Size: px
Start display at page:

Download ""

Transcription

1

2

3

4

5 3% 5% 1% 2%

6

7 d t = 1,, T d i j J i,d,t J i,d,t+ = J i,d,t j j a i,d,t j i t d γ i > 0 i j t d U i,j,d,t = μ i,j,d + β i,j,d,t γ i + ε i,j,d,t ε i,j,d,t t ε i,,d,t μ β μ μ i,j,d d t d, t

8 j μ i,j,d i j d z j ν j,d v i μ i,j,d = z j + ν j,d v i sign z j = sign v i v i = 1 z j = 1 z j = 1 j z j ν j,d j d ν j,d N 0, τ ν τ ν l ν j,d l j j s j,l,d ν j,d N z j + ν j,d, τ s s j,l,d s j l d τ s ω l,j l j ω l,j ω j,l ω

9 τ s n i,j,d,t E μ i,j,d I i,d,t = z j v i + s τ s n i,j,d,t + τ i,j,d,t z j v i ν t d n i,j,d,t j t s i,j,d,t I i,d,t t n s I i,d,t z j v i t s i,j,d,t v i τ s τ ν n i,j,d,t n i,j,d,t = 0 j z j v i. β β β R + β i,j,d,t F d I i,d,t, λ i, α j

10 α j (0, 1) j α j λ i i F d I i,d,t t d j i j t d E β i,j,d,t I i,d,t = α j N K i,d,t 1 + A i,d,t + α j K i,d,t λ i + u κ + K i,d,t λ i i,d,t j t d A i,d,t α j K i,d,t u i,d,t N

11 κ j j α j /(1 + A i,d,t + α j ) j α j A i,d,t j α j N K i,d,t j λ i u i,d,t μ β i d μ β V(I t, ε t ) = max ε,t, j J t E β j,t I t + E μ j I t γ + ε j,t +V(I, ε ) f I I t, j g (ε ) di dε t I t n t, s t, K t, h t, u t

12 f I I t, j I t j h t A t j h j,t α j g (ε) ε n t s t K t h t u t h t+ h t j h j s t l ω l,j l l j n t,j = n t,j + 1 s t,j n t,j = n t,j s t,j = s t,j f j j j α j

13 ω j α j β = 0

14

15 60% 35% 5%

16 t Sites per session sites 3 sites 4 5 sites Sessions Male Female x y 2.7 {.5,.5} D i i t = 1,, T d a i,d,t

17 x y

18 ,,,,,,,,,,,,,,,,,,, i d n i,j,d,t ω w j,d log 1 + words j,d K i,d, w j,d i j

19 i j j Pr i a = j n i,j > 0 = d t 1 a i,d,t = j n i,j,d,t > 0 d t 1 n i,j,d,t > 0 i j Pr i a = j n i,j = 0 = d t 1 a i,d,t = j n i,j,d,t = 0 d t 1 n i,j,d,t = 0 i Pr i (a > 0 n a > 0) Pr i (a > 0 n a = 0) i a n a > 0 Δ i = Pr i (a > 0 n a > 0) Pr i (a > 0 n a = 0) i Δ i > 0 Δ i < 0 Δ i 0 Δ i 39% Δ i < 0 31% Δ i = 0 30% Δ i > 0 40% Pr a = j n j > 0 Pr a = j n j = 0 2.0% l l = 1,, 50 Δ i < 0 Δ i = 0 Δ i > 0

20 Cumulative share of consumers 100% 75% 50% 25% 0% Difference in probability of visiting linked site after seeing one or more links ( i ) x i 5.6% v i λ i γ i D i v i N η v + D i φ v, ζ v, log λ i N η λ + D i φ λ, ζ λ, log γ i N η γ + D i φ γ, ζ γ γ i γ i exp γ w γ i,d = γ i d γ w > 0

21 α j w j,d i K i,d, d i K i,d, w j,d j K i,d,t α j K i,d,t K i,d, K i,d, t = 1 K i,d,t t > 1 α j α j ε i,d,j,t EV (0, 1) j I i,d,t V j I i,d,t + ε i,d,j,t V j I i,d,t V j I i,d,t = E β i,d,j,t I i,d,t + E μ i,d,j I i,d,t γ i,d + log exp V ȷ (I ) f I I i,d,t, ȷ di ȷ J i,d,t j j t j ε i,d,j,t θ

22 z j, α j φ v, φ λ, φ γ v i λ i γ i η λ, η γ ζ λ, ζ γ γ w τ s a = a i,d,t I = I i,d,t T i,d exp V j I i,d,t θ L (θ a, I) 1 + ȷ exp V J ȷ I i,d,t θ i,d,t i d t j J i,d,t 1a i,d,t =j I u K s L (θ a, n, w, h) n w h u K s u K s (θ, I) p (θ D) θ p (θ a, n, h, w, D) L (θ a, I) f (I n, h, w) p (θ D) ds du dk

23 z j φ v τ s α j α j α j η λ φ λ ζ λ α j α j α j η λ α j φ λ ζ λ η γ φ γ ζ γ γ w N = 30 κ = 4 τ ν = 1 j z j = 0 η v = 0

24 ζ v = 1 α j

25 f (x) f (x) f (x) i j z j v i τ s

26 α j z j Information quantity ( α ) egotastic dlisted thesuperficial celebuzz perezhilton Match location ( z ) Posterior density v λ γ... (.) (.) (.)... (.) (.) (.)... (.) (.) (.)... (.) (.) (.)... (.) (.) (.)... (.) (.) (.)... (.) (.) (.) η... (.) (.) ζ... (.) (.) %.%.%

27 Match uncertainty remaining 100% 90% 80% 70% 60% Number of links observed y n =,, x μ j,d n j,d =,, μ j,d n j,d = (τ s n + ) z j x z j z j < 0 z j > 0 v i v i z j < 0 z j > 0

28 τ s τ s 217 α j y λ i α j λ i α j λ i λ i α j λ i α j α j

29 γ i log γ i γ w z j α j ω j x y z j z j z j 0 z j x

30 Information quantity ( α ) E D Match location ( z ) Link frequency: 20% 40% 60% S C P

31 S 3 5 = 15 S S ω n ω S = 200

32 a , a , a..... % a a., a, a. X Y Y X X X t = % a

33 0.25% 2% 2% 2% 2% 0.5% 0.35%

34 t t % 5.5% 0.2% 0.3% 0.67% 2.5% 79% 71% 0.47% 0.07% 2.11% 0.34%

35

36

37

38

39 d N N t j k t {0, 1} N k b, = 0 b j ι j {0, 1} N u R N + d i j t N β j,t = u b ι j,b 1 k b,t b= u ι j β j,t = K u K t u t K t = N k b= b,t t u t = N u K t b= bk b,t K u j K t u t K u j K u

40 ι j u ι j j u b j j π b [0, 1] α j (0, 1) j b j Pr[ι j,b = 1 π b ] ρ j,b ρ j,b Pr ι j,b = 1 π b = 1 (1 π b ) α j j α j 1 ρ j,b π b j α j 0 π b > ρ j,b 0 α j j u b σ σ u b σ Expo σ d σ u b ι j u b σ π b ι j u b i.i.d. π b, Beta (α, 1), α > 0

41 k b,t = 0 π b,t k b,t = 0, h t Beta (α, 1 + A t ) h t t A t J j= h t,jα j α j j N K t EK K t I t, j = (N K t )1 Bα,+A t +α j B(α,+A t ) B (, ) I t t K t h t A t N K t j α α j α = 1 EK K t I t, j = (N K t ) α j +A t +α j i.i.d. σ InvGa (κ + 1, κ λ), κ > 0, λ > 0 λ i κ K t u t σ t I t InvGa (κ + K t + 1, κ λ + K t u t ) I t K t u t j

42 j α j E β j,t I t = +A t +α j (N K t ) λ + K t κ +K t (u t λ) K u I t u K, I t K I t u K, I t K K u K K t K t u t κ λ+k u κ λ+k t u κ+kt+ t κ λ+k u p u K, K, I t = > K K u t K t u t B(κ +K t +,K K t ) δ ut u K = K t K > K t u u = u t β j,t F β j,t I t, λ, α j = N Gaβ j,t K K t, λ + K t κ +K t (u t λ)binomk K t N K t, K =K t α j +A t +α j I t n t, s t, K t, u t, h t A t j h t,j α j I I t j f I I t, j = f n, s, K, u, h n t, s t, K t, u t, h t, j f I I t, j = p s n, n t, s t p n n t, j p u K, K t, u t p K K t, h t, j p h h t, j p u K, K t, u t p K K t, h t, j h j p h h t, j = δ h t,j, h h t h j 1 n s n ȷ j n ȷ n t,ȷ + 1 ω j,ȷ n t,ȷ 1 ω j,ȷ p n ȷ n t, j = ω j,ȷ δ nt,ȷ + n ȷ + 1 ω j,ȷ δ n t,ȷ n ȷ

43 ȷ s ȷ s ȷ = s t,ȷ N z p s j + τ sn t,j s t,j z j j n τ j, n t,j, s t,j = s n t,j +τ ν, τ s + n t,j τ s + τ ν, n j = n t,j + 1 δ st,j s j, n j = n t,j w j,d K i,d,t K i,d, E K i,d, = Nα j /(1 + α j ) i K i,d, K i,d, j d i K i,d, E K i,d, w j,d = N q w j,d q w j,d j d K i,d, K i,d,t t > 1 q w j,d α j (0, 1) q w j,d w j,d 0, qw j,d = 1 c w + w j,d c w w j,d d i K i,d, = 0 max w j,d i K i,d, = N/2 N κ λ i N κ λ i

44 κ N = 30 κ = 4 α j α α = 1 ν j,d s j,k,d τ ν = 1 τ s z j v i z j v i v i η v = 0 ζ v = 1 K u s u s σ σ σλ u u = uλ u λ s j,l,d s j,l,d z j ν j,d τ s s j,l,d z j ν j,d E s j,l,d = 0 V s j,l,d = 1 s ν j,d logit α j N (0, 1) z j N (0, 1) τ s Ga (.4, 5) E τ s = 2 η, φ ζ N 0, 10 ζ, ζ χ λ γ γ w N (0, 1) φ v N (0, 1)

45 z j α j

46 τ s =.2 τ s = 2 λ = 0 β = 0 γ = 2 v = 2 z = 0 ω L,R = 1 ω R,L = 0 Probability of initiating a session (No links) Noisy Informative Links Behavior Myopic Forward looking

47 Share of sessions starting at linking site (No links) Noisy Informative Links Behavior Myopic Forward looking Number of sites visited during session (No links) Noisy Informative Links Behavior Myopic Forward looking

48 0.62 Share of sessions visiting linked site (No links) Noisy Informative Links Behavior Myopic Forward looking Conditional probability of visiting the linked site Myopic Forward looking (No links) Noisy Informative (No links) Noisy Informative Links Signal Lower than expected match (No links) Higher than expected match

49 p (θ W ) D θ D θ D θ D θ f (, ) θ θ D θ θ c θ c D θ c t θ c θ c θ θ π b,t k b,t = 0, h t Beta (α, 1 + A t ) h t t A t J j= h tα j α j α t α j t b t 1 (1 π b ) α (1 π b ) α t = (1 π b ) A t

50 Θ W t θ θ (t ) b θ p(θ W ) D θ μ, Σ f(θ, D θ ) θ c N(μ, Σ) p(θ c W ) D θ c μ, Σ f(θ c, D θ c) α p(θc )N(θ μ, ) p(θ)n(θ c μ,) u U(0, 1) u < α θ (t) b θ c θ (t) b θ I p(i θ (t) ) W f(i, θ (t) ) W { W, I, θ (t) } Θ θ (t)

51 π b b (1 π b ) A t π α b (1 π b ) [B (α, 1)] = (1 π b) (A t+) (1 π b) A t π α b (1 π b ) [B (α, 1)] dπ B (α, A t + 1) b Beta (α, A t + 1) π α b N K t j E K K t I t, j = (N K t ) 1 B α, 1 + A t + α j B (α, 1 + A t ) B (, ) I t t K t h t A t b j t ρ j,b,t π b,t = 1 1 π b,t α j π b,t E ρ j,b,t I t = 1 1 π b,t α j Beta π b,t α, 1 + A t dπ b,t = 1 B α, 1 + α j + A t B (α, 1 + A t ) N K t K t u t I t K t u t σ t I t InvGa (κ + K t + 1, κ λ + K t u t ) u b σ t K t K t u t σ t Ga (K t, σ t ) σ σ κ + K t + 1 κ λ + K t u t u b σ u u b u b

52 j j α j E β j,t I t = (N K t ) λ + (u 1 + A t + α j κ + K t λ) t K t E β j,t I t = E K u K t u t I t, j = E K E u K, I t I t, j K t u t E u K, I t = 1 K E [ σ t I t ] (K K t ) + u t K t = κ λ + K t u t 1 K t κ + K t K K t + u t K E β j,t I t = E K κ λ + K t u t κ + K t 1 K t K + u t K t K I t, j K t u t = E K K t I t, j κ λ + K t u t κ + K t E K K t I t, j u K, I t K K u K K t K t u t κ λ+k u κ λ+k t u κ+kt+ t κ λ+k u p u K, K, I t = > K K u t K t u t B(κ +K t +,K K t ) δ ut u K = K t β j,t K, σ t, I t Ga (K K t, σ t ) σ t I t InvGa (κ + K t + 1, κ λ + K t u t ) p β j,t, σ t K, I t σ t p β j,t K, I t = K K t κ +K t + β j,t κ β j,t +κ λ+k t u λ+k t u t t β t,j +κ λ+k t u t β t,j B (κ + K t + 1, K K t ) β j,t = u K u t K t u K K > K t

53 z 1 z 2 z 3 z 4 z density value α 1 α 2 α 3 α 4 α density value ζ λ 2 ζ γ 2 τ s 15 6 density 10 density value value η λ η γ γ w 2 30 density 1 density value value

54 5 φ γ 1 φ γ 2 φ γ 3 φ γ 4 φ γ 5 φ γ 6 φ γ 7 4 density value φ λ 1 φ λ 2 φ λ 3 φ λ 4 φ λ 5 φ λ 6 φ λ density value φ v 1 φ v 2 φ v 3 φ v 4 φ v 5 φ v 6 φ v density value

.14% duke.edu idc.ac.il

.14%  duke.edu idc.ac.il .14% roos@rsm.nl mela@ duke.edu ronshachar@ idc.ac.il .54%.01%.18%.14% 2.3%.05% d t = 1,, T d i j j = 0 J i,d,t J i,d,t+1 = J i,d,t j j a i,d,t j i t d j t d μ i,j,d i j γ i > 0 ε i,j,d,t t i j t d

More information

Celeste: Variational inference for a generative model of astronomical images

Celeste: Variational inference for a generative model of astronomical images Celeste: Variational inference for a generative model of astronomical images Jerey Regier Statistics Department UC Berkeley July 9, 2015 Joint work with Jon McAulie (UCB Statistics), Andrew Miller, Ryan

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Wednesday March 30 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Wednesday March 30 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Wednesday March 30 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Friday April 1 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

and in each case give the range of values of x for which the expansion is valid.

and in each case give the range of values of x for which the expansion is valid. α β γ δ ε ζ η θ ι κ λ µ ν ξ ο π ρ σ τ υ ϕ χ ψ ω Mathematics is indeed dangerous in that it absorbs students to such a degree that it dulls their senses to everything else P Kraft Further Maths A (MFPD)

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

Further Maths A2 (M2FP2D1) Assignment ψ (psi) A Due w/b 19 th March 18

Further Maths A2 (M2FP2D1) Assignment ψ (psi) A Due w/b 19 th March 18 α β γ δ ε ζ η θ ι κ λ µ ν ξ ο π ρ σ τ υ ϕ χ ψ ω The mathematician s patterns, like the painter s or the poet s, must be beautiful: the ideas, like the colours or the words, must fit together in a harmonious

More information

Lower Tail Probabilities and Related Problems

Lower Tail Probabilities and Related Problems Lower Tail Probabilities and Related Problems Qi-Man Shao National University of Singapore and University of Oregon qmshao@darkwing.uoregon.edu . Lower Tail Probabilities Let {X t, t T } be a real valued

More information

Mathematics Review Exercises. (answers at end)

Mathematics Review Exercises. (answers at end) Brock University Physics 1P21/1P91 Mathematics Review Exercises (answers at end) Work each exercise without using a calculator. 1. Express each number in scientific notation. (a) 437.1 (b) 563, 000 (c)

More information

Lower Tail Probabilities and Normal Comparison Inequalities. In Memory of Wenbo V. Li s Contributions

Lower Tail Probabilities and Normal Comparison Inequalities. In Memory of Wenbo V. Li s Contributions Lower Tail Probabilities and Normal Comparison Inequalities In Memory of Wenbo V. Li s Contributions Qi-Man Shao The Chinese University of Hong Kong Lower Tail Probabilities and Normal Comparison Inequalities

More information

Zone 252, Master Map Normal View

Zone 252, Master Map Normal View Zone Master, Normal View, 10 deg FOV, Master Map Normal View χ1 α ζ ε γ1 γ2 β η1 η3 η2 ψ Fornax ι2 ι1 λ2 ω λ1 φ µ No Map ν π ε π Cetus Sculptor τ -38 00' -36 00' -34 00' -32 00' -30 00' -28 00' -26 00'

More information

Lecture 4: Dynamic models

Lecture 4: Dynamic models linear s Lecture 4: s Hedibert Freitas Lopes The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes hlopes@chicagobooth.edu

More information

K e sub x e sub n s i sub o o f K.. w ich i sub s.. u ra to the power of m i sub fi ed.. a sub t to the power of a

K e sub x e sub n s i sub o o f K.. w ich i sub s.. u ra to the power of m i sub fi ed.. a sub t to the power of a - ; ; ˆ ; q x ; j [ ; ; ˆ ˆ [ ˆ ˆ ˆ - x - - ; x j - - - - - ˆ x j ˆ ˆ ; x ; j κ ˆ - - - ; - - - ; ˆ σ x j ; ˆ [ ; ] q x σ; x - ˆ - ; J -- F - - ; x - -x - - x - - ; ; 9 S j P R S 3 q 47 q F x j x ; [ ]

More information

Uncertainty Quantification for Inverse Problems. November 7, 2011

Uncertainty Quantification for Inverse Problems. November 7, 2011 Uncertainty Quantification for Inverse Problems November 7, 2011 Outline UQ and inverse problems Review: least-squares Review: Gaussian Bayesian linear model Parametric reductions for IP Bias, variance

More information

4sec 2xtan 2x 1ii C3 Differentiation trig

4sec 2xtan 2x 1ii C3 Differentiation trig A Assignment beta Cover Sheet Name: Question Done Backpack Topic Comment Drill Consolidation i C3 Differentiation trig 4sec xtan x ii C3 Differentiation trig 6cot 3xcosec 3x iii C3 Differentiation trig

More information

Image segmentation combining Markov Random Fields and Dirichlet Processes

Image segmentation combining Markov Random Fields and Dirichlet Processes Image segmentation combining Markov Random Fields and Dirichlet Processes Jessica SODJO IMS, Groupe Signal Image, Talence Encadrants : A. Giremus, J.-F. Giovannelli, F. Caron, N. Dobigeon Jessica SODJO

More information

Monte Carlo Radiation Transfer I

Monte Carlo Radiation Transfer I Monte Carlo Radiation Transfer I Monte Carlo Photons and interactions Sampling from probability distributions Optical depths, isotropic emission, scattering Monte Carlo Basics Emit energy packet, hereafter

More information

Introduction Benchmark model Belief-based model Empirical analysis Summary. Riot Networks. Lachlan Deer Michael D. König Fernando Vega-Redondo

Introduction Benchmark model Belief-based model Empirical analysis Summary. Riot Networks. Lachlan Deer Michael D. König Fernando Vega-Redondo Riot Networks Lachlan Deer Michael D. König Fernando Vega-Redondo University of Zurich University of Zurich Bocconi University June 7, 2018 Deer & König &Vega-Redondo Riot Networks June 7, 2018 1 / 23

More information

The Poincare map for randomly perturbed periodic mo5on

The Poincare map for randomly perturbed periodic mo5on The Poincare map for randomly perturbed periodic mo5on Georgi Medvedev Drexel University SIAM Conference on Applica1ons of Dynamical Systems May 19, 2013 Pawel Hitczenko and Georgi Medvedev, The Poincare

More information

T m / A. Table C2 Submicroscopic Masses [2] Symbol Meaning Best Value Approximate Value

T m / A. Table C2 Submicroscopic Masses [2] Symbol Meaning Best Value Approximate Value APPENDIX C USEFUL INFORMATION 1247 C USEFUL INFORMATION This appendix is broken into several tables. Table C1, Important Constants Table C2, Submicroscopic Masses Table C3, Solar System Data Table C4,

More information

b e i ga set s oane f dast heco mm on n va ns ing lo c u soft w section

b e i ga set s oane f dast heco mm on n va ns ing lo c u soft w section 66 M M Eq: 66 - -I M - - - -- -- - - - - -- - S I T - I S W q - I S T q ] q T G S W q I ] T G ˆ Gα ˆ ˆ ] H Z ˆ T α 6H ; Z - S G W [6 S q W F G S W F S W S W T - I ] T ˆ T κ G Gα ±G κ α G ˆ + G > H O T

More information

Testing Algebraic Hypotheses

Testing Algebraic Hypotheses Testing Algebraic Hypotheses Mathias Drton Department of Statistics University of Chicago 1 / 18 Example: Factor analysis Multivariate normal model based on conditional independence given hidden variable:

More information

Short Questions (Do two out of three) 15 points each

Short Questions (Do two out of three) 15 points each Econometrics Short Questions Do two out of three) 5 points each ) Let y = Xβ + u and Z be a set of instruments for X When we estimate β with OLS we project y onto the space spanned by X along a path orthogonal

More information

Asynchronous Training in Wireless Sensor Networks

Asynchronous Training in Wireless Sensor Networks u t... t. tt. tt. u.. tt tt -t t t - t, t u u t t. t tut t t t t t tt t u t ut. t u, t tt t u t t t t, t tt t t t, t t t t t. t t tt u t t t., t- t ut t t, tt t t tt. 1 tut t t tu ut- tt - t t t tu tt-t

More information

Bayesian tsunami fragility modeling considering input data uncertainty

Bayesian tsunami fragility modeling considering input data uncertainty Bayesian tsunami fragility modeling considering input data uncertainty Raffaele De Risi Research Associate University of Bristol United Kingdom De Risi, R., Goda, K., Mori, N., & Yasuda, T. (2016). Bayesian

More information

Sparse Quadrature Algorithms for Bayesian Inverse Problems

Sparse Quadrature Algorithms for Bayesian Inverse Problems Sparse Quadrature Algorithms for Bayesian Inverse Problems Claudia Schillings, Christoph Schwab Pro*Doc Retreat Disentis 2013 Numerical Analysis and Scientific Computing Disentis - 15 August, 2013 research

More information

Theory of Statistical Tests

Theory of Statistical Tests Ch 9. Theory of Statistical Tests 9.1 Certain Best Tests How to construct good testing. For simple hypothesis H 0 : θ = θ, H 1 : θ = θ, Page 1 of 100 where Θ = {θ, θ } 1. Define the best test for H 0 H

More information

Surface x(u, v) and curve α(t) on it given by u(t) & v(t). Math 4140/5530: Differential Geometry

Surface x(u, v) and curve α(t) on it given by u(t) & v(t). Math 4140/5530: Differential Geometry Surface x(u, v) and curve α(t) on it given by u(t) & v(t). α du dv (t) x u dt + x v dt Surface x(u, v) and curve α(t) on it given by u(t) & v(t). α du dv (t) x u dt + x v dt ( ds dt )2 Surface x(u, v)

More information

Zwiers FW and Kharin VV Changes in the extremes of the climate simulated by CCC GCM2 under CO 2 doubling. J. Climate 11:

Zwiers FW and Kharin VV Changes in the extremes of the climate simulated by CCC GCM2 under CO 2 doubling. J. Climate 11: Statistical Analysis of EXTREMES in GEOPHYSICS Zwiers FW and Kharin VV. 1998. Changes in the extremes of the climate simulated by CCC GCM2 under CO 2 doubling. J. Climate 11:2200 2222. http://www.ral.ucar.edu/staff/ericg/readinggroup.html

More information

Motion Models (cont) 1 2/15/2012

Motion Models (cont) 1 2/15/2012 Motion Models (cont 1 Odometry Motion Model the key to computing p( xt ut, xt 1 for the odometry motion model is to remember that the robot has an internal estimate of its pose θ x t 1 x y θ θ true poses

More information

K(ζ) = 4ζ 2 x = 20 Θ = {θ i } Θ i=1 M = {m i} M i=1 A = {a i } A i=1 M A π = (π i ) n i=1 (Θ) n := Θ Θ (a, θ) u(a, θ) E γq [ E π m [u(a, θ)] ] C(π, Q) Q γ Q π m m Q m π m a Π = (π) U M A Θ

More information

Translation Invariant Experiments with Independent Increments

Translation Invariant Experiments with Independent Increments Translation Invariant Statistical Experiments with Independent Increments (joint work with Nino Kordzakhia and Alex Novikov Steklov Mathematical Institute St.Petersburg, June 10, 2013 Outline 1 Introduction

More information

CSSS/STAT/SOC 321 Case-Based Social Statistics I. Levels of Measurement

CSSS/STAT/SOC 321 Case-Based Social Statistics I. Levels of Measurement CSSS/STAT/SOC 321 Case-Based Social Statistics I Levels of Measurement Christopher Adolph Department of Political Science and Center for Statistics and the Social Sciences University of Washington, Seattle

More information

last name ID 1 c/cmaker/cbreaker 2012 exam version a 6 pages 3 hours 40 marks no electronic devices SHOW ALL WORK

last name ID 1 c/cmaker/cbreaker 2012 exam version a 6 pages 3 hours 40 marks no electronic devices SHOW ALL WORK last name ID 1 c/cmaker/cbreaker 2012 exam version a 6 pages 3 hours 40 marks no electronic devices SHOW ALL WORK 8 a b c d e f g h i j k l m n o p q r s t u v w x y z 1 b c d e f g h i j k l m n o p q

More information

Lecture 3: Adaptive Construction of Response Surface Approximations for Bayesian Inference

Lecture 3: Adaptive Construction of Response Surface Approximations for Bayesian Inference Lecture 3: Adaptive Construction of Response Surface Approximations for Bayesian Inference Serge Prudhomme Département de mathématiques et de génie industriel Ecole Polytechnique de Montréal SRI Center

More information

In Memory of Wenbo V Li s Contributions

In Memory of Wenbo V Li s Contributions In Memory of Wenbo V Li s Contributions Qi-Man Shao The Chinese University of Hong Kong qmshao@cuhk.edu.hk The research is partially supported by Hong Kong RGC GRF 403513 Outline Lower tail probabilities

More information

Hierarchical models. Dr. Jarad Niemi. August 31, Iowa State University. Jarad Niemi (Iowa State) Hierarchical models August 31, / 31

Hierarchical models. Dr. Jarad Niemi. August 31, Iowa State University. Jarad Niemi (Iowa State) Hierarchical models August 31, / 31 Hierarchical models Dr. Jarad Niemi Iowa State University August 31, 2017 Jarad Niemi (Iowa State) Hierarchical models August 31, 2017 1 / 31 Normal hierarchical model Let Y ig N(θ g, σ 2 ) for i = 1,...,

More information

Remarks on Improper Ignorance Priors

Remarks on Improper Ignorance Priors As a limit of proper priors Remarks on Improper Ignorance Priors Two caveats relating to computations with improper priors, based on their relationship with finitely-additive, but not countably-additive

More information

Core Inflation and Trend Inflation. Appendix

Core Inflation and Trend Inflation. Appendix Core Inflation and Trend Inflation Appendix June 2015 (Revised November 2015) James H. Stock Department of Economics, Harvard University and the National Bureau of Economic Research and Mark W. Watson

More information

Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US

Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US Gerdie Everaert 1, Lorenzo Pozzi 2, and Ruben Schoonackers 3 1 Ghent University & SHERPPA 2 Erasmus

More information

Spatial Misalignment

Spatial Misalignment November 4, 2009 Objectives Land use in Madagascar Example with WinBUGS code Objectives Learn how to realign nonnested block level data Become familiar with ways to deal with misaligned data which are

More information

Entities for Symbols and Greek Letters

Entities for Symbols and Greek Letters Entities for Symbols and Greek Letters The following table gives the character entity reference, decimal character reference, and hexadecimal character reference for symbols and Greek letters, as well

More information

) ) = γ. and P ( X. B(a, b) = Γ(a)Γ(b) Γ(a + b) ; (x + y, ) I J}. Then, (rx) a 1 (ry) b 1 e (x+y)r r 2 dxdy Γ(a)Γ(b) D

) ) = γ. and P ( X. B(a, b) = Γ(a)Γ(b) Γ(a + b) ; (x + y, ) I J}. Then, (rx) a 1 (ry) b 1 e (x+y)r r 2 dxdy Γ(a)Γ(b) D 3 Independent Random Variables II: Examples 3.1 Some functions of independent r.v. s. Let X 1, X 2,... be independent r.v. s with the known distributions. Then, one can compute the distribution of a r.v.

More information

Hierarchical Linear Models

Hierarchical Linear Models Hierarchical Linear Models Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin The linear regression model Hierarchical Linear Models y N(Xβ, Σ y ) β σ 2 p(β σ 2 ) σ 2 p(σ 2 ) can be extended

More information

Modeling conditional distributions with mixture models: Applications in finance and financial decision-making

Modeling conditional distributions with mixture models: Applications in finance and financial decision-making Modeling conditional distributions with mixture models: Applications in finance and financial decision-making John Geweke University of Iowa, USA Journal of Applied Econometrics Invited Lecture Università

More information

T 1 (p) T 3 (p) 2 (p) + T

T 1 (p) T 3 (p) 2 (p) + T εt) ut) Ep) ɛp) Tp) Sp) Ep) ɛp) T p) Up) T 2 p) T 3 p) Sp) Ep) ɛp) Cp) Up) Tp) Sp) Ep) ɛp) T p) Up) T 2 p) Cp) T 3 p) Sp) Ep) εp) K p Up) Tp) Sp) Cp) = Up) εp) = K p. ε i Tp) = Ks Np) p α Dp) α = ε i =

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

I. Relationship with previous work

I. Relationship with previous work x x i t j J t = {0, 1,...J t } j t (p jt, x jt, ξ jt ) p jt R + x jt R k k ξ jt R ξ t T j = 0 t (z i, ζ i, G i ), ζ i z i R m G i G i (p j, x j ) i j U(z i, ζ i, x j, p j, ξ j ; G i ) = u(ζ i, x j,

More information

Running Couplings in Topologically Massive Gravity

Running Couplings in Topologically Massive Gravity Running Couplings in Topologically Massive Gravity Roberto Percacci 1 Ergin Sezgin 2 1 SISSA, Trieste 2 Texas A& M University, College Station, TX ERG 2010 - Corfu arxiv:1002.2640 [hep-th] - C& QG 2010

More information

θ 1 θ 2 θ n y i1 y i2 y in Hierarchical models (chapter 5) Hierarchical model Introduction to hierarchical models - sometimes called multilevel model

θ 1 θ 2 θ n y i1 y i2 y in Hierarchical models (chapter 5) Hierarchical model Introduction to hierarchical models - sometimes called multilevel model Hierarchical models (chapter 5) Introduction to hierarchical models - sometimes called multilevel model Exchangeability Slide 1 Hierarchical model Example: heart surgery in hospitals - in hospital j survival

More information

USEFUL PROPERTIES OF THE MULTIVARIATE NORMAL*

USEFUL PROPERTIES OF THE MULTIVARIATE NORMAL* USEFUL PROPERTIES OF THE MULTIVARIATE NORMAL* 3 Conditionals and marginals For Bayesian analysis it is very useful to understand how to write joint, marginal, and conditional distributions for the multivariate

More information

Lecture 10 Demand for Autos (BLP) Bronwyn H. Hall Economics 220C, UC Berkeley Spring 2005

Lecture 10 Demand for Autos (BLP) Bronwyn H. Hall Economics 220C, UC Berkeley Spring 2005 Lecture 10 Demand for Autos (BLP) Bronwyn H. Hall Economics 220C, UC Berkeley Spring 2005 Outline BLP Spring 2005 Economics 220C 2 Why autos? Important industry studies of price indices and new goods (Court,

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

ASSIGNMENT COVER SHEET omicron

ASSIGNMENT COVER SHEET omicron ASSIGNMENT COVER SHEET omicron Name Question Done Backpack Ready for test Drill A differentiation Drill B sketches Drill C Partial fractions Drill D integration Drill E differentiation Section A integration

More information

Gaussian Multiscale Spatio-temporal Models for Areal Data

Gaussian Multiscale Spatio-temporal Models for Areal Data Gaussian Multiscale Spatio-temporal Models for Areal Data (University of Missouri) Scott H. Holan (University of Missouri) Adelmo I. Bertolde (UFES) Outline Motivation Multiscale factorization The multiscale

More information

LIST OF FORMULAS FOR STK1100 AND STK1110

LIST OF FORMULAS FOR STK1100 AND STK1110 LIST OF FORMULAS FOR STK1100 AND STK1110 (Version of 11. November 2015) 1. Probability Let A, B, A 1, A 2,..., B 1, B 2,... be events, that is, subsets of a sample space Ω. a) Axioms: A probability function

More information

Classical and Bayesian inference

Classical and Bayesian inference Classical and Bayesian inference AMS 132 January 18, 2018 Claudia Wehrhahn (UCSC) Classical and Bayesian inference January 18, 2018 1 / 9 Sampling from a Bernoulli Distribution Theorem (Beta-Bernoulli

More information

Lecture 12 Weak Decays of Hadrons

Lecture 12 Weak Decays of Hadrons Lecture 12 Weak Decays of Hadrons π + and K + decays Semileptonic decays Hyperon decays Heavy quark decays Rare decays The Cabibbo-Kobayashi-Maskawa Matrix 1 Charged Pion Decay π + decay by annihilation

More information

A geometric solution of the Kervaire Invariant One problem

A geometric solution of the Kervaire Invariant One problem A geometric solution of the Kervaire Invariant One problem Petr M. Akhmet ev 19 May 2009 Let f : M n 1 R n, n = 4k + 2, n 2 be a smooth generic immersion of a closed manifold of codimension 1. Let g :

More information

MCMC Sampling for Bayesian Inference using L1-type Priors

MCMC Sampling for Bayesian Inference using L1-type Priors MÜNSTER MCMC Sampling for Bayesian Inference using L1-type Priors (what I do whenever the ill-posedness of EEG/MEG is just not frustrating enough!) AG Imaging Seminar Felix Lucka 26.06.2012 , MÜNSTER Sampling

More information

Bayesian statistics. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Bayesian statistics. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Bayesian statistics DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall15 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist statistics

More information

Bayesian shrinkage approach in variable selection for mixed

Bayesian shrinkage approach in variable selection for mixed Bayesian shrinkage approach in variable selection for mixed effects s GGI Statistics Conference, Florence, 2015 Bayesian Variable Selection June 22-26, 2015 Outline 1 Introduction 2 3 4 Outline Introduction

More information

Sudoku and Matrices. Merciadri Luca. June 28, 2011

Sudoku and Matrices. Merciadri Luca. June 28, 2011 Sudoku and Matrices Merciadri Luca June 28, 2 Outline Introduction 2 onventions 3 Determinant 4 Erroneous Sudoku 5 Eigenvalues Example 6 Transpose Determinant Trace 7 Antisymmetricity 8 Non-Normality 9

More information

Semiparametric posterior limits

Semiparametric posterior limits Statistics Department, Seoul National University, Korea, 2012 Semiparametric posterior limits for regular and some irregular problems Bas Kleijn, KdV Institute, University of Amsterdam Based on collaborations

More information

David Giles Bayesian Econometrics

David Giles Bayesian Econometrics 9. Model Selection - Theory David Giles Bayesian Econometrics One nice feature of the Bayesian analysis is that we can apply it to drawing inferences about entire models, not just parameters. Can't do

More information

Appendix. Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA Qihang Lin

Appendix. Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA Qihang Lin Xi Chen xichen@cscmuedu Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 53, USA Qihang Lin qihangl@andrewcmuedu Tepper School of Business, Carnegie Mellon University, Pittsburgh,

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

Bayesian Modeling of Conditional Distributions

Bayesian Modeling of Conditional Distributions Bayesian Modeling of Conditional Distributions John Geweke University of Iowa Indiana University Department of Economics February 27, 2007 Outline Motivation Model description Methods of inference Earnings

More information

Distributed detection of topological changes in communication networks. Riccardo Lucchese, Damiano Varagnolo, Karl H. Johansson

Distributed detection of topological changes in communication networks. Riccardo Lucchese, Damiano Varagnolo, Karl H. Johansson 1 Distributed detection of topological changes in communication networks Riccardo Lucchese, Damiano Varagnolo, Karl H. Johansson Thanks to... 2 The need: detecting changes in topological networks 3 The

More information

A Model of Human Capital Accumulation and Occupational Choices. A simplified version of Keane and Wolpin (JPE, 1997)

A Model of Human Capital Accumulation and Occupational Choices. A simplified version of Keane and Wolpin (JPE, 1997) A Model of Human Capital Accumulation and Occupational Choices A simplified version of Keane and Wolpin (JPE, 1997) We have here three, mutually exclusive decisions in each period: 1. Attend school. 2.

More information

Y1 Double Maths Assignment λ (lambda) Exam Paper to do Core 1 Solomon C on the VLE. Drill

Y1 Double Maths Assignment λ (lambda) Exam Paper to do Core 1 Solomon C on the VLE. Drill α β γ δ ε ζ η θ ι κ λ µ ν ξ ο π ρ σ τ υ ϕ χ ψ ω Nature is an infinite sphere of which the centre is everywhere and the circumference nowhere Blaise Pascal Y Double Maths Assignment λ (lambda) Tracking

More information

A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks

A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks Marco Tomamichel, Masahito Hayashi arxiv: 1208.1478 Also discussing results of: Second Order Asymptotics for Quantum

More information

Ages of stellar populations from color-magnitude diagrams. Paul Baines. September 30, 2008

Ages of stellar populations from color-magnitude diagrams. Paul Baines. September 30, 2008 Ages of stellar populations from color-magnitude diagrams Paul Baines Department of Statistics Harvard University September 30, 2008 Context & Example Welcome! Today we will look at using hierarchical

More information

EXERCISES FOR SECTION 1 AND 2

EXERCISES FOR SECTION 1 AND 2 EXERCISES FOR SECTION AND Exercise. (Conditional probability). Suppose that if θ, then y has a normal distribution with mean and standard deviation σ, and if θ, then y has a normal distribution with mean

More information

Design of HIV Dynamic Experiments: A Case Study

Design of HIV Dynamic Experiments: A Case Study Design of HIV Dynamic Experiments: A Case Study Cong Han Department of Biostatistics University of Washington Kathryn Chaloner Department of Biostatistics University of Iowa Nonlinear Mixed-Effects Models

More information

Exam 1 (Chaps. 1-6 of the notes)

Exam 1 (Chaps. 1-6 of the notes) 10/12/06 ATS 541 - Atmospheric Thermodynamics and Cloud Physics 1 Exam 1 (Chaps. 1-6 of the notes) ATS 541 students: Answer all questions ATS 441 students: You may delete problem 3 or problem 5 1. [10

More information

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that 1 Stokes s Theorem Let D R 2 be a connected compact smooth domain, so that D is a smooth embedded circle. Given a smooth function f : D R, define fdx dy fdxdy, D where the left-hand side is the integral

More information

High gain observer for a class of implicit systems

High gain observer for a class of implicit systems High gain observer for a class of implicit systems Hassan HAMMOURI Laboratoire d Automatique et de Génie des Procédés, UCB-Lyon 1, 43 bd du 11 Novembre 1918, 69622 Villeurbanne, France E-mail: hammouri@lagepuniv-lyon1fr

More information

The Wishart distribution Scaled Wishart. Wishart Priors. Patrick Breheny. March 28. Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/11

The Wishart distribution Scaled Wishart. Wishart Priors. Patrick Breheny. March 28. Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/11 Wishart Priors Patrick Breheny March 28 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/11 Introduction When more than two coefficients vary, it becomes difficult to directly model each element

More information

Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis

Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis Stéphanie Allassonnière CIS, JHU July, 15th 28 Context : Computational Anatomy Context and motivations :

More information

Minimum Message Length Analysis of the Behrens Fisher Problem

Minimum Message Length Analysis of the Behrens Fisher Problem Analysis of the Behrens Fisher Problem Enes Makalic and Daniel F Schmidt Centre for MEGA Epidemiology The University of Melbourne Solomonoff 85th Memorial Conference, 2011 Outline Introduction 1 Introduction

More information

Bayesian Model Comparison:

Bayesian Model Comparison: Bayesian Model Comparison: Modeling Petrobrás log-returns Hedibert Freitas Lopes February 2014 Log price: y t = log p t Time span: 12/29/2000-12/31/2013 (n = 3268 days) LOG PRICE 1 2 3 4 0 500 1000 1500

More information

1 Integration of Rational Functions Using Partial Fractions

1 Integration of Rational Functions Using Partial Fractions MTH Fall 008 Essex County College Division of Mathematics Handout Version 4 September 8, 008 Integration of Rational Functions Using Partial Fractions In the past it was far more usual to simplify or combine

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

1 Exercises for lecture 1

1 Exercises for lecture 1 1 Exercises for lecture 1 Exercise 1 a) Show that if F is symmetric with respect to µ, and E( X )

More information

Dissipative Solitons in Physical Systems

Dissipative Solitons in Physical Systems Dissipative Solitons in Physical Systems Talk given by H.-G. Purwins Institute of Applied Physics University of Münster, Germany Chapter 1 Introduction Cosmology and Pattern Formation 1-1 Complex Behaviour

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Monday, September 26, 2011 Lecture 10: Exponential families and Sufficient statistics Exponential Families Exponential families are important parametric families

More information

Modeling conditional distributions with mixture models: Theory and Inference

Modeling conditional distributions with mixture models: Theory and Inference Modeling conditional distributions with mixture models: Theory and Inference John Geweke University of Iowa, USA Journal of Applied Econometrics Invited Lecture Università di Venezia Italia June 2, 2005

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample variance Skip: p.

More information

ST495: Survival Analysis: Hypothesis testing and confidence intervals

ST495: Survival Analysis: Hypothesis testing and confidence intervals ST495: Survival Analysis: Hypothesis testing and confidence intervals Eric B. Laber Department of Statistics, North Carolina State University April 3, 2014 I remember that one fateful day when Coach took

More information

R k. t + 1. n E t+1 = ( 1 χ E) W E t+1. c E t+1 = χ E Wt+1 E. Γ E t+1. ) R E t+1q t K t. W E t+1 = ( 1 Γ E t+1. Π t+1 = P t+1 /P t

R k. t + 1. n E t+1 = ( 1 χ E) W E t+1. c E t+1 = χ E Wt+1 E. Γ E t+1. ) R E t+1q t K t. W E t+1 = ( 1 Γ E t+1. Π t+1 = P t+1 /P t R k E 1 χ E Wt E n E t+1 t t + 1 n E t+1 = ( 1 χ E) W E t+1 c E t+1 = χ E Wt+1 E t + 1 q t K t Rt+1 E 1 Γ E t+1 Π t+1 = P t+1 /P t W E t+1 = ( 1 Γ E t+1 ) R E t+1q t K t Π t+1 Γ E t+1 K t q t q t K t j

More information

Generalized Autoregressive Conditional Intensity Models with Long Range Dependence

Generalized Autoregressive Conditional Intensity Models with Long Range Dependence Generalized Autoregressive Conditional Intensity Models with Long Range Dependence Nikolaus Hautsch Klausurtagung SFB 649 Ökonomisches Risiko Motzen 15. Juni 2007 Nikolaus Hautsch (HU Berlin) GLMACI Models

More information

http://orcid.org/0000-0001-8820-8188 N r = 0.88 P x λ P x λ d m = d 1/ m, d m i 1...m ( d i ) 2 = c c i m d β = 1 β = 1.5 β = 2 β = 3 d b = d a d b = 1.0

More information

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions Pattern Recognition and Machine Learning Chapter 2: Probability Distributions Cécile Amblard Alex Kläser Jakob Verbeek October 11, 27 Probability Distributions: General Density Estimation: given a finite

More information

A2 Assignment zeta Cover Sheet. C3 Differentiation all methods. C3 Sketch and find range. C3 Integration by inspection. C3 Rcos(x-a) max and min

A2 Assignment zeta Cover Sheet. C3 Differentiation all methods. C3 Sketch and find range. C3 Integration by inspection. C3 Rcos(x-a) max and min A Assignment zeta Cover Sheet Name: Question Done Backpack Ready? Topic Comment Drill Consolidation M1 Prac Ch all Aa Ab Ac Ad Ae Af Ag Ah Ba C3 Modulus function Bb C3 Modulus function Bc C3 Modulus function

More information

Deep Poisson Factorization Machines: a factor analysis model for mapping behaviors in journalist ecosystem

Deep Poisson Factorization Machines: a factor analysis model for mapping behaviors in journalist ecosystem 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Multilevel Sequential 2 Monte Carlo for Bayesian Inverse Problems

Multilevel Sequential 2 Monte Carlo for Bayesian Inverse Problems Jonas Latz 1 Multilevel Sequential 2 Monte Carlo for Bayesian Inverse Problems Jonas Latz Technische Universität München Fakultät für Mathematik Lehrstuhl für Numerische Mathematik jonas.latz@tum.de November

More information

Hydrodynamic Modes of Incoherent Black Holes

Hydrodynamic Modes of Incoherent Black Holes Hydrodynamic Modes of Incoherent Black Holes Vaios Ziogas Durham University Based on work in collaboration with A. Donos, J. Gauntlett [arxiv: 1707.xxxxx, 170x.xxxxx] 9th Crete Regional Meeting on String

More information

Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends

Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends Kenichi ITO (University of Tokyo) joint work with Erik SKIBSTED (Aarhus University) 3 July 2018 Example: Free

More information