multigrid Algorithms Asia Wyatt Applied Mathematics, Statistics, and Scientific Computation Program Advisor: Doron Levy Department of Mathematics/CSCAMM Abstract In

More information

A Cartesian adaptive level set method for two-phase flows

A Cartesian adaptive level set method for two-phase flows Center or Turbulence Research Annual Research Bries 2003 227 A Cartesian adaptive level set method or two-phase lows By F. Ham AND Y.-N. Young 1. Motivation and objectives Simulations o lows involving

More information

Migration with Implicit Solvers for the Time-harmonic Helmholtz

Migration with Implicit Solvers for the Time-harmonic Helmholtz Migration with Implicit Solvers for the Time-harmonic Helmholtz Yogi A. Erlangga, Felix J. Herrmann Seismic Laboratory for Imaging and Modeling, The University of British Columbia {yerlangga,fherrmann}@eos.ubc.ca

More information

Extreme Values of Functions

Extreme Values of Functions Extreme Values o Functions When we are using mathematics to model the physical world in which we live, we oten express observed physical quantities in terms o variables. Then, unctions are used to describe

More information

Parallelizing large scale time domain electromagnetic inverse problem

Parallelizing large scale time domain electromagnetic inverse problem Parallelizing large scale time domain electromagnetic inverse problems Eldad Haber with: D. Oldenburg & R. Shekhtman + Emory University, Atlanta, GA + The University of British Columbia, Vancouver, BC,

More information

What make cloth hard to simulate?

What make cloth hard to simulate? Cloth Simulation What make cloth hard to simulate? Due to the thin and flexible nature of cloth, it produces detailed folds and wrinkles, which in turn can lead to complicated selfcollisions. Cloth is

More information

Introduction to Heat and Mass Transfer. Week 8

Introduction to Heat and Mass Transfer. Week 8 Introduction to Heat and Mass Transfer Week 8 Next Topic Transient Conduction» Analytical Method Plane Wall Radial Systems Semi-infinite Solid Multidimensional Effects Analytical Method Lumped system analysis

More information

A greedy strategy for coarse-grid selection

A greedy strategy for coarse-grid selection A greedy strategy for coarse-grid selection S. MacLachlan Yousef Saad August 3, 2006 Abstract Efficient solution of the very large linear systems that arise in numerical modelling of real-world applications

More information

Aggregation-based algebraic multigrid

Aggregation-based algebraic multigrid Aggregation-based algebraic multigrid from theory to fast solvers Yvan Notay Université Libre de Bruxelles Service de Métrologie Nucléaire CEMRACS, Marseille, July 18, 2012 Supported by the Belgian FNRS

More information

An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84

An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84 An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84 Introduction Almost all numerical methods for solving PDEs will at some point be reduced to solving A

More information

Supplementary material for Continuous-action planning for discounted infinite-horizon nonlinear optimal control with Lipschitz values

Supplementary material for Continuous-action planning for discounted infinite-horizon nonlinear optimal control with Lipschitz values Supplementary material or Continuous-action planning or discounted ininite-horizon nonlinear optimal control with Lipschitz values List o main notations x, X, u, U state, state space, action, action space,

More information

Numerical Methods I Solving Nonlinear Equations

Numerical Methods I Solving Nonlinear Equations Numerical Methods I Solving Nonlinear Equations Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 16th, 2014 A. Donev (Courant Institute)

More information

Introduction to Multigrid Method

Introduction to Multigrid Method Introduction to Multigrid Metod Presented by: Bogojeska Jasmina /08/005 JASS, 005, St. Petersburg 1 Te ultimate upsot of MLAT Te amount of computational work sould be proportional to te amount of real

More information

Solution Methods. Steady convection-diffusion equation. Lecture 05

Solution Methods. Steady convection-diffusion equation. Lecture 05 Solution Methods Steady convection-diffusion equation Lecture 05 1 Navier-Stokes equation Suggested reading: Gauss divergence theorem Integral form The key step of the finite volume method is to integrate

More information

Ultra Fast Calculation of Temperature Profiles of VLSI ICs in Thermal Packages Considering Parameter Variations

Ultra Fast Calculation of Temperature Profiles of VLSI ICs in Thermal Packages Considering Parameter Variations Ultra Fast Calculation o Temperature Proiles o VLSI ICs in Thermal Packages Considering Parameter Variations Je-Hyoung Park, Virginia Martín Hériz, Ali Shakouri, and Sung-Mo Kang Dept. o Electrical Engineering,

More information

The Algebraic Multigrid Projection for Eigenvalue Problems; Backrotations and Multigrid Fixed Points. Sorin Costiner and Shlomo Ta'asan

The Algebraic Multigrid Projection for Eigenvalue Problems; Backrotations and Multigrid Fixed Points. Sorin Costiner and Shlomo Ta'asan The Algebraic Multigrid Projection for Eigenvalue Problems; Backrotations and Multigrid Fixed Points Sorin Costiner and Shlomo Ta'asan Department of Applied Mathematics and Computer Science The Weizmann

More information

Parallel Methods for ODEs

Parallel Methods for ODEs Parallel Methods for ODEs Levels of parallelism There are a number of levels of parallelism that are possible within a program to numerically solve ODEs. An obvious place to start is with manual code restructuring

More information

Numerical Approximation of Phase Field Models

Numerical Approximation of Phase Field Models Numerical Approximation of Phase Field Models Lecture 2: Allen Cahn and Cahn Hilliard Equations with Smooth Potentials Robert Nürnberg Department of Mathematics Imperial College London TUM Summer School

More information

Basic Aspects of Discretization

Basic Aspects of Discretization Basic Aspects of Discretization Solution Methods Singularity Methods Panel method and VLM Simple, very powerful, can be used on PC Nonlinear flow effects were excluded Direct numerical Methods (Field Methods)

More information

Spectral element agglomerate AMGe

Spectral element agglomerate AMGe Spectral element agglomerate AMGe T. Chartier 1, R. Falgout 2, V. E. Henson 2, J. E. Jones 4, T. A. Manteuffel 3, S. F. McCormick 3, J. W. Ruge 3, and P. S. Vassilevski 2 1 Department of Mathematics, Davidson

More information

Using an Auction Algorithm in AMG based on Maximum Weighted Matching in Matrix Graphs

Using an Auction Algorithm in AMG based on Maximum Weighted Matching in Matrix Graphs Using an Auction Algorithm in AMG based on Maximum Weighted Matching in Matrix Graphs Pasqua D Ambra Institute for Applied Computing (IAC) National Research Council of Italy (CNR) pasqua.dambra@cnr.it

More information

Fluctuationlessness Theorem and its Application to Boundary Value Problems of ODEs

Fluctuationlessness Theorem and its Application to Boundary Value Problems of ODEs Fluctuationlessness Theorem and its Application to Boundary Value Problems o ODEs NEJLA ALTAY İstanbul Technical University Inormatics Institute Maslak, 34469, İstanbul TÜRKİYE TURKEY) nejla@be.itu.edu.tr

More information

The concept of limit

The concept of limit Roberto s Notes on Dierential Calculus Chapter 1: Limits and continuity Section 1 The concept o limit What you need to know already: All basic concepts about unctions. What you can learn here: What limits

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information

COMPARISON OF TWO METHODS TO SOLVE PRESSURES IN SMALL VOLUMES IN REAL-TIME SIMULATION OF A MOBILE DIRECTIONAL CONTROL VALVE

COMPARISON OF TWO METHODS TO SOLVE PRESSURES IN SMALL VOLUMES IN REAL-TIME SIMULATION OF A MOBILE DIRECTIONAL CONTROL VALVE COMPARISON OF TWO METHODS TO SOLVE PRESSURES IN SMALL VOLUMES IN REAL-TIME SIMULATION OF A MOBILE DIRECTIONAL CONTROL VALVE Rafael ÅMAN*, Heikki HANDROOS*, Pasi KORKEALAAKSO** and Asko ROUVINEN** * Laboratory

More information

19.2 Mathematical description of the problem. = f(p; _p; q; _q) G(p; q) T ; (II.19.1) g(p; q) + r(t) _p _q. f(p; v. a p ; q; v q ) + G(p; q) T ; a q

19.2 Mathematical description of the problem. = f(p; _p; q; _q) G(p; q) T ; (II.19.1) g(p; q) + r(t) _p _q. f(p; v. a p ; q; v q ) + G(p; q) T ; a q II-9-9 Slider rank 9. General Information This problem was contributed by Bernd Simeon, March 998. The slider crank shows some typical properties of simulation problems in exible multibody systems, i.e.,

More information

On High-Rate Cryptographic Compression Functions

On High-Rate Cryptographic Compression Functions On High-Rate Cryptographic Compression Functions Richard Ostertág and Martin Stanek Department o Computer Science Faculty o Mathematics, Physics and Inormatics Comenius University Mlynská dolina, 842 48

More information

CHAPTER 1: INTRODUCTION. 1.1 Inverse Theory: What It Is and What It Does

CHAPTER 1: INTRODUCTION. 1.1 Inverse Theory: What It Is and What It Does Geosciences 567: CHAPTER (RR/GZ) CHAPTER : INTRODUCTION Inverse Theory: What It Is and What It Does Inverse theory, at least as I choose to deine it, is the ine art o estimating model parameters rom data

More information

Numerical calculation of the electron mobility in ZnS and ZnSe semiconductors using the iterative method

Numerical calculation of the electron mobility in ZnS and ZnSe semiconductors using the iterative method International Journal o the Physical Sciences Vol. 5(11), pp. 1752-1756, 18 September, 21 Available online at http://www.academicjournals.org/ijps ISSN 1992-195 21 Academic Journals Full Length Research

More information

Algorithms for fluid-structure interaction problems

Algorithms for fluid-structure interaction problems 9 Algorithms or luid-structure interaction problems Miguel A. Fernández, Jean-Frédéric Gerbeau Fluid-structure coupled problems and their analysis have been addressed in the previous chapters particularly

More information

Geometric Multigrid Methods for the Helmholtz equations

Geometric Multigrid Methods for the Helmholtz equations Geometric Multigrid Methods for the Helmholtz equations Ira Livshits Ball State University RICAM, Linz, 4, 6 November 20 Ira Livshits (BSU) - November 20, Linz / 83 Multigrid Methods Aim: To understand

More information

(One Dimension) Problem: for a function f(x), find x 0 such that f(x 0 ) = 0. f(x)

(One Dimension) Problem: for a function f(x), find x 0 such that f(x 0 ) = 0. f(x) Solving Nonlinear Equations & Optimization One Dimension Problem: or a unction, ind 0 such that 0 = 0. 0 One Root: The Bisection Method This one s guaranteed to converge at least to a singularity, i not

More information

Density Functional Modeling of Nanocrystalline Materials

Density Functional Modeling of Nanocrystalline Materials Density Functional Modeling of Nanocrystalline Materials A new approach for modeling atomic scale properties in materials Peter Stefanovic Supervisor: Nikolas Provatas 70 / Part 1-7 February 007 Density

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information