(Nearly) perfect fluidity in cold atomic gases: Recent results. Thomas Schaefer North Carolina State University

Size: px
Start display at page:

Download "(Nearly) perfect fluidity in cold atomic gases: Recent results. Thomas Schaefer North Carolina State University"

Transcription

1 (Nearly) perfect fluidity in cold atomic gases: Recent results Thomas Schaefer North Carolina State University

2 Fluids: Gases, Liquids, Plasmas,... Hydrodynamics: Long-wavelength, low-frequency dynamics of conserved or spontaneously broken symmetry variables. τ τ micro τ λ Historically: Water (ρ, ǫ, π)

3 Simple non-relativistic fluid Simple fluid: Conservation laws for mass, energy, momentum ρ t + (ρ v) = 0 ǫ t + j ǫ = 0 t (ρv i) + Π ij = 0 x j Constitutive relations: Energy momentum tensor Π ij = Pδ ij + ρv i v j + η ( i v j + j v i 23 ) δ ij k v k + O( 2 ) reactive dissipative 2nd order Expansion Π 0 ij δπ1 ij δπ2 ij

4 Regime of applicability Expansion parameter Re 1 = η( v) ρv 2 = η ρlv 1 1 Re = η n fluid property mvl flow property Consider mvl : Hydrodynamics requires η/( n) < 1

5 Shear viscosity in kinetic theory Kinetic theory: conserved quantities carried by quasi-particles f p t + v x f p + F p f p = C[f p ] η 1 3 n p l mfp Weakly interacting gas: l mfp 1/(nσ) η 1 3 Strongly interacting gas: η(σ 0) η n pl mfp but: kinetic theory not reliable! p σ

6 Holographic duals: Transport properties Thermal (conformal) field theory AdS 5 black hole CFT entropy shear viscosity Strong coupling limit η s = 4πk B Hawking-Bekenstein entropy area of event horizon Graviton absorption cross section area of event horizon η s Son and Starinets (2001) h 4πk B Strong coupling limit universal? Provides lower bound for all theories? 0 g 2 N c Answer appears to be no; e.g. theories with higher derivative gravity duals.

7 Effective theories for fluids (Unitary Fermi Gas, T > T F ) L = ψ ( i M ) ψ C 0 2 (ψ ψ) 2 f p t + v x f p = C[f p ] ω < T t (ρv i) + x j Π ij = 0 ω < T n η

8 Effective theories (Strong coupling) L = λ(iσ D)λ 1 4 Ga µνg a µν +... S = 1 2κ 2 5 d 5 x gr +... SO(d + 2,2) Schr(d) AdS d+3 X d+3 t (ρv i) + x j Π ij = 0 (ω < T)

9 Kinetics vs No-Kinetics AdS/CFT low viscosity goo gravitational dual η/s 1/(4π) kinetic liquid quasi-particles η/s > 1

10 Outline I. Conformal second order hydrodynamics II. Fluctuations III. Kinetic theory IV. Experiment V. Outlook: QGP vs Cold Atoms

11 I. Scale invariant fluid dynamics Many body system: Effective cross section σ tr n 2/3 (or σ tr λ 2 ) Systems remains hydrodynamic despite expansion

12 Scale and conformal symmetry Gallilean boosts x = x + vt t = t scale trafo x = e s x t = e 2s t conformal trafo x = x/(1 + ct) 1/t = 1/t + c Ideal fluid dynamics Π 0 ij = Pδ ij + ρv i v j, P = 2 3 E First order viscous hydrodynamics ( δ (1) Π ij = ησ ij, σ ij = i v j + j v i 2 ) 3 δ ij( v), ζ = 0

13 Second order conformal hydrodynamics Relaxation of shear stress is a second order hydro term. Complete list [ δ (2) Π ij = ητ π Dσ ij + 2 ] 3 σij ( v) + λ 1 σ i k σj k + λ 2 σ i k Ωj k + λ 3 Ω i k Ωj k + γ 1 i T j T + γ 2 i P j P + γ 3 i j T +... D = 0 + v A ij = 1 2 A ij + A ji 3 2 g ij Ak k Ω ij = i v j j v i New transport coefficients τ π, λ i, γ i Can be written as a relaxation equation for π ij δπ ij π ij = ησ ij τ π [ Dπ ij ( v)πij ] +... Chao, Schaefer (2011)

14 Why second order fluid dynamics? Scaling ( Hubble ) expansion ρ(x i, t) = ρ 0 (b i (t)x i ), v i (x j, t) = α i (t)x i, α i (t) = ḃi(t)/b i (t) Compare ideal and dissipative stresses Π 0 xx δ (1) Π xx Π 0 ii = P + ρα ix 2 i δ (1) Π ii = η(α i 4 3 j α j) x x Ideal stresses propagate with speed c s, dissipative stresses propagate with infinite speed. Hydro always breaks down in the dilute corona. Solved by relaxation time τ π η P.

15 II. Fluctuations If hydrodynamics is an effective (field?) theory then where are the loop corrections?

16 Hydrodynamic variables fluctuate Thermal fluctuations δv i (x, t)δv j (x, t) = T ρ δ ijδ(x x ) Linearized hydrodynamics propagates fluctuations as shear or sound δv T i δv T j ω,k = 2T ρ (δ ij ˆk iˆkj ) δv L i δv L j ω,k = 2T ρ ˆk iˆkj νk 2 ω 2 + (νk 2 ) 2 shear ωk 2 Γ (ω 2 c 2 sk 2 ) 2 + (ωk 2 Γ) 2 sound v = v T + v L : v T = 0, v L = 0 ν = η/ρ, Γ = 4 3 ν +...

17 Hydro Loops: Breakdown of second order hydro Response function G xyxy R = θ(t)[π xy,π xy ] ω,k Π xy = ρv x v y v T ρ ρ v T vl v L v L ρ ρ ρ vt ρ G xyxy R = P + δp + iω[η + δη] + ω 2 [ητ π + δ(ητ π )] δη T ( ) 2 ( ρ P η ρ ) 1/2 δ(ητ π ) 1 ( ) 3/2 ρ ω η

18 Hydro Loops: Breakdown of second order hydro δη T ( ) 2 ( ρ P η ρ ) 1/2 δ(ητ π ) 1 ( ) 3/2 ρ ω η Small shear viscosity enhances fluctuation corrections. Small η leads to large δη: There must be a bound on η/n. Relaxation time diverges: 2nd order hydro without fluctuations inconsistent.

19 Fluctuation induced bound on η/n η/n fluctuations 0.5 η(ω)/n 0.4 fluctuations kinetic theory kinetic theory T/T F ω/t spectral function (η/n) min 0.3 non-analytic ω term see also Kovtun, Moore, Romatschke (2011)

20 III. Linear response and kinetic theory Consider background metric g ij (t,x) = δ ij + h ij (t,x). Linear response δπ ij = 1 2 Gijkl R h kl Kubo relation: η(ω) = 1 ω ImGxyxy R (ω, 0) Kinetic theory: Boltzmann equation ( ( t + pi m x i g il ġ lj p j + Γ i jk p j p k m ) ) p i f(t,x,p) = C[f] C[f] =

21 Kinetic theory linearize f = f 0 + δf, solve for δf, δπ ij, G R, η(ω) η(ω) = η 1 + ω 2 τ 2 π η = π (mt)3/2 τ π = η nt shear channel sound channel xyxy (,k)/( k F a= T T/T F =1, k=0.5 T/T F =1, k=1.0 T/T F =2, k=0.5 T/T F =2, k=1.0 T/T F =3, k=0.5 T/T F =3, k=1.0 zzzz (,k)/( k F a=100 T/T F =1, k=0.5 T/T F =1, k=1.0 T/T F =2, k=0.5 T/T F =2, k=1.0 T/T F =3, k=0.5 T/T F =3, k= T Braby, Chao, T.S. (2010)

22 Second order hydrodynamics from kinetic theory Boltzmann equation (BGK approximation) [ Dσ ij σij ( v) δ (2) Π ij = η2 P + η2 P [ σ i k σj k + σ i k Ωj k] + O(κη i j T) ] relaxation time τ π = η P η nt

23 Shear & bulk viscosity: Sum rules Randeria & Taylor proved the sum rules (corrected by Enss & Zwerger) [ ] 1 C dw η(ω) π 15π = E mω 3 C 10πma ( ) 1 1 C dw ζ(ω) = π 72πma 2 a 1 where C is Tan s contact, n k C/k 4. Model spectral function: Kinetic theory for ω < T, OPE for ω > T. η(ω)/n T/T F = 0.5, 1, ω/t F

24 Lattice data: η/s PIMC, N x = 8 PIMC, N x =10 Enss et al. kinetic theory phonons KSS bound 0.6 η/s T/ε F Wlazlowski, Magierski & Drut, arxiv:

25 Lattice data: Spectral functions T/ε F =0.16 SVD MEM initial model final model tail asymptotics T/ε F =0.28 SVD MEM initial model final model tail asymptotics 0.4 η(ω)/n 0.1 η(ω)/n ω/ε F ω/ε F Wlazlowski, Magierski & Drut, arxiv:

26 IV. Experiments: Flow and Collective Modes Hydrodynamic expansion converts σ σ µ coordinate space anisotropy σ σ to momentum space anisotropy O Hara et al. (2002)

27 Elliptic flow: High T limit Quantum viscosity η = η 0 (mt) 3/ Aspect Ratio η = η 0 (mt) 3/2 τπ = η/p Cao et al., Science (2010) Time After Release (µs) fit: η 0 = 0.33 ± 0.04 theory: η 0 = π = 0.26

28 Elliptic flow: Freezeout? switch from hydro to (weakly collisional) kinetics at scale factor b fr = 1,5,10,20 A R t [ms] no freezeout seen in the data

29 Elliptic flow: Shear vs bulk viscosity Dissipative hydro with both η, ζ A R 1.5 ideal 1.0 η ζ t [ms]

30 Elliptic flow: Shear vs bulk viscosity Dissipative hydro with both η, ζ β η,ζ = [η, ζ] n E F E 1 (3λN) 1/ β η 0.2 η ζ β ζ Dusling, Schaefer (2010)

31 Viscosity to entropy density ratio consider both collective modes (low T) and elliptic flow (high T) Cao et al., Science (2010) η/s 0.4

32 V. Outlook: Temperature/density dependence QGP: η/s typically assumed to be constant. Probably o.k. (in QGP phase, at 30% level), but corrections difficult to study. CAG: η/n has significant dependence on T 3/2 n 1. Difficult to unfold. Local s/n known to high accuracy ( 2%). Initial state QGP: Biggest source of uncertainty. Opportunity: Initial state fluctuations generate odd harmonics. CAG: Well characterized. Some ability to control initial state, but this opportiunity has not been exploited.

33 Final state QGP: Kinetic afterburners standard. Flow does not saturate, some puzzling data about energy dependence (v 2 growth due to mean p T increase?) and high p T (non-hydro) flow. CAG: No need for freezeout, flow saturates. But: need kinetics for corona (currently: relaxation time approach interpolates to kinetic limit). Higher harmonics QGP: Important constraint on viscosity, but need initial state models. CAG: Some data on higher multipole collective modes. Need data from single experiment.

34 Bulk viscosity QGP: Hard to measure from flow. Important effects on p T spectra and hadro-chemistry? CAG: Zero at unitarity. Can be measured from either flow or collective mode damping. Leading behavior away from unitarity not known. Fluctuations QGP: Dominated by initial state fluctuations? Possible effects near critical points. Some attempts at stochastic hydro. CAG: Dominated by thermal fluctuations. Possible effects near T c and in two dimensions.

35 Outlook: New ideas (?) QGP: Phenomenology: What is the best observable to constrain η/s? Integrated v 2 in ultra-central collisions? Theory: Anomalous hydrodynamics, new ideas about thermalization (hydro before isotropization and thermalization). CAG: Experiment: Hydrodynamic engineering; can we design flow profiles? Muiple modes, artificial gauge fields (?) Theory: How to do hydro/kinetic interface: 2nd order hydro, lattice Boltzmann, BGK kinetics? Holographic Schr(d): Still no dual of unitary fermions, d = 2 easier?

Scale invariant fluid dynamics for the dilute Fermi gas at unitarity

Scale invariant fluid dynamics for the dilute Fermi gas at unitarity Scale invariant fluid dynamics for the dilute Fermi gas at unitarity Thomas Schaefer North Carolina State University Fluids: Gases, Liquids, Plasmas,... Hydrodynamics: Long-wavelength, low-frequency dynamics

More information

(Nearly) Scale invariant fluid dynamics for the dilute Fermi gas in two and three dimensions. Thomas Schaefer North Carolina State University

(Nearly) Scale invariant fluid dynamics for the dilute Fermi gas in two and three dimensions. Thomas Schaefer North Carolina State University (Nearly) Scale invariant fluid dynamics for the dilute Fermi gas in two and three dimensions Thomas Schaefer North Carolina State University Outline I. Conformal hydrodynamics II. Observations (3d) III.

More information

Fluid dynamics for the unitary Fermi gas. Thomas Schaefer, North Carolina State University

Fluid dynamics for the unitary Fermi gas. Thomas Schaefer, North Carolina State University Fluid dynamics for the unitary Fermi gas Thomas Schaefer, North Carolina State University Non-relativistic fermions in unitarity limit Consider simple square well potential a < 0 a =, ǫ B = 0 a > 0, ǫ

More information

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University Anisotropic fluid dynamics Thomas Schaefer, North Carolina State University Outline We wish to extract the properties of nearly perfect (low viscosity) fluids from experiments with trapped gases, colliding

More information

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks Thomas Schaefer, North Carolina State University RHIC serves the perfect fluid Experiments at RHIC are consistent with the idea that a thermalized

More information

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University (Super) Fluid Dynamics Thomas Schaefer, North Carolina State University Hydrodynamics Hydrodynamics (undergraduate version): Newton s law for continuous, deformable media. Fluids: Gases, liquids, plasmas,...

More information

(Non) Conformal Quantum Fluids. Thomas Schaefer, North Carolina State University

(Non) Conformal Quantum Fluids. Thomas Schaefer, North Carolina State University (Non) Conformal Quantum Fluids Thomas Schaefer, North Carolina State University Why study (nearly perfect) quantum fluids? Hard computational problem: Have to determine real time correlation functions.

More information

Transport in Conformal Quantum Fluids. Thomas Schaefer, North Carolina State University

Transport in Conformal Quantum Fluids. Thomas Schaefer, North Carolina State University Transport in Conformal Quantum Fluids Thomas Schaefer, North Carolina State University Why study transport in (nearly perfect) quantum fluids? Transport without quasi-particles? Model system for QGP, strange

More information

Conformal Quantum Fluids. Thomas Schaefer, North Carolina State University

Conformal Quantum Fluids. Thomas Schaefer, North Carolina State University Conformal Quantum Fluids Thomas Schaefer, North Carolina State University Why study (nearly perfect) quantum fluids? Hard computational problem: Have to determine real time correlation functions. Achieve

More information

The Big Picture. Thomas Schaefer. North Carolina State University

The Big Picture. Thomas Schaefer. North Carolina State University The Big Picture Thomas Schaefer North Carolina State University 1 Big Questions What is QCD? What is a Phase of QCD? What is a Plasma? What is a (perfect) Liquid? What is a wqgp/sqgp? 2 What is QCD (Quantum

More information

Strongly interacting quantum fluids: Transport theory

Strongly interacting quantum fluids: Transport theory Strongly interacting quantum fluids: Transport theory Thomas Schaefer North Carolina State University Fluids: Gases, Liquids, Plasmas,... Hydrodynamics: Long-wavelength, low-frequency dynamics of conserved

More information

Fluid dynamics as an effective theory. Thomas Schaefer, North Carolina State University

Fluid dynamics as an effective theory. Thomas Schaefer, North Carolina State University Fluid dynamics as an effective theory Thomas Schaefer, North Carolina State University Hydroynamics Hydrodynamics (undergraduate version): Newton s law for continuous, deformable media. Fluids: Gases,

More information

Quantum limited spin transport in ultracold atomic gases

Quantum limited spin transport in ultracold atomic gases Quantum limited spin transport in ultracold atomic gases Searching for the perfect SPIN fluid... Tilman Enss (Uni Heidelberg) Rudolf Haussmann (Uni Konstanz) Wilhelm Zwerger (TU München) Technical University

More information

Intersections of nuclear physics and cold atom physics

Intersections of nuclear physics and cold atom physics Intersections of nuclear physics and cold atom physics Thomas Schaefer North Carolina State University Unitarity limit Consider simple square well potential a < 0 a =, ǫ B = 0 a > 0, ǫ B > 0 Unitarity

More information

Towards new relativistic hydrodynamcis from AdS/CFT

Towards new relativistic hydrodynamcis from AdS/CFT Towards new relativistic hydrodynamcis from AdS/CFT Michael Lublinsky Stony Brook with Edward Shuryak QGP is Deconfined QGP is strongly coupled (sqgp) behaves almost like a perfect liquid (Navier-Stokes

More information

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger Julius-Maximilians-Universität Würzburg 1 New Gauge/Gravity Duality group at Würzburg University Permanent members 2 Gauge/Gravity

More information

Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity. Debarati Chatterjee

Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity. Debarati Chatterjee Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity Debarati Chatterjee Recap: Hydrodynamics of nearly perfect fluids Hydrodynamics: correlation functions at low

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

Lifshitz Hydrodynamics

Lifshitz Hydrodynamics Lifshitz Hydrodynamics Yaron Oz (Tel-Aviv University) With Carlos Hoyos and Bom Soo Kim, arxiv:1304.7481 Outline Introduction and Summary Lifshitz Hydrodynamics Strange Metals Open Problems Strange Metals

More information

Collaborators: Aleksas Mazeliauskas (Heidelberg) & Derek Teaney (Stony Brook) Refs: , /25

Collaborators: Aleksas Mazeliauskas (Heidelberg) & Derek Teaney (Stony Brook) Refs: , /25 2017 8 28 30 @ Collaborators: Aleksas Mazeliauskas (Heidelberg) & Derek Teaney (Stony Brook) Refs: 1606.07742, 1708.05657 1/25 1. Introduction 2/25 Ultra-relativistic heavy-ion collisions and the Bjorken

More information

Hydrodynamical Model and Shear Viscosity from Black Holes (η/s from AdS/CFT)

Hydrodynamical Model and Shear Viscosity from Black Holes (η/s from AdS/CFT) Hydrodynamical Model and Shear Viscosity from Black Holes (η/s from AdS/CFT) Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg Space-time evolution QGP life time 10 fm/c 3 10-23

More information

QGP, Hydrodynamics and the AdS/CFT correspondence

QGP, Hydrodynamics and the AdS/CFT correspondence QGP, Hydrodynamics and the AdS/CFT correspondence Adrián Soto Stony Brook University October 25th 2010 Adrián Soto (Stony Brook University) QGP, Hydrodynamics and AdS/CFT October 25th 2010 1 / 18 Outline

More information

Non-relativistic AdS/CFT

Non-relativistic AdS/CFT Non-relativistic AdS/CFT Christopher Herzog Princeton October 2008 References D. T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78,

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

arxiv: v1 [nucl-th] 9 Jun 2008

arxiv: v1 [nucl-th] 9 Jun 2008 Dissipative effects from transport and viscous hydrodynamics arxiv:0806.1367v1 [nucl-th] 9 Jun 2008 1. Introduction Denes Molnar 1,2 and Pasi Huovinen 1 1 Purdue University, Physics Department, 525 Northwestern

More information

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 Hydrodynamics Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 What is Hydrodynamics? Describes the evolution of physical systems (classical or quantum particles, fluids or fields) close to thermal

More information

Viscosity in strongly coupled gauge theories Lessons from string theory

Viscosity in strongly coupled gauge theories Lessons from string theory Viscosity in strongly coupled gauge theories Lessons from string theory Pavel Kovtun KITP, University of California, Santa Barbara A.Buchel, (University of Western Ontario) C.Herzog, (University of Washington,

More information

Viscosity Correlators in Improved Holographic QCD

Viscosity Correlators in Improved Holographic QCD Bielefeld University October 18, 2012 based on K. Kajantie, M.K., M. Vepsäläinen, A. Vuorinen, arxiv:1104.5352[hep-ph]. K. Kajantie, M.K., A. Vuorinen, to be published. 1 Motivation 2 Improved Holographics

More information

In this chapter we will discuss the effect of shear viscosity on evolution of fluid, p T

In this chapter we will discuss the effect of shear viscosity on evolution of fluid, p T Chapter 3 Shear viscous evolution In this chapter we will discuss the effect of shear viscosity on evolution of fluid, p T spectra, and elliptic flow (v ) of pions using a +1D relativistic viscous hydrodynamics

More information

Thermo-electric transport in holographic systems with moment

Thermo-electric transport in holographic systems with moment Thermo-electric Perugia 2015 Based on: Thermo-electric gauge/ models with, arxiv:1406.4134, JHEP 1409 (2014) 160. Analytic DC thermo-electric conductivities in with gravitons, arxiv:1407.0306, Phys. Rev.

More information

Talk based on: arxiv: arxiv: arxiv: arxiv: arxiv:1106.xxxx. In collaboration with:

Talk based on: arxiv: arxiv: arxiv: arxiv: arxiv:1106.xxxx. In collaboration with: Talk based on: arxiv:0812.3572 arxiv:0903.3244 arxiv:0910.5159 arxiv:1007.2963 arxiv:1106.xxxx In collaboration with: A. Buchel (Perimeter Institute) J. Liu, K. Hanaki, P. Szepietowski (Michigan) The behavior

More information

Insight into strong coupling

Insight into strong coupling Thank you 2012 Insight into strong coupling Many faces of holography: Top-down studies (string/m-theory based) Bottom-up approaches pheno applications to QCD-like and condensed matter systems (e.g. Umut

More information

The critical point in QCD

The critical point in QCD The critical point in QCD Thomas Scha fer North Carolina State University The phase diagram of QCD L = q f (id/ m f )q f 1 4g 2 Ga µνg a µν 2000: Dawn of the collider era at RHIC Au + Au @200 AGeV What

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/27 History/motivation BCS/BEC crossover Unitarity regime Schrödinger symmetry Plan Geometric

More information

Equilibrium and nonequilibrium properties of unitary Fermi gas from Quantum Monte Carlo

Equilibrium and nonequilibrium properties of unitary Fermi gas from Quantum Monte Carlo Equilibrium and nonequilibrium properties of unitary ermi gas from Quantum Monte Carlo Piotr Magierski Warsaw University of Technology Collaborators: A. Bulgac - University of Washington J.E. Drut - University

More information

Hadronic equation of state and relativistic heavy-ion collisions

Hadronic equation of state and relativistic heavy-ion collisions Hadronic equation of state and relativistic heavy-ion collisions Pasi Huovinen J. W. Goethe Universität Workshop on Excited Hadronic States and the Deconfinement Transition Feb 23, 2011, Thomas Jefferson

More information

Insight into strong coupling

Insight into strong coupling Insight into strong coupling Many faces of holography: Top-down studies (string/m-theory based) focused on probing features of quantum gravity Bottom-up approaches pheno applications to QCD-like and condensed

More information

Strongly interacting quantum fluids: Experimental status

Strongly interacting quantum fluids: Experimental status Strongly interacting quantum fluids: Experimental status Thomas Schaefer North Carolina State University Perfect fluids: The contenders QGP (T=180 MeV) Liquid Helium (T=0.1 mev) Trapped Atoms (T=0.1 nev)

More information

Recent lessons about hydrodynamics from holography

Recent lessons about hydrodynamics from holography Recent lessons about hydrodynamics from holography Michał P. Heller m.p.heller@uva.nl University of Amsterdam, The Netherlands & National Centre for Nuclear Research, Poland (on leave) based on 03.3452

More information

Quantum gases in the unitary limit and...

Quantum gases in the unitary limit and... Quantum gases in the unitary limit and... Andre LeClair Cornell university Benasque July 2 2010 Outline The unitary limit of quantum gases S-matrix based approach to thermodynamics Application to the unitary

More information

Applications of AdS/CFT correspondence to cold atom physics

Applications of AdS/CFT correspondence to cold atom physics Applications of AdS/CFT correspondence to cold atom physics Sergej Moroz in collaboration with Carlos Fuertes ITP, Heidelberg Outline Basics of AdS/CFT correspondence Schrödinger group and correlation

More information

Holography and (Lorentzian) black holes

Holography and (Lorentzian) black holes Holography and (Lorentzian) black holes Simon Ross Centre for Particle Theory The State of the Universe, Cambridge, January 2012 Simon Ross (Durham) Holography and black holes Cambridge 7 January 2012

More information

Universal quantum transport in ultracold Fermi gases

Universal quantum transport in ultracold Fermi gases Universal quantum transport in ultracold Fermi gases How slowly can spins diffuse? Tilman Enss (U Heidelberg) Rudolf Haussmann (U Konstanz) Wilhelm Zwerger (TU München) Aarhus, 26 June 24 Transport in

More information

Universal Quantum Viscosity in a Unitary Fermi Gas

Universal Quantum Viscosity in a Unitary Fermi Gas Universal Quantum Viscosity in a Unitary Fermi Gas Chenglin Cao Duke University July 5 th, 011 Advisor: Prof. John E Thomas Dr.Ilya Arakelyan Dr.James Joseph Dr.Haibin Wu Yingyi Zhang Ethan Elliott Willie

More information

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Hydrodynamical description of ultrarelativistic heavy-ion collisions Frankfurt Institute for Advanced Studies June 27, 2011 with G. Denicol, E. Molnar, P. Huovinen, D. H. Rischke 1 Fluid dynamics (Navier-Stokes equations) Conservation laws momentum conservation Thermal

More information

Probing Universality in AdS/CFT

Probing Universality in AdS/CFT 1 / 24 Probing Universality in AdS/CFT Adam Ritz University of Victoria with P. Kovtun [0801.2785, 0806.0110] and J. Ward [0811.4195] Shifmania workshop Minneapolis May 2009 2 / 24 Happy Birthday Misha!

More information

Shock waves in strongly coupled plasmas

Shock waves in strongly coupled plasmas Shock waves in strongly coupled plasmas M. Kruczenski Purdue University Based on: arxiv:1004.3803 (S. Khlebnikov, G. Michalogiorgakis, M.K.) Q uantum G ravity in the Southern Cone V, Buenos A ires,2010

More information

Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT.

Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT. Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT. Micha l P. Heller michal.heller@uj.edu.pl Department of Theory of Complex Systems Institute of Physics, Jagiellonian University

More information

Gerry and Fermi Liquid Theory. Thomas Schaefer North Carolina State

Gerry and Fermi Liquid Theory. Thomas Schaefer North Carolina State Ë Ë Ë³ Gerry and Fermi Liquid Theory Thomas Schaefer North Carolina State Introduction I learned about Fermi liquid theory (FLT from Gerry. I was under the imression that the theory amounted to the oeration

More information

Termodynamics and Transport in Improved Holographic QCD

Termodynamics and Transport in Improved Holographic QCD Termodynamics and Transport in Improved Holographic QCD p. 1 Termodynamics and Transport in Improved Holographic QCD Francesco Nitti APC, U. Paris VII Large N @ Swansea July 07 2009 Work with E. Kiritsis,

More information

AdS/CFT Correspondence with Applications to Condensed Matter

AdS/CFT Correspondence with Applications to Condensed Matter AdS/CFT Correspondence with Applications to Condensed Matter Robert Graham SFB/TR 12: Symmetries and Universality in Mesoscopic Systems 1 I. Quantum Field Theory and Gauge Theory II. Conformal Field Theory

More information

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory Alfonso V. Ramallo Univ. Santiago IFIC, Valencia, April 11, 2014 Main result: a duality relating QFT and gravity Quantum

More information

Quasilocal notions of horizons in the fluid/gravity duality

Quasilocal notions of horizons in the fluid/gravity duality Quasilocal notions of horizons in the fluid/gravity duality Michał P. Heller Institute of Physics Jagiellonian University, Cracow & Institute for Nuclear Studies, Warsaw based on work-in-progress with

More information

Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter

Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter Oleg Andreev Landau Institute, Moscow & ASC, München Based on Int.J.Mod.Phys.

More information

Thermal Transport and Energy Loss in Non-critical Holographic QCD

Thermal Transport and Energy Loss in Non-critical Holographic QCD Thermal Transport and Energy Loss in Non-critical Holographic QCD Umut Gürsoy University of Utrecht DAMTP - Cambridge - November 5, 2009 U.G., E. Kiritsis, F. Nitti, L. Mazzanti ongoing U.G., E. Kiritsis,

More information

TASI lectures: Holography for strongly coupled media

TASI lectures: Holography for strongly coupled media TASI lectures: Holography for strongly coupled media Dam T. Son Below is only the skeleton of the lectures, containing the most important formulas. I. INTRODUCTION One of the main themes of this school

More information

Transport bounds for condensed matter physics. Andrew Lucas

Transport bounds for condensed matter physics. Andrew Lucas Transport bounds for condensed matter physics Andrew Lucas Stanford Physics High Energy Physics Seminar, University of Washington May 2, 2017 Collaborators 2 Julia Steinberg Harvard Physics Subir Sachdev

More information

An Introduction to AdS/CFT Correspondence

An Introduction to AdS/CFT Correspondence An Introduction to AdS/CFT Correspondence Dam Thanh Son Institute for Nuclear Theory, University of Washington An Introduction to AdS/CFT Correspondence p.1/32 Plan of of this talk AdS/CFT correspondence

More information

Principles of Hydrodynamics Fluid/Gravity Correspondence The Entropy Current Outlook. The Entropy Current. Yaron Oz (Tel-Aviv University)

Principles of Hydrodynamics Fluid/Gravity Correspondence The Entropy Current Outlook. The Entropy Current. Yaron Oz (Tel-Aviv University) The Entropy Current Yaron Oz (Tel-Aviv University) International Symposium Ahrenshoop on the Theory of Elementary Particles 2012 Outline Principles of Hydrodynamics Fluid/Gravity Correspondence The Entropy

More information

Heavy Ions at the LHC: First Results

Heavy Ions at the LHC: First Results Heavy Ions at the LHC: First Results Thomas Schaefer North Carolina State University Heavy ion collision: Geometry R Au /γ y R Au x b z rapidity : y = 1 2 log ( E + pz E p z ) transverse momentum : p 2

More information

Fluid dynamics of electrons in graphene. Andrew Lucas

Fluid dynamics of electrons in graphene. Andrew Lucas Fluid dynamics of electrons in graphene Andrew Lucas Stanford Physics Condensed Matter Seminar, Princeton October 17, 2016 Collaborators 2 Subir Sachdev Harvard Physics & Perimeter Institute Philip Kim

More information

Holographic entropy production

Holographic entropy production 1 1 School of Physics, University of Chinese Academy of Sciences ( 中国科学院大学物理学院 ) (Based on the joint work [arxiv:1204.2029] with Xiaoning Wu and Hongbao Zhang, which received an honorable mention in the

More information

Black Holes, Fluids, and their Instabilities. Roberto Emparan ICREA & U. Barcelona

Black Holes, Fluids, and their Instabilities. Roberto Emparan ICREA & U. Barcelona Black Holes, Fluids, and their Instabilities Roberto Emparan ICREA & U. Barcelona Black Holes are like Fluids Black Holes are like Fluids What does this mean? What is it good for? Black Holes are like

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

Towards the shear viscosity of a cold unitary fermi gas

Towards the shear viscosity of a cold unitary fermi gas Towards the shear viscosity of a cold unitary fermi gas Jiunn-Wei Chen National Taiwan U. Shear viscosity y V x (y) x Frictional force T ij iv j ( x) V 2 j i ( x) 1 ij V ( x). 3 Shear viscosity measures

More information

Backreaction effects of matter coupled higher derivative gravity

Backreaction effects of matter coupled higher derivative gravity Backreaction effects of matter coupled higher derivative gravity Lata Kh Joshi (Based on arxiv:1409.8019, work done with Ramadevi) Indian Institute of Technology, Bombay DAE-HEP, Dec 09, 2014 Lata Joshi

More information

The Role of Black Holes in the AdS/CFT Correspondence

The Role of Black Holes in the AdS/CFT Correspondence The Role of Black Holes in the AdS/CFT Correspondence Mario Flory 23.07.2013 Mario Flory BHs in AdS/CFT 1 / 30 GR and BHs Part I: General Relativity and Black Holes Einstein Field Equations Lightcones

More information

The direct photon puzzle

The direct photon puzzle The direct photon puzzle Jean-François Paquet January 16, 2017 ALICE Journal Club Jean-François Paquet (Stony Brook) 2 What is the direct photon puzzle? > Background

More information

Temperature dependence of shear viscosity of SU(3) gluodynamics within lattice simulation

Temperature dependence of shear viscosity of SU(3) gluodynamics within lattice simulation Temperature dependence of shear viscosity of SU(3) gluodynamics within lattice simulation V.V. Braguta ITEP 20 April, 2017 Outline: Introduction Details of the calculation Shear viscocity Fitting of the

More information

Theory of Quantum Matter: from Quantum Fields to Strings

Theory of Quantum Matter: from Quantum Fields to Strings Theory of Quantum Matter: from Quantum Fields to Strings Salam Distinguished Lectures The Abdus Salam International Center for Theoretical Physics Trieste, Italy January 27-30, 2014 Subir Sachdev Talk

More information

Trans-series & hydrodynamics far from equilibrium

Trans-series & hydrodynamics far from equilibrium Trans-series & hydrodynamics far from equilibrium Michal P. Heller Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Germany National Centre for Nuclear Research, Poland many

More information

Duality and Holography

Duality and Holography Duality and Holography? Joseph Polchinski UC Davis, 5/16/11 Which of these interactions doesn t belong? a) Electromagnetism b) Weak nuclear c) Strong nuclear d) a) Electromagnetism b) Weak nuclear c) Strong

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

How to get a superconductor out of a black hole

How to get a superconductor out of a black hole How to get a superconductor out of a black hole Christopher Herzog Princeton October 2009 Quantum Phase Transition: a phase transition between different quantum phases (phases of matter at T = 0). Quantum

More information

Hydrodynamics of the superfluid CFL phase and r-mode instabilities

Hydrodynamics of the superfluid CFL phase and r-mode instabilities Hydrodynamics of the superfluid CFL phase and r-mode instabilities Cristina Manuel Instituto de Ciencias del Espacio (IEEC-CSIC) Barcelona Hirschegg 2009 Outline Introduction Superfluid hydrodynamics Hydrodynamics

More information

Fluid dynamic propagation of initial baryon number perturbations

Fluid dynamic propagation of initial baryon number perturbations Fluid dynamic propagation of initial baryon number perturbations Stefan Flörchinger (Heidelberg U.) Initial Stages 2016, Lisbon, mainly based on S. Floerchinger & M. Martinez: Fluid dynamic propagation

More information

Non-Equilibrium Steady States Beyond Integrability

Non-Equilibrium Steady States Beyond Integrability Non-Equilibrium Steady States Beyond Integrability Joe Bhaseen TSCM Group King s College London Beyond Integrability: The Mathematics and Physics of Integrability and its Breaking in Low-Dimensional Strongly

More information

Holographic transport with random-field disorder. Andrew Lucas

Holographic transport with random-field disorder. Andrew Lucas Holographic transport with random-field disorder Andrew Lucas Harvard Physics Quantum Field Theory, String Theory and Condensed Matter Physics: Orthodox Academy of Crete September 1, 2014 Collaborators

More information

Viscosity of Quark-Gluon Plasma!

Viscosity of Quark-Gluon Plasma! Viscosity of Quark-Gluon Plasma! Rajendra Pokharel Advisor: Prof. Sean Gavin 2 nd Graduate Research Day " Wayne State University " "Apr 24, 2011! Outlines " " Background Hydrodynamics The Model Results

More information

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario.

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario. Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario. Shear viscosity from BAMPS Andrej El Zhe Xu Carsten Greiner Institut für Theoretische Physik

More information

AdS/CFT and Second Order Viscous Hydrodynamics

AdS/CFT and Second Order Viscous Hydrodynamics AdS/CFT and Second Order Viscous Hydrodynamics Micha l P. Heller Institute of Physics Jagiellonian University, Cracow Cracow School of Theoretical Physics XLVII Course Zakopane, 20.06.2007 Based on [hep-th/0703243]

More information

Constraints on Fluid Dynamics From Equilibrium Partition Func

Constraints on Fluid Dynamics From Equilibrium Partition Func Constraints on Fluid Dynamics From Equilibrium Partition Function Nabamita Banerjee Nikhef, Amsterdam LPTENS, Paris 1203.3544, 1206.6499 J. Bhattacharya, S. Jain, S. Bhattacharyya, S. Minwalla, T. Sharma,

More information

Hydrodynamics and QCD Critical Point in Magnetic Field

Hydrodynamics and QCD Critical Point in Magnetic Field Hydrodynamics and QCD Critical Point in Magnetic Field University of Illinois at Chicago May 25, 2018 INT Workshop Multi Scale Problems Using Effective Field Theories Reference: Phys.Rev. D97 (2018) no.5,

More information

Gauge/Gravity Duality: An introduction. Johanna Erdmenger. Max Planck Institut für Physik, München

Gauge/Gravity Duality: An introduction. Johanna Erdmenger. Max Planck Institut für Physik, München .. Gauge/Gravity Duality: An introduction Johanna Erdmenger Max Planck Institut für Physik, München 1 Outline I. Foundations 1. String theory 2. Dualities between quantum field theories and gravity theories

More information

Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents

Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents Reference: AM and T. Hirano, arxiv:1003:3087 Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents Akihiko Monnai Department of Physics, The University of Tokyo

More information

Strong Coupling and Heavy Ion Collisions

Strong Coupling and Heavy Ion Collisions Strong Coupling and Heavy Ion Collisions Derek Teaney SUNY Stony Brook and RBRC Fellow Simon Caron-Huot, DT, Paul Chesler; PRD, arxiv:2.73 Paul Chesler and DT; arxiv:2.696 Paul Chesler and DT; arxiv:2

More information

Effective field theory, holography, and non-equilibrium physics. Hong Liu

Effective field theory, holography, and non-equilibrium physics. Hong Liu Effective field theory, holography, and non-equilibrium physics Hong Liu Equilibrium systems Microscopic description low energy effective field theory: Macroscopic phenomena Renormalization group, universality

More information

AdS/CFT and condensed matter physics

AdS/CFT and condensed matter physics AdS/CFT and condensed matter physics Simon Ross Centre for Particle Theory, Durham University Padova 28 October 2009 Simon Ross (Durham) AdS/CMT 28 October 2009 1 / 23 Outline Review AdS/CFT Application

More information

On the effective action in hydrodynamics

On the effective action in hydrodynamics On the effective action in hydrodynamics Pavel Kovtun, University of Victoria arxiv: 1502.03076 August 2015, Seattle Outline Introduction Effective action: Phenomenology Effective action: Bottom-up Effective

More information

Past, Present, and Future of the QGP Physics

Past, Present, and Future of the QGP Physics Past, Present, and Future of the QGP Physics Masayuki Asakawa Department of Physics, Osaka University November 8, 2018 oward Microscopic Understanding In Condensed Matter Physics 1st Macroscopic Properties

More information

Away-Side Angular Correlations Associated with Heavy Quark Jets

Away-Side Angular Correlations Associated with Heavy Quark Jets Away-Side Angular Correlations Associated with Heavy Quark Jets Jorge Noronha Presented by: William Horowitz The Ohio State University Based on: J.N, Gyulassy, Torrieri, arxiv:0807.1038 [hep-ph] and Betz,

More information

QCD in Heavy-ion collisions

QCD in Heavy-ion collisions QCD in Heavy-ion collisions RPP 2012, Montpellier transition t p z q IPhT, Saclay 1 Outline 1 2 3 4 5 6 7 transition 2 1 transition 2 3 4 5 6 transition 7 2 Asymptotic freedom Running coupling : α s =

More information

Energy-momentum tensor correlators in hot Yang-Mills theory

Energy-momentum tensor correlators in hot Yang-Mills theory Energy-momentum tensor correlators in hot Yang-Mills theory Aleksi Vuorinen University of Helsinki Micro-workshop on analytic properties of thermal correlators University of Oxford, 6.3.017 Mikko Laine,

More information

η = shear viscosity η s 1 s = entropy density 4π ( = k B = 1)

η = shear viscosity η s 1 s = entropy density 4π ( = k B = 1) s 1 = shear viscosity s = entropy density 4π ( = k B = 1) = shear viscosity s 1 4π s = shear viscosity s water 380 1 4π 1 4π s Liquid Helium 9 1 4π 1 4π Experimental Data KSS Quark-Gluon Plasma Kovtun

More information

arxiv: v1 [nucl-th] 2 Mar 2015

arxiv: v1 [nucl-th] 2 Mar 2015 The domain of validity of fluid dynamics and the onset of cavitation in ultrarelativistic heavy ion collisions arxiv:503.0053v [nucl-th] 2 Mar 205 Department of Physics, McGill University, 3600 University

More information

Quantum critical transport, duality, and M-theory

Quantum critical transport, duality, and M-theory Quantum critical transport, duality, and M-theory hep-th/0701036 Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh Son (Washington) Talks online at http://sachdev.physics.harvard.edu

More information

Sound modes and the two-stream instability in relativistic superfluids

Sound modes and the two-stream instability in relativistic superfluids Madrid, January 17, 21 1 Andreas Schmitt Institut für Theoretische Physik Technische Universität Wien 1 Vienna, Austria Sound modes and the two-stream instability in relativistic superfluids M.G. Alford,

More information

From spectral functions to viscosity in the QuarkGluon Plasma

From spectral functions to viscosity in the QuarkGluon Plasma From spectral functions to viscosity in the QuarkGluon Plasma N.C., Haas, Pawlowski, Strodthoff: Phys. Rev. Lett. 115.112002, 2015 Hirschegg 21.1.2016 Outline Introduction Framework for transport coefficients

More information

Hydrodynamic Modes of Incoherent Black Holes

Hydrodynamic Modes of Incoherent Black Holes Hydrodynamic Modes of Incoherent Black Holes Vaios Ziogas Durham University Based on work in collaboration with A. Donos, J. Gauntlett [arxiv: 1707.xxxxx, 170x.xxxxx] 9th Crete Regional Meeting on String

More information

Emergent Quantum Criticality

Emergent Quantum Criticality (Non-)Fermi Liquids and Emergent Quantum Criticality from gravity Hong Liu Massachusetts setts Institute te of Technology HL, John McGreevy, David Vegh, 0903.2477 Tom Faulkner, HL, JM, DV, to appear Sung-Sik

More information