Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points

Size: px
Start display at page:

Download "Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points"

Transcription

1 Roberto s Notes on Dierential Calculus Chapter 8: Graphical analysis Section 1 Extreme points What you need to know already: How to solve basic algebraic and trigonometric equations. All basic techniques o dierentiation and the graphical meaning o a derivative. What you can learn here: How to use derivatives to identiy the extreme values, that is maxima and minima, o the graph o a unction. The derivative was designed to provide the slope o the graph o a unction, so it is not surprising that it can also provide urther useul inormation about such graph. It is now time to make ull use o this connection and to develop ways to analyze and identiy eatures o the graph o a unction by using derivatives. As it is so oten the case in mathematics, it will be useul to begin by ollowing Aristotle s advice and deine some concepts precisely, or at least as precisely as we need them to be. Deinition An absolute minimum or a unction x is a point c, ( c ) on the graph o x that is not higher than any other point o such graph. An absolute maximum or a unction x is a point c, ( c ) on the graph o x that is not lower than any other point o such graph. In simple words, an absolute maximum is the highest point and an absolute minimum is the lowest point on the whole graph, except possibly or other points with the same y-coordinate. Beore anyone starts objecting to these deinitions, let me state that many authors reer to the number c as the maximum or minimum o a unction, not Dierential Calculus Chapter 8: Graphical analysis Section 1: Extreme points Page 1 the point. Such a choice makes sense rom many points o view and I respect it highly. However, or a number o reasons related to my desire to explain these concepts in a simple way, I preer to give the name o maximum or minimum to the point, not just its y coordinate.

2 The same applies to the next deinitions. I the point minimum o or extremum or Deinition x. c, c is an absolute maximum or x, then we call it an extreme point In mathematics, whenever an object is deined we ask three basic questions: 1) Under which conditions can we be sure that it exists? (Existence) ) Is there only one such object in any given situation, or can there be several? (Uniqueness) 3) How do we ind one? (Construction) In the case o extreme points, it is clear, by considering the sine and cosine unctions, that they are not unique, so do not be surprised i you ind more than one extreme point or the same unction. What about the other two questions? The existence question has a nice answer in the ollowing classic theorem. Technical act The Extreme Value Theorem I a unction x is continuous on a closed interval ab,, then it has at least one absolute maximum and at least one absolute minimum on ab., The ormal proo o this theorem is rather technical and I will skip it. I you are interested in seeing one, you can start here. However, it is an important theorem since it can be used both in later calculus theory and in applied problems. 3 y x x x 3, 1 3 This is a polynomial unction, so it is continuous. Since we are restricting its domain to the closed interval 1, 3, the extreme value theorem assures us that it has at least one absolute maximum and one absolute minimum. The graph, shown here, conirms this conclusion, although we are still not sure o where these points occur. It looks like they occur at x 1, 0,, 3, but we cannot be sure based on the graph only. We need to wait until we see the answer to the construction problem. 3 y x x x 3, 1 3 This is the same unction as beore and its graph looks exactly the same on the calculator, BUT But the end points o the domain are NOT included and thereore the Extreme Value Theorem does not apply and does not guarantee the existence o extreme values. Notice, however, that this unction still has an absolute maximum, at or near x 0, and an absolute minimum, at or near x. The act that we cannot use the theorem does not mean that the unction has no absolute extrema: it is a oneway only theorem! This last example shows a weakness o existence theorems: they do not tell us how to ind what we are looking or, nor can they assure us o the absence o the Dierential Calculus Chapter 8: Graphical analysis Section 1: Extreme points Page

3 eature. So we need to look at how to solve the construction problem. Beore doing that, we need a ew more deinitions. A relative or local maximum or a unction c, ( c ) x is a point on the graph o Deinition x that is not lower than any other point o such graph on some x interval ab, around c. A relative or local minimum or a unction c, ( c ) x is a point on the graph o x that is not higher than any other point o such graph on some x interval ab, around c. Local maxima and minima are collectively called local extrema. I agree, and I hope you have seen the next two as well: I include all these deinitions or your convenience and or completeness. By the way, you will ind that the next two deinitions are also presented a little dierently by some authors. Again, my choice is based on my desire to keep things simple. A cut point o a unction such that either: c 0 or c domain o Deinition y x is a value x c DNE and c is at the boundary o the x x x x 4 1 x, because the unction becomes 0 x, because the unction is undeined there AND these are at The cut points o this unction are there, and 1 the boundary o the domain o the unction, since such domain is:, 11, D Notice that the unction is also undeined at 0 x, or anywhere between -1 and 1, but these are not cut points as they are totally outside the domain. In simple words, a relative or local extremum is the highest or lowest point or a section o the graph that does not include end points Lots o deinitions! I am glad that I have seen them beore! Dierential Calculus Chapter 8: Graphical analysis Section 1: Extreme points Page 3

4 Deinition x that is in the domain o A critical value o a unction x x 4 x 1 The derivative o this unction is: x x is a cut point o x. x x 1 x 4 x x4 x1 x1 with cut points at x 1 5 (derivative becomes 0) and x 1 (derivative is undeined). However, only x 1 5 are critical values, since they are the only ones in the domain o And now, drum roll please! x. Technical act The extended Fermat s theorem I a unction c, c, then c is a critical value o x has a relative extremum at x. Proo Again the proo is rather technical and not useul or our goals and you can ind it here. However, to convince yoursel o its truth, just consider the act that i c, the unction s slope is positive, hence the unction is going up, 0 while i c 0, the slope is negative and the unction is going down. But at a relative extremum the unction is neither going up nor down! Thereore, we are let with the other two options: either x 0 or it is undeined. Keep in mind that this is not a ormal proo, just a simple argument that I hope can convince you. x x 4 x 1 We just saw that this unction has critical values at x 1 5. I we look at the graph o this unction, we notice that at x 1 5 there is a relative maximum and at x 1 5 a relative minimum. Notice that neither is an absolute extremum, but that no other relative extrema exist or this unction. What does the other cut point o the unction correspond to? Why did you call it the extended Fermat s theorem? Because Fermat only looked at the case o dierentiable unctions, thus excluding the case when the derivative is undeined. But that case its nicely into the statement o the theorem, so I included it, again or simplicity. This theorem also gives us a great strategy to look or extreme points. Dierential Calculus Chapter 8: Graphical analysis Section 1: Extreme points Page 4

5 Strategy or inding extreme points o a unction To identiy all extreme points o a unction x : 1. Determine all critical values o x, including the end points o its domain.. Check whether each o them is a relative minimum, a relative maximum, or neither. 3. Among all relative extrema, choose the absolute ones by picking the highest and lowest points. What do you mean by neither? Doesn t it have to be one or the other? No! The theorem states that i there is an extremum, it occurs at a critical value, but it does not claim that every critical value corresponds to an extremum. Some critical values are neither! y 3 x 5 The derivative o this unction is x 0 y 3x, so that its only critical value is at. But as we can see rom the graph, the unction has neither a maximum nor a minimum there. /3 y x x x, 1 1 This unction is continuous and its domain is a closed interval, so, by the EVT, it has both absolute maximum and minimum. But where are they, and does the unction have other relative extrema? Here is a irst graph: 3 y x x x 3, 1 3 The derivative o this unction is: y x x x x x 3 6 3, 1 3 Notice that the derivative is not deined at the end points, since the unction is only continuous on one side. Thereore, the critical values are at x 0,, where the derivative is 0, and at x 1, 3 where the derivative is undeined, but the unction exists. These are exactly the values we ound earlier by looking at the graph. It looks like the end points are the only extrema, but let us use Fermat s theorem to conirm this. The derivative o this unction is: 1/ 3 1/ 3 1 3x y' x 1/ 3 3 3x This is 0 at 1 x and undeined at x 0 and at the end points x 1. 7 Dierential Calculus Chapter 8: Graphical analysis Section 1: Extreme points Page 5

6 These are all critical values, since they are all in the domain o the original unction. Thereore, any extrema must be at some o these points, but which ones and are they all extrema? By looking at the previous graph, we can see that there is an absolute maximum at x 1 and an absolute minimum at x 1, but what about the other two? By using a more ocused window we can see them more clearly: Do we have to rely always on the calculator s graph to check what kind o extreme point we have at a critical value? Certainly not, since the irst developers o calculus did not have a calculator and still could igure it out! I suspect that you either know or have a pretty good idea o how to classiy critical values, that is, how to decide whether they provide a maximum, minimum or neither. But we ll discuss a proper strategy to do that in the next section. We have a relative minimum at x 0, a relative maximum at 1 x. 7 Notice that in this example the relative minimum occurs or a value o x or which the derivative is undeined, NOT equal to 0. Summary An extreme point is one where the unction reaches a maximum or a minimum, either locally or globally. The Extreme Value Theorem tells us that every unction that is continuous over a closed interval reaches at least one absolute maximum and at least one absolute minimum. Fermat s theorem, in its extended version, tells us that relative extrema are only ound at the critical values, that is, at values in the domain o the unction where the derivative is either 0 or undeined. This generates a simple strategy to identiy all extreme points o a unction. Common errors to avoid Do not assume that every critical value corresponds to a maximum or a minimum: it may be neither! Don t ignore the end points o the domain, i they are included in the domain, since they are critical values too. Dierential Calculus Chapter 8: Graphical analysis Section 1: Extreme points Page 6

7 Learning questions or Section D 8-1 Review questions: 1. Explain what the Extreme Value Theorem states.. Explain what Fermat s Theorem states. 3. Describe the dierence between the Extreme Value Theorem and Fermat s Theorem, but don t just restate them! 4. Describe the strategy or identiying all possible extreme points o a unction. Memory questions: 1. Which theorem guarantees the existence o extreme points?. Which theorem is used to ind the location o the extreme points? 3. What is the derivative o a unction at one o its maximum or minimum values? 4. What are the two conditions under which we can use the Extreme Value Theorem? 5. Which two conditions deine a critical value? Computation questions: For each o the unctions in questions 1-0, identiy and classiy all extreme values, that is: a) Use the Extreme Value Theorem to determine i extreme points exist. b) Use Fermat s Theorem to identiy which points can possibly be maximum or minimum points. c) Use the calculator s graph to determine i each o them is a maximum, a minimum or neither. y 1 x on, y x x 3 1 Dierential Calculus Chapter 8: Graphical analysis Section 1: Extreme points Page 7 3. y x x x

8 4. y 6x x y x x e on [-3, 1] y 4x 3x 1x y e e x x on [-1, 1]. 6. y x 1x y on 1 x 3. x 8. 1 y on 1 x 1. x 5x 9. y x 3 on (-1, 1) 19. y x ln x on [1, 4] y x ln x on,. 1. The unction 3 x x i x y x x 1 has the graph shown here. 5x 10. y x 3 on [-1, 1] 5x 11. y x 3 5x 1. y x 3 on 0, 13. y x sin x on [-3, 3] 14. g( x) x cos x on 0, cos x sin x 15. x on 0, 16. y x tan x Use calculus to identiy all possible critical values o the unction and use the graph to classiy each such point as a maximum, minimum or neither.. For what values o a and b, i any, does the unction y minimum at 1,? b x 1 bx ax e have a ax 3. The unction x x e has a local minimum at can a and b be? 0,. What Dierential Calculus Chapter 8: Graphical analysis Section 1: Extreme points Page 8

9 3 4. A unction has ormula x ax bx x and has critical values at x 1,. Determine the values o a and b and classiy these two critical values. Theory questions: 1. I (3)=0, does that mean that at x=3 there is a maximum or a minimum?. Is it possible that a unction y x derivative is not 0? has a maximum at a point where the 3. Which values are cut points or a derivative, but are not critical values? 4. Any cubic unction is continuous, but has no absolute maximum. Why doesn t that contradict the Extreme Value Theorem? 5. Is it possible or a unction to have several critical values, but no maxima or minima? 6. How do we distinguish between extreme points and vertical asymptotes? 7. Why is the restriction o a unction to a closed interval useul in applications? a) Does the unction show the presence o local maximum and minimum points? b) Does the Extreme Value Theorem apply to this unction? c) Where do its relative maxima and minima seem to occur? d) What can we say about the derivative at each relative maximum or minimum? e) Does Fermat s theorem apply to this unction? 8. Use the graph shown here to answer the ollowing questions about the unction it represents: Proo questions: 1. Decide which unctions in the amily described by the ormula y x x c, c 0 have extreme points, i any, and i so, o what type. Dierential Calculus Chapter 8: Graphical analysis Section 1: Extreme points Page 9

10 Templated questions: 1. Identiy and classiy the extreme points o the unctions listed in the document Sample unctions to analyze.. Construct a reasonably simple unction and use the methods o this section to identiy and classiy its extreme points. What questions do you have or your instructor? Dierential Calculus Chapter 8: Graphical analysis Section 1: Extreme points Page 10

The concept of limit

The concept of limit Roberto s Notes on Dierential Calculus Chapter 1: Limits and continuity Section 1 The concept o limit What you need to know already: All basic concepts about unctions. What you can learn here: What limits

More information

Special types of Riemann sums

Special types of Riemann sums Roberto s Notes on Subject Chapter 4: Deinite integrals and the FTC Section 3 Special types o Riemann sums What you need to know already: What a Riemann sum is. What you can learn here: The key types o

More information

Curve Sketching. The process of curve sketching can be performed in the following steps:

Curve Sketching. The process of curve sketching can be performed in the following steps: Curve Sketching So ar you have learned how to ind st and nd derivatives o unctions and use these derivatives to determine where a unction is:. Increasing/decreasing. Relative extrema 3. Concavity 4. Points

More information

Extreme Values of Functions

Extreme Values of Functions Extreme Values o Functions When we are using mathematics to model the physical world in which we live, we oten express observed physical quantities in terms o variables. Then, unctions are used to describe

More information

Basic properties of limits

Basic properties of limits Roberto s Notes on Dierential Calculus Chapter : Limits and continuity Section Basic properties o its What you need to know already: The basic concepts, notation and terminology related to its. What you

More information

Example: When describing where a function is increasing, decreasing or constant we use the x- axis values.

Example: When describing where a function is increasing, decreasing or constant we use the x- axis values. Business Calculus Lecture Notes (also Calculus With Applications or Business Math II) Chapter 3 Applications o Derivatives 31 Increasing and Decreasing Functions Inormal Deinition: A unction is increasing

More information

Definition: Let f(x) be a function of one variable with continuous derivatives of all orders at a the point x 0, then the series.

Definition: Let f(x) be a function of one variable with continuous derivatives of all orders at a the point x 0, then the series. 2.4 Local properties o unctions o several variables In this section we will learn how to address three kinds o problems which are o great importance in the ield o applied mathematics: how to obtain the

More information

MEAN VALUE THEOREM. Section 3.2 Calculus AP/Dual, Revised /30/2018 1:16 AM 3.2: Mean Value Theorem 1

MEAN VALUE THEOREM. Section 3.2 Calculus AP/Dual, Revised /30/2018 1:16 AM 3.2: Mean Value Theorem 1 MEAN VALUE THEOREM Section 3. Calculus AP/Dual, Revised 017 viet.dang@humbleisd.net 7/30/018 1:16 AM 3.: Mean Value Theorem 1 ACTIVITY A. Draw a curve (x) on a separate sheet o paper within a deined closed

More information

( x) f = where P and Q are polynomials.

( x) f = where P and Q are polynomials. 9.8 Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm ( ) ( ) ( ) P where P and Q are polynomials. Q An eample o a simple rational

More information

Basic mathematics of economic models. 3. Maximization

Basic mathematics of economic models. 3. Maximization John Riley 1 January 16 Basic mathematics o economic models 3 Maimization 31 Single variable maimization 1 3 Multi variable maimization 6 33 Concave unctions 9 34 Maimization with non-negativity constraints

More information

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor.

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. Lab on Taylor Polynomials This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. In this Lab we will approimate complicated unctions by simple unctions. The

More information

(C) The rationals and the reals as linearly ordered sets. Contents. 1 The characterizing results

(C) The rationals and the reals as linearly ordered sets. Contents. 1 The characterizing results (C) The rationals and the reals as linearly ordered sets We know that both Q and R are something special. When we think about about either o these we usually view it as a ield, or at least some kind o

More information

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve.

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve. Dierentiation The main problem o dierential calculus deals with inding the slope o the tangent line at a point on a curve. deinition() : The slope o a curve at a point p is the slope, i it eists, o the

More information

Absolute and Local Extrema

Absolute and Local Extrema Extrema of Functions We can use the tools of calculus to help us understand and describe the shapes of curves. Here is some of the data that derivatives f (x) and f (x) can provide about the shape of the

More information

Math Review and Lessons in Calculus

Math Review and Lessons in Calculus Math Review and Lessons in Calculus Agenda Rules o Eponents Functions Inverses Limits Calculus Rules o Eponents 0 Zero Eponent Rule a * b ab Product Rule * 3 5 a / b a-b Quotient Rule 5 / 3 -a / a Negative

More information

Consider the function f(x, y). Recall that we can approximate f(x, y) with a linear function in x and y:

Consider the function f(x, y). Recall that we can approximate f(x, y) with a linear function in x and y: Taylor s Formula Consider the unction (x, y). Recall that we can approximate (x, y) with a linear unction in x and y: (x, y) (a, b)+ x (a, b)(x a)+ y (a, b)(y b) Notice that again this is just a linear

More information

9.3 Graphing Functions by Plotting Points, The Domain and Range of Functions

9.3 Graphing Functions by Plotting Points, The Domain and Range of Functions 9. Graphing Functions by Plotting Points, The Domain and Range o Functions Now that we have a basic idea o what unctions are and how to deal with them, we would like to start talking about the graph o

More information

Objectives. By the time the student is finished with this section of the workbook, he/she should be able

Objectives. By the time the student is finished with this section of the workbook, he/she should be able FUNCTIONS Quadratic Functions......8 Absolute Value Functions.....48 Translations o Functions..57 Radical Functions...61 Eponential Functions...7 Logarithmic Functions......8 Cubic Functions......91 Piece-Wise

More information

AP Calculus Notes: Unit 1 Limits & Continuity. Syllabus Objective: 1.1 The student will calculate limits using the basic limit theorems.

AP Calculus Notes: Unit 1 Limits & Continuity. Syllabus Objective: 1.1 The student will calculate limits using the basic limit theorems. Syllabus Objective:. The student will calculate its using the basic it theorems. LIMITS how the outputs o a unction behave as the inputs approach some value Finding a Limit Notation: The it as approaches

More information

Increasing and Decreasing Functions and the First Derivative Test. Increasing and Decreasing Functions. Video

Increasing and Decreasing Functions and the First Derivative Test. Increasing and Decreasing Functions. Video SECTION and Decreasing Functions and the First Derivative Test 79 Section and Decreasing Functions and the First Derivative Test Determine intervals on which a unction is increasing or decreasing Appl

More information

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question.

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question. Mth Calculus Practice Eam Questions NOTE: These questions should not be taken as a complete list o possible problems. The are merel intended to be eamples o the diicult level o the regular eam questions.

More information

8.4 Inverse Functions

8.4 Inverse Functions Section 8. Inverse Functions 803 8. Inverse Functions As we saw in the last section, in order to solve application problems involving eponential unctions, we will need to be able to solve eponential equations

More information

Section 3.4: Concavity and the second Derivative Test. Find any points of inflection of the graph of a function.

Section 3.4: Concavity and the second Derivative Test. Find any points of inflection of the graph of a function. Unit 3: Applications o Dierentiation Section 3.4: Concavity and the second Derivative Test Determine intervals on which a unction is concave upward or concave downward. Find any points o inlection o the

More information

Horizontal asymptotes

Horizontal asymptotes Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 5 Limits at infinity and Horizontal asymptotes What you need to know already: The concept, notation and terminology of

More information

Answer Key-Math 11- Optional Review Homework For Exam 2

Answer Key-Math 11- Optional Review Homework For Exam 2 Answer Key-Math - Optional Review Homework For Eam 2. Compute the derivative or each o the ollowing unctions: Please do not simpliy your derivatives here. I simliied some, only in the case that you want

More information

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions RATIONAL FUNCTIONS Finding Asymptotes..347 The Domain....350 Finding Intercepts.....35 Graphing Rational Functions... 35 345 Objectives The ollowing is a list o objectives or this section o the workbook.

More information

CS 361 Meeting 28 11/14/18

CS 361 Meeting 28 11/14/18 CS 361 Meeting 28 11/14/18 Announcements 1. Homework 9 due Friday Computation Histories 1. Some very interesting proos o undecidability rely on the technique o constructing a language that describes the

More information

STAT 801: Mathematical Statistics. Hypothesis Testing

STAT 801: Mathematical Statistics. Hypothesis Testing STAT 801: Mathematical Statistics Hypothesis Testing Hypothesis testing: a statistical problem where you must choose, on the basis o data X, between two alternatives. We ormalize this as the problem o

More information

Rolle s Theorem and the Mean Value Theorem. Rolle s Theorem

Rolle s Theorem and the Mean Value Theorem. Rolle s Theorem 0_00qd //0 0:50 AM Page 7 7 CHAPTER Applications o Dierentiation Section ROLLE S THEOREM French mathematician Michel Rolle irst published the theorem that bears his name in 9 Beore this time, however,

More information

Flip-Flop Functions KEY

Flip-Flop Functions KEY For each rational unction, list the zeros o the polynomials in the numerator and denominator. Then, using a calculator, sketch the graph in a window o [-5.75, 6] by [-5, 5], and provide an end behavior

More information

New Functions from Old Functions

New Functions from Old Functions .3 New Functions rom Old Functions In this section we start with the basic unctions we discussed in Section. and obtain new unctions b shiting, stretching, and relecting their graphs. We also show how

More information

9.1 The Square Root Function

9.1 The Square Root Function Section 9.1 The Square Root Function 869 9.1 The Square Root Function In this section we turn our attention to the square root unction, the unction deined b the equation () =. (1) We begin the section

More information

2. ETA EVALUATIONS USING WEBER FUNCTIONS. Introduction

2. ETA EVALUATIONS USING WEBER FUNCTIONS. Introduction . ETA EVALUATIONS USING WEBER FUNCTIONS Introduction So ar we have seen some o the methods or providing eta evaluations that appear in the literature and we have seen some o the interesting properties

More information

Math 1314 Lesson 23 Partial Derivatives

Math 1314 Lesson 23 Partial Derivatives Math 1314 Lesson 3 Partial Derivatives When we are asked to ind the derivative o a unction o a single variable, (x), we know exactly what to do However, when we have a unction o two variables, there is

More information

A.P. Calculus Holiday Packet

A.P. Calculus Holiday Packet A.P. Calculus Holiday Packet Since this is a take-home, I cannot stop you from using calculators but you would be wise to use them sparingly. When you are asked questions about graphs of functions, do

More information

! " k x 2k$1 # $ k x 2k. " # p $ 1! px! p " p 1 # !"#$%&'"()'*"+$",&-('./&-/. !"#$%&'()"*#%+!'",' -./#")'.,&'+.0#.1)2,'!%)2%! !"#$%&'"%(")*$+&#,*$,#

!  k x 2k$1 # $ k x 2k.  # p $ 1! px! p  p 1 # !#$%&'()'*+$,&-('./&-/. !#$%&'()*#%+!',' -./#)'.,&'+.0#.1)2,'!%)2%! !#$%&'%()*$+&#,*$,# "#$%&'()"*#%+'",' -./#")'.,&'+.0#.1)2,' %)2% "#$%&'"()'*"+$",&-('./&-/. Taylor Series o a unction at x a is " # a k " # " x a# k k0 k It is a Power Series centered at a. Maclaurin Series o a unction is

More information

Answers for Calculus Review (Extrema and Concavity)

Answers for Calculus Review (Extrema and Concavity) Answers for Calculus Review 4.1-4.4 (Extrema and Concavity) 1. A critical number is a value of the independent variable (a/k/a x) in the domain of the function at which the derivative is zero or undefined.

More information

Section 3.3 Maximum and Minimum Values

Section 3.3 Maximum and Minimum Values Section 3.3 Maximum and Minimum Values Definition For a function f defined on a set S of real numbers and a number c in S. A) f(c) is called the absolute maximum of f on S if f(c) f(x) for all x in S.

More information

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context.

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context. Math 18.0A Gradients, Chain Rule, Implicit Dierentiation, igher Order Derivatives These notes ocus on our things: (a) the application o gradients to ind normal vectors to curves suraces; (b) the generaliation

More information

A Library of Functions

A Library of Functions LibraryofFunctions.nb 1 A Library of Functions Any study of calculus must start with the study of functions. Functions are fundamental to mathematics. In its everyday use the word function conveys to us

More information

APPENDIX 1 ERROR ESTIMATION

APPENDIX 1 ERROR ESTIMATION 1 APPENDIX 1 ERROR ESTIMATION Measurements are always subject to some uncertainties no matter how modern and expensive equipment is used or how careully the measurements are perormed These uncertainties

More information

Roberto s Notes on Linear Algebra Chapter 4: Matrix Algebra Section 7. Inverse matrices

Roberto s Notes on Linear Algebra Chapter 4: Matrix Algebra Section 7. Inverse matrices Roberto s Notes on Linear Algebra Chapter 4: Matrix Algebra Section 7 Inverse matrices What you need to know already: How to add and multiply matrices. What elementary matrices are. What you can learn

More information

Problem Set. Problems on Unordered Summation. Math 5323, Fall Februray 15, 2001 ANSWERS

Problem Set. Problems on Unordered Summation. Math 5323, Fall Februray 15, 2001 ANSWERS Problem Set Problems on Unordered Summation Math 5323, Fall 2001 Februray 15, 2001 ANSWERS i 1 Unordered Sums o Real Terms In calculus and real analysis, one deines the convergence o an ininite series

More information

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A Math 13 Recitation Worksheet 1A 1 Plot these points in the y plane: A 0,0 B 5,0 C 0, 4 D 3,5 Without using a calculator, sketch a graph o each o these in the y plane: A y B 3 Consider the unction a Evaluate

More information

106 Chapter 5 Curve Sketching. If f(x) has a local extremum at x = a and. THEOREM Fermat s Theorem f is differentiable at a, then f (a) = 0.

106 Chapter 5 Curve Sketching. If f(x) has a local extremum at x = a and. THEOREM Fermat s Theorem f is differentiable at a, then f (a) = 0. 5 Curve Sketching Whether we are interested in a function as a purely mathematical object or in connection with some application to the real world, it is often useful to know what the graph of the function

More information

Section 1.2 Domain and Range

Section 1.2 Domain and Range Section 1. Domain and Range 1 Section 1. Domain and Range One o our main goals in mathematics is to model the real world with mathematical unctions. In doing so, it is important to keep in mind the limitations

More information

Making Piecewise Functions Continuous and Differentiable by Dave Slomer

Making Piecewise Functions Continuous and Differentiable by Dave Slomer Making Piecewise Functions Continuous and Differentiable by Dave Slomer Piecewise-defined functions are applied in areas such as Computer Assisted Drawing (CAD). Many piecewise functions in textbooks are

More information

Simpler Functions for Decompositions

Simpler Functions for Decompositions Simpler Functions or Decompositions Bernd Steinbach Freiberg University o Mining and Technology, Institute o Computer Science, D-09596 Freiberg, Germany Abstract. This paper deals with the synthesis o

More information

Review of Prerequisite Skills for Unit # 2 (Derivatives) U2L2: Sec.2.1 The Derivative Function

Review of Prerequisite Skills for Unit # 2 (Derivatives) U2L2: Sec.2.1 The Derivative Function UL1: Review o Prerequisite Skills or Unit # (Derivatives) Working with the properties o exponents Simpliying radical expressions Finding the slopes o parallel and perpendicular lines Simpliying rational

More information

Hyperbolic functions

Hyperbolic functions Roberto s Notes on Differential Calculus Chapter 5: Derivatives of transcendental functions Section Derivatives of Hyperbolic functions What you need to know already: Basic rules of differentiation, including

More information

CHAPTER 1: INTRODUCTION. 1.1 Inverse Theory: What It Is and What It Does

CHAPTER 1: INTRODUCTION. 1.1 Inverse Theory: What It Is and What It Does Geosciences 567: CHAPTER (RR/GZ) CHAPTER : INTRODUCTION Inverse Theory: What It Is and What It Does Inverse theory, at least as I choose to deine it, is the ine art o estimating model parameters rom data

More information

Math 121 Winter 2010 Review Sheet

Math 121 Winter 2010 Review Sheet Math 121 Winter 2010 Review Sheet March 14, 2010 This review sheet contains a number of problems covering the material that we went over after the third midterm exam. These problems (in conjunction with

More information

Roberto s Notes on Linear Algebra Chapter 10: Eigenvalues and diagonalization Section 3. Diagonal matrices

Roberto s Notes on Linear Algebra Chapter 10: Eigenvalues and diagonalization Section 3. Diagonal matrices Roberto s Notes on Linear Algebra Chapter 10: Eigenvalues and diagonalization Section 3 Diagonal matrices What you need to know already: Basic definition, properties and operations of matrix. What you

More information

1. Definition: Order Statistics of a sample.

1. Definition: Order Statistics of a sample. AMS570 Order Statistics 1. Deinition: Order Statistics o a sample. Let X1, X2,, be a random sample rom a population with p.d.. (x). Then, 2. p.d.. s or W.L.O.G.(W thout Loss o Ge er l ty), let s ssu e

More information

MHF 4U Unit 7: Combining Functions May 29, Review Solutions

MHF 4U Unit 7: Combining Functions May 29, Review Solutions MHF 4U Unit 7: Combining Functions May 9, 008. Review Solutions Use the ollowing unctions to answer questions 5, ( ) g( ), h( ) sin, w {(, ), (3, ), (4, 7)}, r, and l ) log ( ) + (, ) Determine: a) + w

More information

Limits for parametric and polar curves

Limits for parametric and polar curves Roberto s Notes on Differential Calculus Chapter : Resolving indeterminate forms Section 7 Limits for parametric and polar curves What you need to know already: How to handle limits for functions of the

More information

«Develop a better understanding on Partial fractions»

«Develop a better understanding on Partial fractions» «Develop a better understanding on Partial ractions» ackground inormation: The topic on Partial ractions or decomposing actions is irst introduced in O level dditional Mathematics with its applications

More information

Sign of derivative test: when does a function decreases or increases:

Sign of derivative test: when does a function decreases or increases: Sign of derivative test: when does a function decreases or increases: If for all then is increasing on. If for all then is decreasing on. If then the function is not increasing or decreasing at. We defined

More information

Integration by substitution

Integration by substitution Roberto s Notes on Integral Calculus Chapter : Integration methods Section 1 Integration by substitution or by change of variable What you need to know already: What an indefinite integral is. The chain

More information

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a)

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a) MATH 2250 Calculus I Eric Perkerson Test 3 Review Sections Covered: 3.11, 4.1 4.6. Topics Covered: Linearization, Extreme Values, The Mean Value Theorem, Consequences of the Mean Value Theorem, Concavity

More information

Absolute and Local Extrema. Critical Points In the proof of Rolle s Theorem, we actually demonstrated the following

Absolute and Local Extrema. Critical Points In the proof of Rolle s Theorem, we actually demonstrated the following Absolute and Local Extrema Definition 1 (Absolute Maximum). A function f has an absolute maximum at c S if f(x) f(c) x S. We call f(c) the absolute maximum of f on S. Definition 2 (Local Maximum). A function

More information

AP CALCULUS AB. Summer Assignment. Page 1

AP CALCULUS AB. Summer Assignment. Page 1 AP CALCULUS AB Summer Assignment Page 1 Welcome to AP Calculus AB. This will be the toughest class yet in your mathematical careers but the benefit you will receive by having this experience in high school

More information

MSE405 Microstructure Characterization XRD-1 Lab X-ray diffraction in crystallography

MSE405 Microstructure Characterization XRD-1 Lab X-ray diffraction in crystallography X-ray diraction in crystallography I. Goals Crystallography is the science that studies the structure (and structure-derived properties) o crystals. Among its many tools, X-ray diraction (XRD) has had

More information

Exponential and Logarithmic. Functions CHAPTER The Algebra of Functions; Composite

Exponential and Logarithmic. Functions CHAPTER The Algebra of Functions; Composite CHAPTER 9 Exponential and Logarithmic Functions 9. The Algebra o Functions; Composite Functions 9.2 Inverse Functions 9.3 Exponential Functions 9.4 Exponential Growth and Decay Functions 9.5 Logarithmic

More information

UMS 7/2/14. Nawaz John Sultani. July 12, Abstract

UMS 7/2/14. Nawaz John Sultani. July 12, Abstract UMS 7/2/14 Nawaz John Sultani July 12, 2014 Notes or July, 2 2014 UMS lecture Abstract 1 Quick Review o Universals Deinition 1.1. I S : D C is a unctor and c an object o C, a universal arrow rom c to S

More information

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f()

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f() 4.1 & 4. Student Notes Using the First and Second Derivatives Deinition A unction has an absolute maimum (or global maimum) at c i ( c) ( ) or all in D, where D is the domain o. The number () c is called

More information

Physics 2B Chapter 17 Notes - First Law of Thermo Spring 2018

Physics 2B Chapter 17 Notes - First Law of Thermo Spring 2018 Internal Energy o a Gas Work Done by a Gas Special Processes The First Law o Thermodynamics p Diagrams The First Law o Thermodynamics is all about the energy o a gas: how much energy does the gas possess,

More information

Supplementary material for Continuous-action planning for discounted infinite-horizon nonlinear optimal control with Lipschitz values

Supplementary material for Continuous-action planning for discounted infinite-horizon nonlinear optimal control with Lipschitz values Supplementary material or Continuous-action planning or discounted ininite-horizon nonlinear optimal control with Lipschitz values List o main notations x, X, u, U state, state space, action, action space,

More information

Additional exercises in Stationary Stochastic Processes

Additional exercises in Stationary Stochastic Processes Mathematical Statistics, Centre or Mathematical Sciences Lund University Additional exercises 8 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

More information

Exponential Functions. Michelle Northshield

Exponential Functions. Michelle Northshield Exponential Functions Michelle Northshield Introduction The exponential unction is probably the most recognizable graph to many nonmathematicians. The typical graph o an exponential growth model shows

More information

1.2. Functions and Their Properties. Copyright 2011 Pearson, Inc.

1.2. Functions and Their Properties. Copyright 2011 Pearson, Inc. 1.2 Functions and Their Properties Copyright 2011 Pearson, Inc. What you ll learn about Function Definition and Notation Domain and Range Continuity Increasing and Decreasing Functions Boundedness Local

More information

Lecture : Feedback Linearization

Lecture : Feedback Linearization ecture : Feedbac inearization Niola Misovic, dipl ing and Pro Zoran Vuic June 29 Summary: This document ollows the lectures on eedbac linearization tought at the University o Zagreb, Faculty o Electrical

More information

1.5 Inverse Trigonometric Functions

1.5 Inverse Trigonometric Functions 1.5 Inverse Trigonometric Functions Remember that only one-to-one functions have inverses. So, in order to find the inverse functions for sine, cosine, and tangent, we must restrict their domains to intervals

More information

Integration by partial fractions

Integration by partial fractions Roberto s Notes on Integral Calculus Chapter : Integration methods Section 15 Integration by partial fractions with non-repeated quadratic factors What you need to know already: How to use the integration

More information

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on Mat 7 Calculus III Updated on 10/4/07 Dr. Firoz Chapter 14 Partial Derivatives Section 14.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair

More information

Lecture 11: Extrema. Nathan Pflueger. 2 October 2013

Lecture 11: Extrema. Nathan Pflueger. 2 October 2013 Lecture 11: Extrema Nathan Pflueger 2 October 201 1 Introduction In this lecture we begin to consider the notion of extrema of functions on chosen intervals. This discussion will continue in the lectures

More information

Differential Equaitons Equations

Differential Equaitons Equations Welcome to Multivariable Calculus / Dierential Equaitons Equations The Attached Packet is or all students who are planning to take Multibariable Multivariable Calculus/ Dierential Equations in the all.

More information

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2:

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: 03 17 08 3 All about lines 3.1 The Rectangular Coordinate System Know how to plot points in the rectangular coordinate system. Know the

More information

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function.

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function. Precalculus Notes: Unit Polynomial Functions Syllabus Objective:.9 The student will sketch the graph o a polynomial, radical, or rational unction. Polynomial Function: a unction that can be written in

More information

Graphical Analysis and Errors MBL

Graphical Analysis and Errors MBL Graphical Analysis and Errors MBL I Graphical Analysis Graphs are vital tools for analyzing and displaying data Graphs allow us to explore the relationship between two quantities -- an independent variable

More information

1 Lecture 25: Extreme values

1 Lecture 25: Extreme values 1 Lecture 25: Extreme values 1.1 Outline Absolute maximum and minimum. Existence on closed, bounded intervals. Local extrema, critical points, Fermat s theorem Extreme values on a closed interval Rolle

More information

Tangent Line Approximations

Tangent Line Approximations 60_009.qd //0 :8 PM Page SECTION.9 Dierentials Section.9 EXPLORATION Tangent Line Approimation Use a graphing utilit to graph. In the same viewing window, graph the tangent line to the graph o at the point,.

More information

3.3 Limits and Infinity

3.3 Limits and Infinity Calculus Maimus. Limits Infinity Infinity is not a concrete number, but an abstract idea. It s not a destination, but a really long, never-ending journey. It s one of those mind-warping ideas that is difficult

More information

Calculus. Applications of Differentiations (II)

Calculus. Applications of Differentiations (II) Calculus Applications of Differentiations (II) Outline 1 Maximum and Minimum Values Absolute Extremum Local Extremum and Critical Number 2 Increasing and Decreasing First Derivative Test Outline 1 Maximum

More information

1.18 Multiple Choice Questions on Limits

1.18 Multiple Choice Questions on Limits 24 The AP CALCULUS PROBLEM BOOK 3x 4 2x + 33. lim x 7x 8x 5 =.8 Multiple Choice Questions on Limits A) B) C) 0 D) 3 7 E) 3 8 34. lim x 0 x = A) B) C) 0 D) E) does not exist 9x 2 35. lim x /3 3x = A) B)

More information

Polynomial Form. Factored Form. Perfect Squares

Polynomial Form. Factored Form. Perfect Squares We ve seen how to solve quadratic equations (ax 2 + bx + c = 0) by factoring and by extracting square roots, but what if neither of those methods are an option? What do we do with a quadratic equation

More information

Shaker Rigs revisited

Shaker Rigs revisited Shaker Rigs revisited One o the irst articles I ever wrote or Racecar Engineering was on 4 post and 7 post shaker rigs. That article was over 5 years a go and a lot o water has lowed under the bridge and

More information

AH 2700A. Attenuator Pair Ratio for C vs Frequency. Option-E 50 Hz-20 khz Ultra-precision Capacitance/Loss Bridge

AH 2700A. Attenuator Pair Ratio for C vs Frequency. Option-E 50 Hz-20 khz Ultra-precision Capacitance/Loss Bridge 0 E ttenuator Pair Ratio or vs requency NEEN-ERLN 700 Option-E 0-0 k Ultra-precision apacitance/loss ridge ttenuator Ratio Pair Uncertainty o in ppm or ll Usable Pairs o Taps 0 0 0. 0. 0. 07/08/0 E E E

More information

The basics of frame theory

The basics of frame theory First version released on 30 June 2006 This version released on 30 June 2006 The basics o rame theory Harold Simmons The University o Manchester hsimmons@ manchester.ac.uk This is the irst part o a series

More information

Basic methods to solve equations

Basic methods to solve equations Roberto s Notes on Prerequisites for Calculus Chapter 1: Algebra Section 1 Basic methods to solve equations What you need to know already: How to factor an algebraic epression. What you can learn here:

More information

We would now like to turn our attention to a specific family of functions, the one to one functions.

We would now like to turn our attention to a specific family of functions, the one to one functions. 9.6 Inverse Functions We would now like to turn our attention to a speciic amily o unctions, the one to one unctions. Deinition: One to One unction ( a) (b A unction is called - i, or any a and b in the

More information

Secondary Math 3 Honors Unit 10: Functions Name:

Secondary Math 3 Honors Unit 10: Functions Name: Secondary Math 3 Honors Unit 10: Functions Name: Parent Functions As you continue to study mathematics, you will find that the following functions will come up again and again. Please use the following

More information

Algebra II Notes Inverse Functions Unit 1.2. Inverse of a Linear Function. Math Background

Algebra II Notes Inverse Functions Unit 1.2. Inverse of a Linear Function. Math Background Algebra II Notes Inverse Functions Unit 1. Inverse o a Linear Function Math Background Previously, you Perormed operations with linear unctions Identiied the domain and range o linear unctions In this

More information

(One Dimension) Problem: for a function f(x), find x 0 such that f(x 0 ) = 0. f(x)

(One Dimension) Problem: for a function f(x), find x 0 such that f(x 0 ) = 0. f(x) Solving Nonlinear Equations & Optimization One Dimension Problem: or a unction, ind 0 such that 0 = 0. 0 One Root: The Bisection Method This one s guaranteed to converge at least to a singularity, i not

More information

Finite Dimensional Hilbert Spaces are Complete for Dagger Compact Closed Categories (Extended Abstract)

Finite Dimensional Hilbert Spaces are Complete for Dagger Compact Closed Categories (Extended Abstract) Electronic Notes in Theoretical Computer Science 270 (1) (2011) 113 119 www.elsevier.com/locate/entcs Finite Dimensional Hilbert Spaces are Complete or Dagger Compact Closed Categories (Extended bstract)

More information

4 The Trigonometric Functions

4 The Trigonometric Functions Mathematics Learning Centre, University of Sydney 8 The Trigonometric Functions The definitions in the previous section apply to between 0 and, since the angles in a right angle triangle can never be greater

More information

Classification of effective GKM graphs with combinatorial type K 4

Classification of effective GKM graphs with combinatorial type K 4 Classiication o eective GKM graphs with combinatorial type K 4 Shintarô Kuroki Department o Applied Mathematics, Faculty o Science, Okayama Uniervsity o Science, 1-1 Ridai-cho Kita-ku, Okayama 700-0005,

More information

Trigonometric integrals by basic methods

Trigonometric integrals by basic methods Roberto s Notes on Integral Calculus Chapter : Integration methods Section 7 Trigonometric integrals by basic methods What you need to know already: Integrals of basic trigonometric functions. Basic trigonometric

More information

IMP 2007 Introductory math course. 5. Optimization. Antonio Farfán Vallespín

IMP 2007 Introductory math course. 5. Optimization. Antonio Farfán Vallespín IMP 007 Introductory math course 5. Optimization Antonio Farán Vallespín Toniaran@hotmail.com Derivatives Why are derivatives so important in economics? Derivatives inorm us o the eect o changes o the

More information

A Fourier Transform Model in Excel #1

A Fourier Transform Model in Excel #1 A Fourier Transorm Model in Ecel # -This is a tutorial about the implementation o a Fourier transorm in Ecel. This irst part goes over adjustments in the general Fourier transorm ormula to be applicable

More information