The Poincare map for randomly perturbed periodic mo5on

Size: px
Start display at page:

Download "The Poincare map for randomly perturbed periodic mo5on"

Transcription

1 The Poincare map for randomly perturbed periodic mo5on Georgi Medvedev Drexel University SIAM Conference on Applica1ons of Dynamical Systems May 19, 2013

2 Pawel Hitczenko and Georgi Medvedev, The Poincare map for randomly perturbed periodic mo5on, J. Nonlinear Sci., 2013 Work par5ally supported by NSF through grant DMS

3 Burs5ng in a Single Cell Model C v = I ion (v, n,u) n = n (v) n τ (v) u = ε(i Ca (v) kv) x L x 1 E y sn y bp y t

4 Burs5ng and Spiking in the Single Cell Model x L x 1 E y sn y bp y t x L x 1 E y sn y c y bp y t

5 A Stochas5c Model of Burs5ng C v = I ion (v, n,u)+σ 1 w 1 n = n (v) n +σ 2 w 2 τ (v) u = ε(i Ca (v) kv) n 0.4 v(t) 30 Frequency, v t Number of spikes Hitczenko and Medvedev, SIAM J. Appl. Math., 2009.

6 Stochas5c Mixed- Mode Oscilla5ons C v = I ion (v, n, h)+σ 1 w 1 n = n (v) n τ (v) h = h (v) h τ h (v) n v(t) 1 Frequency, % v t Number of small oscillations

7 Burs5ng in a Coupled Network N v (i) =...+ g a ij (v (i 1) v (i) ) + σ 1 j=1 n (i) (i) =...+ σ 2 w 2 u (i) =..., w 1 (i) i =1,2,...,N Density 0.08 n 0.04 v Number of spikes Medvedev and Zhuravytska, Biol. Cyberne5cs, 2012

8 The exit problem x t = f (x t )+σ P(x t ) W t, P(x) R (d+1) (d+1) O = x = u(θ) : θ { S 1 = R 1 / Z}, u(t +1) = u(t) n v

9 The Local Coordinates x 2! " v(θ), z 1 (θ), z 2 (θ),, z d (θ )}, # x 1 v(θ) = u(θ) u(θ), θ S 1 (cf. Hale, Ordinary Differen5al Equa5ons)

10 In new coordinates x 2 x = u(θ)+ Z(θ)ρ, θ S 1 Z(θ) = ( z 1 (θ), z 1 (θ),, z d (θ)) R (d+1) d x 1 we have θ t =1+ a(θ t ) T ρ t +σ h(θ t ) T W t + ρ t = R(θ t )ρ t +σ H(θ t ) T W t +

11 The Poincare map x 2 θ t =1+ a(θ t ) T ρ t +σ h(θ t ) T W t + ρ t = R(θ t )ρ t +σ H(θ t ) T W t + x 1 Σ : x = u(0)+ Z(0)ρ, ρ <δ τ = inf{t > 0.5 : θ t =1} P : ρ 0 ρ τ

12 The Poincare map ρ = A(I +σ Bζ )ρ +ση +O(σ 2, ρ 2 ) τ σ =1+ b(1) T X(1)ρ 0 σζ 1 + o(σ )+O( ρ 0 2 ) A = X(1), B = X(1) 1 X(1), ζ =ξ-b(1)t η, 1 ξ = h(s) T dw s, η = X(t)X(s) 1 H(s) T dw s, 0 b(t) T = a(s) T X(t)X(s) 1 H(s) T ds

13 The Lineariza5on of the Poincare map ρ n = A(I +σ Bζ n )ρ n +ση n A is a stable matrix, i.e., ρ(a)<1-ε {ζ n },{η n } are Gaussian random processes A! 1 ε, Ax! (1 ε) x!, D h = {x R d : x! h} The first exit time: τ (ρ n, D h ) = min{n : ρ n D h }

14 Y is asympto5cally geometric random variable with parameter p if P(Y = n) P(Y n) p as n

15 The Lineariza5on of the Poincare map ρ n = A(I +σ Bζ n )ρ n +ση n A is a stable matrix, i.e., ρ(a)<1-ε The first exit time: τ (ρ n, D h ) = min{n : ρ n D h } Theorem 1. For all 0<σ <σ 0 (ε), τ is an asymptotically geometric RV with parameter p such that C 1 σ exp{-c 2 σ 2 }(1+O(σ 2 )) p C 2 σ exp{-c 3 σ 2 }(1+O(σ 2 ))

16 Sta5s5cs of the first exit 5me for the full Poincare map ρ n = A(I +σ Bζ n )ρ n +ση n +O(σ 2, ρ 2 ) A is a stable matrix, i.e., ρ(a)<1-ε The first exit time: τ (ρ n, D h ) = min{n : ρ n D h } Theorem 2. For all 0<σ <σ 0 (ε), for all n 2 P(τ = n) P(τ n) p, 0 p Cσ 2/3.

17 The randomly perturbed linear map y n = M n y n 1 + z n, M n = A(I +σξ n B), z n = σgη n A is a stable matrix, i.e., ρ(a)<1-ε ξ n, η n are IID standard normal RVs in R and R d B, G are d d matrices, G is nondegenerate Theorem 3. For all 0<σ <σ 0 (ε), C 1 σ exp{-c 2 σ 2 }(1+O(σ 2 )) p C 2 σ exp{-c 3 σ 2 }(1+O(σ 2 ))

18 Two Technical Lemmas y n = M n y n 1 + z n, M n = A(I +σξ n B), z n = σgη n d Lemma 4. y n " " y; y is independent of (ξ, z). The proof is based on the results due to Kesten (1973). Lemma 5. For some 0 < C 1 < C 2 <1, C 1 P(Ms + z D h ) C 2 uniformly in s D h. The proof uses the fact that A is stable and estimates for normal RVs.

19 The Proof of Theorem 3 P(τ = n +1) = P(y n+1 D h, y k D h, k [n]) = P(y n+1 D h y k D h, k [n])p(y k D h, k [n]) = P(y n+1 D h y n D h )P(τ n +1) Need to show that the ratio below converges to a nonzero limit P(τ = n +1) P(τ n +1) = P(y n+1 D h y n D h ) = P(M n+1 y n + z n D h y n D h ) = P(M n+1 y n + z n D h, y n D h ) P(y n D h )

20 The Proof of Theorem 3 P(τ = n +1) P(τ n +1) = P(M n+1y n + z n D h, y n D h ). P(y n D h ) By Lemma 5, C 1 P(y D h ) P(Ms + z D h )df y (s) C 2 P(y D h ) D h Finally, 0 < C 1 p = lim P(τ = n +1) P(τ n +1) C 2 <1.

21 Conclusions We constructed the Poincare map for the randomly perturbed limit cycle Analyzed sta5s5cs of the first exit 5me Applica5ons: burs5ng and mixed- mode oscilla5ons in neuronal models

Noise-induced bursting. Georgi Medvedev

Noise-induced bursting. Georgi Medvedev Noise-induced bursting Georgi Medvedev Department of Mathematics, Dreel University September 16, 27 Two problems Noise-induced bursting in single cell models (with Pawel Hitczenko, Dreel U.) Bursting in

More information

The geometry of spontaneous spiking in neuronal networks

The geometry of spontaneous spiking in neuronal networks The geometry of spontaneous spiking in neuronal networks Georgi Medvedev Drexel University Mathemacs Colloquium Rensselaer Polytechnic Instute March 4, 203 Work par=ally supported by NSF through grant

More information

Lower Tail Probabilities and Normal Comparison Inequalities. In Memory of Wenbo V. Li s Contributions

Lower Tail Probabilities and Normal Comparison Inequalities. In Memory of Wenbo V. Li s Contributions Lower Tail Probabilities and Normal Comparison Inequalities In Memory of Wenbo V. Li s Contributions Qi-Man Shao The Chinese University of Hong Kong Lower Tail Probabilities and Normal Comparison Inequalities

More information

Lower Tail Probabilities and Related Problems

Lower Tail Probabilities and Related Problems Lower Tail Probabilities and Related Problems Qi-Man Shao National University of Singapore and University of Oregon qmshao@darkwing.uoregon.edu . Lower Tail Probabilities Let {X t, t T } be a real valued

More information

Nonlinear Systems and Control Lecture # 19 Perturbed Systems & Input-to-State Stability

Nonlinear Systems and Control Lecture # 19 Perturbed Systems & Input-to-State Stability p. 1/1 Nonlinear Systems and Control Lecture # 19 Perturbed Systems & Input-to-State Stability p. 2/1 Perturbed Systems: Nonvanishing Perturbation Nominal System: Perturbed System: ẋ = f(x), f(0) = 0 ẋ

More information

Theory and applications of random Poincaré maps

Theory and applications of random Poincaré maps Nils Berglund nils.berglund@univ-orleans.fr http://www.univ-orleans.fr/mapmo/membres/berglund/ Random Dynamical Systems Theory and applications of random Poincaré maps Nils Berglund MAPMO, Université d'orléans,

More information

On the Goodness-of-Fit Tests for Some Continuous Time Processes

On the Goodness-of-Fit Tests for Some Continuous Time Processes On the Goodness-of-Fit Tests for Some Continuous Time Processes Sergueï Dachian and Yury A. Kutoyants Laboratoire de Mathématiques, Université Blaise Pascal Laboratoire de Statistique et Processus, Université

More information

A framework for adaptive Monte-Carlo procedures

A framework for adaptive Monte-Carlo procedures A framework for adaptive Monte-Carlo procedures Jérôme Lelong (with B. Lapeyre) http://www-ljk.imag.fr/membres/jerome.lelong/ Journées MAS Bordeaux Friday 3 September 2010 J. Lelong (ENSIMAG LJK) Journées

More information

In Memory of Wenbo V Li s Contributions

In Memory of Wenbo V Li s Contributions In Memory of Wenbo V Li s Contributions Qi-Man Shao The Chinese University of Hong Kong qmshao@cuhk.edu.hk The research is partially supported by Hong Kong RGC GRF 403513 Outline Lower tail probabilities

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Randomly Weighted Sums of Conditionnally Dependent Random Variables

Randomly Weighted Sums of Conditionnally Dependent Random Variables Gen. Math. Notes, Vol. 25, No. 1, November 2014, pp.43-49 ISSN 2219-7184; Copyright c ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in Randomly Weighted Sums of Conditionnally

More information

5 n N := {1, 2,...} N 0 := {0} N R ++ := (0, ) R + := [0, ) a, b R a b := max{a, b} f g (f g)(x) := f(x) g(x) (Z, Z ) bz Z Z R f := sup z Z f(z) κ: Z R ++ κ f : Z R f(z) f κ := sup z Z κ(z). f κ < f κ

More information

Uniformly Uniformly-ergodic Markov chains and BSDEs

Uniformly Uniformly-ergodic Markov chains and BSDEs Uniformly Uniformly-ergodic Markov chains and BSDEs Samuel N. Cohen Mathematical Institute, University of Oxford (Based on joint work with Ying Hu, Robert Elliott, Lukas Szpruch) Centre Henri Lebesgue,

More information

Ph.D. Qualifying Exam: Algebra I

Ph.D. Qualifying Exam: Algebra I Ph.D. Qualifying Exam: Algebra I 1. Let F q be the finite field of order q. Let G = GL n (F q ), which is the group of n n invertible matrices with the entries in F q. Compute the order of the group G

More information

Stochastic nonlinear Schrödinger equations and modulation of solitary waves

Stochastic nonlinear Schrödinger equations and modulation of solitary waves Stochastic nonlinear Schrödinger equations and modulation of solitary waves A. de Bouard CMAP, Ecole Polytechnique, France joint work with R. Fukuizumi (Sendai, Japan) Deterministic and stochastic front

More information

On the Well-Posedness of the Cauchy Problem for a Neutral Differential Equation with Distributed Prehistory

On the Well-Posedness of the Cauchy Problem for a Neutral Differential Equation with Distributed Prehistory Bulletin of TICMI Vol. 21, No. 1, 2017, 3 8 On the Well-Posedness of the Cauchy Problem for a Neutral Differential Equation with Distributed Prehistory Tamaz Tadumadze I. Javakhishvili Tbilisi State University

More information

Regularity of the density for the stochastic heat equation

Regularity of the density for the stochastic heat equation Regularity of the density for the stochastic heat equation Carl Mueller 1 Department of Mathematics University of Rochester Rochester, NY 15627 USA email: cmlr@math.rochester.edu David Nualart 2 Department

More information

Robust Backtesting Tests for Value-at-Risk Models

Robust Backtesting Tests for Value-at-Risk Models Robust Backtesting Tests for Value-at-Risk Models Jose Olmo City University London (joint work with Juan Carlos Escanciano, Indiana University) Far East and South Asia Meeting of the Econometric Society

More information

The Codimension of the Zeros of a Stable Process in Random Scenery

The Codimension of the Zeros of a Stable Process in Random Scenery The Codimension of the Zeros of a Stable Process in Random Scenery Davar Khoshnevisan The University of Utah, Department of Mathematics Salt Lake City, UT 84105 0090, U.S.A. davar@math.utah.edu http://www.math.utah.edu/~davar

More information

Stochastic Viral Dynamics with Beddington-DeAngelis Functional Response

Stochastic Viral Dynamics with Beddington-DeAngelis Functional Response Stochastic Viral Dynamics with Beddington-DeAngelis Functional Response Junyi Tu, Yuncheng You University of South Florida, USA you@mail.usf.edu IMA Workshop in Memory of George R. Sell June 016 Outline

More information

Vast Volatility Matrix Estimation for High Frequency Data

Vast Volatility Matrix Estimation for High Frequency Data Vast Volatility Matrix Estimation for High Frequency Data Yazhen Wang National Science Foundation Yale Workshop, May 14-17, 2009 Disclaimer: My opinion, not the views of NSF Y. Wang (at NSF) 1 / 36 Outline

More information

Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 2012

Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 2012 Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 202 The exam lasts from 9:00am until 2:00pm, with a walking break every hour. Your goal on this exam should be to demonstrate mastery of

More information

Probabilistic number theory and random permutations: Functional limit theory

Probabilistic number theory and random permutations: Functional limit theory The Riemann Zeta Function and Related Themes 2006, pp. 9 27 Probabilistic number theory and random permutations: Functional limit theory Gutti Jogesh Babu Dedicated to Professor K. Ramachandra on his 70th

More information

WELL-POSEDNESS OF WEAK SOLUTIONS TO ELECTRORHEOLOGICAL FLUID EQUATIONS WITH DEGENERACY ON THE BOUNDARY

WELL-POSEDNESS OF WEAK SOLUTIONS TO ELECTRORHEOLOGICAL FLUID EQUATIONS WITH DEGENERACY ON THE BOUNDARY Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 13, pp. 1 15. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu WELL-POSEDNESS OF WEAK SOLUTIONS TO ELECTRORHEOLOGICAL

More information

EXISTENCE THEOREMS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES. 1. Introduction

EXISTENCE THEOREMS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES. 1. Introduction Acta Math. Univ. Comenianae Vol. LXXVIII, 2(29), pp. 287 32 287 EXISTENCE THEOREMS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES A. SGHIR Abstract. This paper concernes with the study of existence

More information

Extreme Value Theory and Applications

Extreme Value Theory and Applications Extreme Value Theory and Deauville - 04/10/2013 Extreme Value Theory and Introduction Asymptotic behavior of the Sum Extreme (from Latin exter, exterus, being on the outside) : Exceeding the ordinary,

More information

The Sparsity and Bias of The LASSO Selection In High-Dimensional Linear Regression

The Sparsity and Bias of The LASSO Selection In High-Dimensional Linear Regression The Sparsity and Bias of The LASSO Selection In High-Dimensional Linear Regression Cun-hui Zhang and Jian Huang Presenter: Quefeng Li Feb. 26, 2010 un-hui Zhang and Jian Huang Presenter: Quefeng The Sparsity

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca November 26th, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

Oscillatory Behavior of Third-order Difference Equations with Asynchronous Nonlinearities

Oscillatory Behavior of Third-order Difference Equations with Asynchronous Nonlinearities International Journal of Difference Equations ISSN 0973-6069, Volume 9, Number 2, pp 223 231 2014 http://campusmstedu/ijde Oscillatory Behavior of Third-order Difference Equations with Asynchronous Nonlinearities

More information

Notes 9 : Infinitely divisible and stable laws

Notes 9 : Infinitely divisible and stable laws Notes 9 : Infinitely divisible and stable laws Math 733 - Fall 203 Lecturer: Sebastien Roch References: [Dur0, Section 3.7, 3.8], [Shi96, Section III.6]. Infinitely divisible distributions Recall: EX 9.

More information

Some results on cross-correlation distribution between a p-ary m-sequence and its decimated sequences

Some results on cross-correlation distribution between a p-ary m-sequence and its decimated sequences Some results on cross-correlation distribution between a p-ary m-sequence and its decimated sequences A joint work with Chunlei Li, Xiangyong Zeng, and Tor Helleseth Selmer Center, University of Bergen

More information

Integral representations in models with long memory

Integral representations in models with long memory Integral representations in models with long memory Georgiy Shevchenko, Yuliya Mishura, Esko Valkeila, Lauri Viitasaari, Taras Shalaiko Taras Shevchenko National University of Kyiv 29 September 215, Ulm

More information

Latent voter model on random regular graphs

Latent voter model on random regular graphs Latent voter model on random regular graphs Shirshendu Chatterjee Cornell University (visiting Duke U.) Work in progress with Rick Durrett April 25, 2011 Outline Definition of voter model and duality with

More information

Nonresonance for one-dimensional p-laplacian with regular restoring

Nonresonance for one-dimensional p-laplacian with regular restoring J. Math. Anal. Appl. 285 23) 141 154 www.elsevier.com/locate/jmaa Nonresonance for one-dimensional p-laplacian with regular restoring Ping Yan Department of Mathematical Sciences, Tsinghua University,

More information

Stochastic differential equations in neuroscience

Stochastic differential equations in neuroscience Stochastic differential equations in neuroscience Nils Berglund MAPMO, Orléans (CNRS, UMR 6628) http://www.univ-orleans.fr/mapmo/membres/berglund/ Barbara Gentz, Universität Bielefeld Damien Landon, MAPMO-Orléans

More information

Applications of the compensated compactness method on hyperbolic conservation systems

Applications of the compensated compactness method on hyperbolic conservation systems Applications of the compensated compactness method on hyperbolic conservation systems Yunguang Lu Department of Mathematics National University of Colombia e-mail:ylu@unal.edu.co ALAMMI 2009 In this talk,

More information

On a Two-Point Boundary-Value Problem with Spurious Solutions

On a Two-Point Boundary-Value Problem with Spurious Solutions On a Two-Point Boundary-Value Problem with Spurious Solutions By C. H. Ou and R. Wong The Carrier Pearson equation εü + u = with boundary conditions u ) = u) = 0 is studied from a rigorous point of view.

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Surface x(u, v) and curve α(t) on it given by u(t) & v(t). Math 4140/5530: Differential Geometry

Surface x(u, v) and curve α(t) on it given by u(t) & v(t). Math 4140/5530: Differential Geometry Surface x(u, v) and curve α(t) on it given by u(t) & v(t). α du dv (t) x u dt + x v dt Surface x(u, v) and curve α(t) on it given by u(t) & v(t). α du dv (t) x u dt + x v dt ( ds dt )2 Surface x(u, v)

More information

Tail probability of linear combinations of chi-square variables and its application to influence analysis in QTL detection

Tail probability of linear combinations of chi-square variables and its application to influence analysis in QTL detection Tail probability of linear combinations of chi-square variables and its application to influence analysis in QTL detection Satoshi Kuriki and Xiaoling Dou (Inst. Statist. Math., Tokyo) ISM Cooperative

More information

(6, 4) Is there arbitrage in this market? If so, find all arbitrages. If not, find all pricing kernels.

(6, 4) Is there arbitrage in this market? If so, find all arbitrages. If not, find all pricing kernels. Advanced Financial Models Example sheet - Michaelmas 208 Michael Tehranchi Problem. Consider a two-asset model with prices given by (P, P 2 ) (3, 9) /4 (4, 6) (6, 8) /4 /2 (6, 4) Is there arbitrage in

More information

Math 46, Applied Math (Spring 2009): Final

Math 46, Applied Math (Spring 2009): Final Math 46, Applied Math (Spring 2009): Final 3 hours, 80 points total, 9 questions worth varying numbers of points 1. [8 points] Find an approximate solution to the following initial-value problem which

More information

THE PERTURBATION BOUND FOR THE SPECTRAL RADIUS OF A NON-NEGATIVE TENSOR

THE PERTURBATION BOUND FOR THE SPECTRAL RADIUS OF A NON-NEGATIVE TENSOR THE PERTURBATION BOUND FOR THE SPECTRAL RADIUS OF A NON-NEGATIVE TENSOR WEN LI AND MICHAEL K. NG Abstract. In this paper, we study the perturbation bound for the spectral radius of an m th - order n-dimensional

More information

Semilinear obstacle problem with measure data and generalized reflected BSDE

Semilinear obstacle problem with measure data and generalized reflected BSDE Semilinear obtacle problem with meaure data and generalized reflected BSDE Andrzej Rozkoz (joint work with T. Klimiak) Nicolau Copernicu Univerity (Toruń, Poland) 6th International Conference on Stochatic

More information

A random perturbation approach to some stochastic approximation algorithms in optimization.

A random perturbation approach to some stochastic approximation algorithms in optimization. A random perturbation approach to some stochastic approximation algorithms in optimization. Wenqing Hu. 1 (Presentation based on joint works with Chris Junchi Li 2, Weijie Su 3, Haoyi Xiong 4.) 1. Department

More information

Branching Processes II: Convergence of critical branching to Feller s CSB

Branching Processes II: Convergence of critical branching to Feller s CSB Chapter 4 Branching Processes II: Convergence of critical branching to Feller s CSB Figure 4.1: Feller 4.1 Birth and Death Processes 4.1.1 Linear birth and death processes Branching processes can be studied

More information

On the Breiman conjecture

On the Breiman conjecture Péter Kevei 1 David Mason 2 1 TU Munich 2 University of Delaware 12th GPSD Bochum Outline Introduction Motivation Earlier results Partial solution Sketch of the proof Subsequential limits Further remarks

More information

Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems

Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems p. 1/5 Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems p. 2/5 Time-varying Systems ẋ = f(t, x) f(t, x) is piecewise continuous in t and locally Lipschitz in x for all t

More information

Consistency of the maximum likelihood estimator for general hidden Markov models

Consistency of the maximum likelihood estimator for general hidden Markov models Consistency of the maximum likelihood estimator for general hidden Markov models Jimmy Olsson Centre for Mathematical Sciences Lund University Nordstat 2012 Umeå, Sweden Collaborators Hidden Markov models

More information

Large deviations and averaging for systems of slow fast stochastic reaction diffusion equations.

Large deviations and averaging for systems of slow fast stochastic reaction diffusion equations. Large deviations and averaging for systems of slow fast stochastic reaction diffusion equations. Wenqing Hu. 1 (Joint work with Michael Salins 2, Konstantinos Spiliopoulos 3.) 1. Department of Mathematics

More information

Lecture 15. Hypothesis testing in the linear model

Lecture 15. Hypothesis testing in the linear model 14. Lecture 15. Hypothesis testing in the linear model Lecture 15. Hypothesis testing in the linear model 1 (1 1) Preliminary lemma 15. Hypothesis testing in the linear model 15.1. Preliminary lemma Lemma

More information

3% 5% 1% 2% d t = 1,, T d i j J i,d,t J i,d,t+ = J i,d,t j j a i,d,t j i t d γ i > 0 i j t d U i,j,d,t = μ i,j,d + β i,j,d,t γ i + ε i,j,d,t ε i,j,d,t t ε i,,d,t μ β μ μ i,j,d d t d, t j μ i,j,d i j d

More information

Periodic solutions of weakly coupled superlinear systems

Periodic solutions of weakly coupled superlinear systems Periodic solutions of weakly coupled superlinear systems Alessandro Fonda and Andrea Sfecci Abstract By the use of a higher dimensional version of the Poincaré Birkhoff theorem, we are able to generalize

More information

Stability of Stochastic Differential Equations

Stability of Stochastic Differential Equations Lyapunov stability theory for ODEs s Stability of Stochastic Differential Equations Part 1: Introduction Department of Mathematics and Statistics University of Strathclyde Glasgow, G1 1XH December 2010

More information

A Minimal Uncertainty Product for One Dimensional Semiclassical Wave Packets

A Minimal Uncertainty Product for One Dimensional Semiclassical Wave Packets A Minimal Uncertainty Product for One Dimensional Semiclassical Wave Packets George A. Hagedorn Happy 60 th birthday, Mr. Fritz! Abstract. Although real, normalized Gaussian wave packets minimize the product

More information

Reflected Brownian Motion

Reflected Brownian Motion Chapter 6 Reflected Brownian Motion Often we encounter Diffusions in regions with boundary. If the process can reach the boundary from the interior in finite time with positive probability we need to decide

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Le Song Machine Learning I CSE 6740, Fall 2013 Naïve Bayes classifier Still use Bayes decision rule for classification P y x = P x y P y P x But assume p x y = 1 is fully factorized

More information

Consider the following example of a linear system:

Consider the following example of a linear system: LINEAR SYSTEMS Consider the following example of a linear system: Its unique solution is x + 2x 2 + 3x 3 = 5 x + x 3 = 3 3x + x 2 + 3x 3 = 3 x =, x 2 = 0, x 3 = 2 In general we want to solve n equations

More information

2012 NCTS Workshop on Dynamical Systems

2012 NCTS Workshop on Dynamical Systems Barbara Gentz gentz@math.uni-bielefeld.de http://www.math.uni-bielefeld.de/ gentz 2012 NCTS Workshop on Dynamical Systems National Center for Theoretical Sciences, National Tsing-Hua University Hsinchu,

More information

Author(s) Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 41(1)

Author(s) Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 41(1) Title On the stability of contact Navier-Stokes equations with discont free b Authors Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 4 Issue 4-3 Date Text Version publisher URL

More information

RANDOM PROCESSES. THE FINAL TEST. Prof. R. Liptser and P. Chigansky 9:00-12:00, 18 of October, Student ID:

RANDOM PROCESSES. THE FINAL TEST. Prof. R. Liptser and P. Chigansky 9:00-12:00, 18 of October, Student ID: RANDOM PROCESSES. THE FINAL TEST. Prof. R. Liptser and P. Chigansky 9:00-12:00, 18 of October, 2001 Student ID: any supplementary material is allowed duration of the exam is 3 hours write briefly the main

More information

Computation of Local ISS Lyapunov Function Via Linear Programming

Computation of Local ISS Lyapunov Function Via Linear Programming Computation of Local ISS Lyapunov Function Via Linear Programming Huijuan Li Joint work with Robert Baier, Lars Grüne, Sigurdur F. Hafstein and Fabian Wirth Institut für Mathematik, Universität Würzburg

More information

Strong Markov property of determinatal processes

Strong Markov property of determinatal processes Strong Markov property of determinatal processes Hideki Tanemura Chiba university (Chiba, Japan) (August 2, 2013) Hideki Tanemura (Chiba univ.) () Markov process (August 2, 2013) 1 / 27 Introduction The

More information

Lecture 17 Brownian motion as a Markov process

Lecture 17 Brownian motion as a Markov process Lecture 17: Brownian motion as a Markov process 1 of 14 Course: Theory of Probability II Term: Spring 2015 Instructor: Gordan Zitkovic Lecture 17 Brownian motion as a Markov process Brownian motion is

More information

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales.

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. Lecture 2 1 Martingales We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. 1.1 Doob s inequality We have the following maximal

More information

Weak convergence and Brownian Motion. (telegram style notes) P.J.C. Spreij

Weak convergence and Brownian Motion. (telegram style notes) P.J.C. Spreij Weak convergence and Brownian Motion (telegram style notes) P.J.C. Spreij this version: December 8, 2006 1 The space C[0, ) In this section we summarize some facts concerning the space C[0, ) of real

More information

Some Properties of NSFDEs

Some Properties of NSFDEs Chenggui Yuan (Swansea University) Some Properties of NSFDEs 1 / 41 Some Properties of NSFDEs Chenggui Yuan Swansea University Chenggui Yuan (Swansea University) Some Properties of NSFDEs 2 / 41 Outline

More information

Some remarks on the elliptic Harnack inequality

Some remarks on the elliptic Harnack inequality Some remarks on the elliptic Harnack inequality Martin T. Barlow 1 Department of Mathematics University of British Columbia Vancouver, V6T 1Z2 Canada Abstract In this note we give three short results concerning

More information

Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations

Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations J. Math. Anal. Appl. 32 26) 578 59 www.elsevier.com/locate/jmaa Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations Youming Zhou,

More information

Prof. Erhan Bayraktar (University of Michigan)

Prof. Erhan Bayraktar (University of Michigan) September 17, 2012 KAP 414 2:15 PM- 3:15 PM Prof. (University of Michigan) Abstract: We consider a zero-sum stochastic differential controller-and-stopper game in which the state process is a controlled

More information

Local Asymptotic Normality in Quantum Statistics

Local Asymptotic Normality in Quantum Statistics Local Asymptotic Normality in Quantum Statistics M!d!lin Gu"! School of Mathematical Sciences University of Nottingham Richard Gill (Leiden) Jonas Kahn (Paris XI) Bas Janssens (Utrecht) Anna Jencova (Bratislava)

More information

Universality in Numerical Computations with Random Data. Case Studies.

Universality in Numerical Computations with Random Data. Case Studies. Universality in Numerical Computations with Random Data. Case Studies. Percy Deift and Thomas Trogdon Courant Institute of Mathematical Sciences Govind Menon Brown University Sheehan Olver The University

More information

Boundedness of solutions to a retarded Liénard equation

Boundedness of solutions to a retarded Liénard equation Electronic Journal of Qualitative Theory of Differential Equations 21, No. 24, 1-9; http://www.math.u-szeged.hu/ejqtde/ Boundedness of solutions to a retarded Liénard equation Wei Long, Hong-Xia Zhang

More information

ENEE 621 SPRING 2016 DETECTION AND ESTIMATION THEORY THE PARAMETER ESTIMATION PROBLEM

ENEE 621 SPRING 2016 DETECTION AND ESTIMATION THEORY THE PARAMETER ESTIMATION PROBLEM c 2007-2016 by Armand M. Makowski 1 ENEE 621 SPRING 2016 DETECTION AND ESTIMATION THEORY THE PARAMETER ESTIMATION PROBLEM 1 The basic setting Throughout, p, q and k are positive integers. The setup With

More information

Logistic Regression. Seungjin Choi

Logistic Regression. Seungjin Choi Logistic Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Scaling exponents for certain 1+1 dimensional directed polymers

Scaling exponents for certain 1+1 dimensional directed polymers Scaling exponents for certain 1+1 dimensional directed polymers Timo Seppäläinen Department of Mathematics University of Wisconsin-Madison 2010 Scaling for a polymer 1/29 1 Introduction 2 KPZ equation

More information

Some asymptotic properties of solutions for Burgers equation in L p (R)

Some asymptotic properties of solutions for Burgers equation in L p (R) ARMA manuscript No. (will be inserted by the editor) Some asymptotic properties of solutions for Burgers equation in L p (R) PAULO R. ZINGANO Abstract We discuss time asymptotic properties of solutions

More information

Relative growth of the partial sums of certain random Fibonacci-like sequences

Relative growth of the partial sums of certain random Fibonacci-like sequences Relative growth of the partial sums of certain random Fibonacci-like sequences Alexander Roitershtein Zirou Zhou January 9, 207; Revised August 8, 207 Abstract We consider certain Fibonacci-like sequences

More information

t x 1 e t dt, and simplify the answer when possible (for example, when r is a positive even number). In particular, confirm that EX 4 = 3.

t x 1 e t dt, and simplify the answer when possible (for example, when r is a positive even number). In particular, confirm that EX 4 = 3. Mathematical Statistics: Homewor problems General guideline. While woring outside the classroom, use any help you want, including people, computer algebra systems, Internet, and solution manuals, but mae

More information

St. Petersburg Math. J. 13 (2001),.1 Vol. 13 (2002), No. 4

St. Petersburg Math. J. 13 (2001),.1 Vol. 13 (2002), No. 4 St Petersburg Math J 13 (21), 1 Vol 13 (22), No 4 BROCKETT S PROBLEM IN THE THEORY OF STABILITY OF LINEAR DIFFERENTIAL EQUATIONS G A Leonov Abstract Algorithms for nonstationary linear stabilization are

More information

The Wiener Itô Chaos Expansion

The Wiener Itô Chaos Expansion 1 The Wiener Itô Chaos Expansion The celebrated Wiener Itô chaos expansion is fundamental in stochastic analysis. In particular, it plays a crucial role in the Malliavin calculus as it is presented in

More information

The norm of polynomials in large random matrices

The norm of polynomials in large random matrices The norm of polynomials in large random matrices Camille Mâle, École Normale Supérieure de Lyon, Ph.D. Student under the direction of Alice Guionnet. with a significant contribution by Dimitri Shlyakhtenko.

More information

Use partial integration with respect to y to compute the inner integral (treating x as a constant.)

Use partial integration with respect to y to compute the inner integral (treating x as a constant.) Math 54 ~ Multiple Integration 4. Iterated Integrals and Area in the Plane Iterated Integrals f ( x, y) dydx = f ( x, y) dy dx b g ( x) b g ( x) a g ( x) a g ( x) Use partial integration with respect to

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

Global Maxwellians over All Space and Their Relation to Conserved Quantites of Classical Kinetic Equations

Global Maxwellians over All Space and Their Relation to Conserved Quantites of Classical Kinetic Equations Global Maxwellians over All Space and Their Relation to Conserved Quantites of Classical Kinetic Equations C. David Levermore Department of Mathematics and Institute for Physical Science and Technology

More information

Estimating transition times for a model of language change in an age-structured population

Estimating transition times for a model of language change in an age-structured population Estimating transition times for a model of language change in an age-structured population W. Garrett Mitchener MitchenerG@cofc.edu http://mitchenerg.people.cofc.edu Abstract: Human languages are stable

More information

AVERAGING THEORY AT ANY ORDER FOR COMPUTING PERIODIC ORBITS

AVERAGING THEORY AT ANY ORDER FOR COMPUTING PERIODIC ORBITS This is a preprint of: Averaging theory at any order for computing periodic orbits, Jaume Giné, Maite Grau, Jaume Llibre, Phys. D, vol. 25, 58 65, 213. DOI: [1.116/j.physd.213.1.15] AVERAGING THEORY AT

More information

Rare Events in Random Walks and Queueing Networks in the Presence of Heavy-Tailed Distributions

Rare Events in Random Walks and Queueing Networks in the Presence of Heavy-Tailed Distributions Rare Events in Random Walks and Queueing Networks in the Presence of Heavy-Tailed Distributions Sergey Foss Heriot-Watt University, Edinburgh and Institute of Mathematics, Novosibirsk The University of

More information

Nonlinear Control. Nonlinear Control Lecture # 6 Passivity and Input-Output Stability

Nonlinear Control. Nonlinear Control Lecture # 6 Passivity and Input-Output Stability Nonlinear Control Lecture # 6 Passivity and Input-Output Stability Passivity: Memoryless Functions y y y u u u (a) (b) (c) Passive Passive Not passive y = h(t,u), h [0, ] Vector case: y = h(t,u), h T =

More information

Journal of Computational and Applied Mathematics

Journal of Computational and Applied Mathematics Journal of Computational and Applied Mathematics 234 (2) 538 544 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam

More information

The Schrödinger propagator for scattering metrics

The Schrödinger propagator for scattering metrics The Schrödinger propagator for scattering metrics Andrew Hassell (Australian National University) joint work with Jared Wunsch (Northwestern) MSRI, May 5-9, 2003 http://arxiv.org/math.ap/0301341 1 Schrödinger

More information

Modeling & Control of Hybrid Systems Chapter 4 Stability

Modeling & Control of Hybrid Systems Chapter 4 Stability Modeling & Control of Hybrid Systems Chapter 4 Stability Overview 1. Switched systems 2. Lyapunov theory for smooth and linear systems 3. Stability for any switching signal 4. Stability for given switching

More information

The Distribution of Mixing Times in Markov Chains

The Distribution of Mixing Times in Markov Chains The Distribution of Mixing Times in Markov Chains Jeffrey J. Hunter School of Computing & Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand December 2010 Abstract The distribution

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 016 Full points may be obtained for correct answers to eight questions. Each numbered question which may have several parts is worth

More information

Uncertainty quantification and systemic risk

Uncertainty quantification and systemic risk Uncertainty quantification and systemic risk Josselin Garnier (Université Paris Diderot) with George Papanicolaou and Tzu-Wei Yang (Stanford University) February 3, 2016 Modeling systemic risk We consider

More information

e - c o m p a n i o n

e - c o m p a n i o n OPERATIONS RESEARCH http://dx.doi.org/1.1287/opre.111.13ec e - c o m p a n i o n ONLY AVAILABLE IN ELECTRONIC FORM 212 INFORMS Electronic Companion A Diffusion Regime with Nondegenerate Slowdown by Rami

More information

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part 1: Sample Problems for the Elementary Section of Qualifying Exam in Probability and Statistics https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part 2: Sample Problems for the Advanced Section

More information

The exponential asymptotic stability of singularly perturbed delay differential equations with a bounded lag

The exponential asymptotic stability of singularly perturbed delay differential equations with a bounded lag J. Math. Anal. Appl. 270 (2002) 143 149 www.academicpress.com The exponential asymptotic stability of singularly perturbed delay differential equations with a bounded lag Hongjiong Tian Department of Mathematics,

More information

Approximate Message Passing

Approximate Message Passing Approximate Message Passing Mohammad Emtiyaz Khan CS, UBC February 8, 2012 Abstract In this note, I summarize Sections 5.1 and 5.2 of Arian Maleki s PhD thesis. 1 Notation We denote scalars by small letters

More information