(Nearly) Scale invariant fluid dynamics for the dilute Fermi gas in two and three dimensions. Thomas Schaefer North Carolina State University

Size: px
Start display at page:

Download "(Nearly) Scale invariant fluid dynamics for the dilute Fermi gas in two and three dimensions. Thomas Schaefer North Carolina State University"

Transcription

1 (Nearly) Scale invariant fluid dynamics for the dilute Fermi gas in two and three dimensions Thomas Schaefer North Carolina State University

2 Outline I. Conformal hydrodynamics II. Observations (3d) III. Scale breaking (3d) IV. Two dimensional fluids V. Fluctuations

3 Two body scattering in 2d and 3d Consider zero range interaction L = ψ ( i M ) ψ C 0 2 (ψ ψ) 2 3d: Tune C 0 to unitarity. Two body scattering matrix T = 4π m 1 1/a ik T = 4π m 1 ik 2d: Classical scale invariance, broken by quantum effects T = 4π m 1 log[(ka 2d ) 2 ] iπ

4 I. Scale invariant fluid dynamics in 3d Many body system: Effective cross section σ tr n 2/3 (or σ tr λ 2 ) Systems remains hydrodynamic despite expansion

5 Scale and conformal symmetry Gallilean boosts x = x + vt t = t scale trafo x = e s x t = e 2s t conformal trafo x = x/(1 + ct) 1/t = 1/t + c Ideal fluid dynamics Π 0 ij = Pδ ij + ρv i v j, P = 2 3 E First order viscous hydrodynamics ( δ (1) Π ij = ησ ij, σ ij = i v j + j v i 2 ) 3 δ ij( v), ζ = 0

6 Second order conformal hydrodynamics Relaxation of shear stress is a second order hydro term. Complete list [ δ (2) Π ij = ητ π Dσ ij + 2 ] 3 σij ( v) + λ 1 σ i k σj k + λ 2 σ i k Ωj k + λ 3 Ω i k Ωj k + γ 1 i T j T + γ 2 i P j P + γ 3 i j T +... D = 0 + v A ij = 1 2 A ij + A ji 3 2 g ij Ak k Ω ij = i v j j v i New transport coefficients τ π, λ i, γ i Can be written as a relaxation equation for π ij δπ ij [ Dπ ij + 53 ( v)πij ] = τ π ( π ij + ησ ij) +... Chao, Schaefer (2011)

7 Scaling ( Hubble ) expansion Why second order fluid dynamics? ρ(x i, t) = ρ 0 (b i (t)x i ), ideal stresses v i (x j, t) = α i (t)x i dissipative stresses Π 0 xx δ (1) Π xx Π 0 ii = P + ρα2 i x2 i δ (1) Π ii = η(α i 4 3 j α j) x x Ideal stresses propagate with speed c s, dissipative stresses propagate with infinite speed. Hydro always breaks down in the dilute corona. Solved by relaxation time τ π η P.

8 II. Scale invariant fluid dynamics: Observations Hydrodynamic expansion converts σ σ µ coordinate space anisotropy σ σ to momentum space anisotropy O Hara et al. (2002)

9 Elliptic flow: Breakdown of scale invariant hydrodynamics? switch from conformal hydro to scale breaking kinetics at scale factor b fr = 1,5,10,20 A R t [ms] no breakdown seen in the data

10 Elliptic flow: Shear vs bulk viscosity Dissipative hydro with both η, ζ A R 1.5 ideal 1.0 η ζ t [ms]

11 Elliptic flow: Shear vs bulk viscosity Dissipative hydro with both η, ζ β η,ζ = [η, ζ] n E F E 1 (3λN) 1/ β η 0.2 η ζ β ζ Dusling, Schaefer (2010)

12 III. Bulk viscosity and conformal symmetry breaking Conformal symmetry breaking (thermodynamics) 1 2E 3P = C 12πmaP 1 λ 6π nλ3 a Quasi-particles: Im Σ(k) zt Bulk viscosity ζ = π λ 3 ( zλ a Re Σ(k) zt λ a T ǫ k Erf T ǫ k F D ) 2 ζ ( 1 2E 3P ( ǫk T ) ( ǫk ) 2 η T T )

13 IV. Viscosity in two dimensions Kinetic theory with zero range interaction f p t + v x f p = C[f p ] C[f] = Shear viscosity in 2d and 3d Viscous damping η 2d = λ 2 π ([ log η 3d = 15 2πλ 3 16 Ė = 1 2 (5π a2 λ 2 )] 2 + π 2 ) ( π λ 2 ) a d 3 x η(x) (σ ij ) 2 = N 2 α n (σ ij ) 2

14 Comparison to collective mode data log(k F a) α n T/T F See arxiv: , data from Vogt et al. arxiv: Also: Bruun arxiv: , Baur et al. arxiv:

15 Hydrodynamic variables fluctuate V. Thermal fluctuations δv i (x, t)δv j (x, t) = T ρ δ ijδ(x x ) Linearized hydrodynamics propagates fluctuations as shear or sound δv T i δv T j ω,k = 2T ρ (δ ij ˆk iˆkj ) δv L i δv L j ω,k = 2T ρ ˆk iˆkj νk 2 ω 2 + (νk 2 ) 2 shear ωk 2 Γ (ω 2 c 2 sk 2 ) 2 + (ωk 2 Γ) 2 sound v = v T + v L : v T = 0, v L = 0 ν = η/ρ, Γ = 4 3 ν +...

16 Hydro Loops: Breakdown of second order hydro Response function G xyxy R = θ(t)[π xy,π xy ] ω,k Π xy = ρv x v y v T ρ ρ v T vl v L v L ρ ρ ρ vt ρ G xyxy R = P + δp + iω[η + δη] + ω 2 [ητ π + δ(ητ π )] 3d: Enhanced shear viscosity, divergent relaxation time δη T ( ) 2 ( ρ P η ρ ) 1/2 δ(ητ π ) 1 ( ) 3/2 ρ ω η Fluctuations large if bare viscosity is small

17 Fluctuation induced bound on η/s η/s η(ω)/s 0.4 fluctuations (η/s) min kinetic theory T/T F ω/t spectral function non-analytic ω term See arxiv: , also Kovtun, Moore, Romatschke (2011).

18 Fluctuations in 2d 2d: Logarithmic divergence in shear viscosity δη 1 16π mnt η log ( 2nT ηω ) Collective modes: Logarithmic dependence on number of particles ( η δ n) = log(n) 16π Power divergence in relaxation time hard to observe δ(ητ π ) 1 ω mnt η 2

19 Outlook Can we observe bulk viscosity away from unitarity in 3d, or near the crossover in 2d? What about bulk viscosity in the superfluid phase? Need local measurements of η/s in 2d and 3d. Requires second order hydrodynamics or hydro+kinetics calculations. Measurements of the viscous relaxation time (based on collective modes and elliptic flow?). QMC measurements of the viscosity spectral function. Can we see fluctuation effects? Quasi-particle behavior?

20 Scale breaking in 2d monopole frequency Scale invariance implies undamped monopole mode ω = 2ω 0. Frequency shift due to scale breaking Randeria, Taylor (2012) ω 2 = 1 d2 d d r γ d γ d = 2 + d 8 dd r nv (r) d P ρ P ρ 4ω 2 0 s High temperature limit: Virial expansion γ d = mz2 T 2 π ( EB b 2 (T) = ν T ( 2Tb 2 + T 2 b ) 2 ) E B = 1 ma 2 Ω Ω logk F a

Fluid dynamics for the unitary Fermi gas. Thomas Schaefer, North Carolina State University

Fluid dynamics for the unitary Fermi gas. Thomas Schaefer, North Carolina State University Fluid dynamics for the unitary Fermi gas Thomas Schaefer, North Carolina State University Non-relativistic fermions in unitarity limit Consider simple square well potential a < 0 a =, ǫ B = 0 a > 0, ǫ

More information

(Nearly) perfect fluidity in cold atomic gases: Recent results. Thomas Schaefer North Carolina State University

(Nearly) perfect fluidity in cold atomic gases: Recent results. Thomas Schaefer North Carolina State University (Nearly) perfect fluidity in cold atomic gases: Recent results Thomas Schaefer North Carolina State University Fluids: Gases, Liquids, Plasmas,... Hydrodynamics: Long-wavelength, low-frequency dynamics

More information

Scale invariant fluid dynamics for the dilute Fermi gas at unitarity

Scale invariant fluid dynamics for the dilute Fermi gas at unitarity Scale invariant fluid dynamics for the dilute Fermi gas at unitarity Thomas Schaefer North Carolina State University Fluids: Gases, Liquids, Plasmas,... Hydrodynamics: Long-wavelength, low-frequency dynamics

More information

(Non) Conformal Quantum Fluids. Thomas Schaefer, North Carolina State University

(Non) Conformal Quantum Fluids. Thomas Schaefer, North Carolina State University (Non) Conformal Quantum Fluids Thomas Schaefer, North Carolina State University Why study (nearly perfect) quantum fluids? Hard computational problem: Have to determine real time correlation functions.

More information

Transport in Conformal Quantum Fluids. Thomas Schaefer, North Carolina State University

Transport in Conformal Quantum Fluids. Thomas Schaefer, North Carolina State University Transport in Conformal Quantum Fluids Thomas Schaefer, North Carolina State University Why study transport in (nearly perfect) quantum fluids? Transport without quasi-particles? Model system for QGP, strange

More information

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University (Super) Fluid Dynamics Thomas Schaefer, North Carolina State University Hydrodynamics Hydrodynamics (undergraduate version): Newton s law for continuous, deformable media. Fluids: Gases, liquids, plasmas,...

More information

Conformal Quantum Fluids. Thomas Schaefer, North Carolina State University

Conformal Quantum Fluids. Thomas Schaefer, North Carolina State University Conformal Quantum Fluids Thomas Schaefer, North Carolina State University Why study (nearly perfect) quantum fluids? Hard computational problem: Have to determine real time correlation functions. Achieve

More information

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University Anisotropic fluid dynamics Thomas Schaefer, North Carolina State University Outline We wish to extract the properties of nearly perfect (low viscosity) fluids from experiments with trapped gases, colliding

More information

Fluid dynamics as an effective theory. Thomas Schaefer, North Carolina State University

Fluid dynamics as an effective theory. Thomas Schaefer, North Carolina State University Fluid dynamics as an effective theory Thomas Schaefer, North Carolina State University Hydroynamics Hydrodynamics (undergraduate version): Newton s law for continuous, deformable media. Fluids: Gases,

More information

Intersections of nuclear physics and cold atom physics

Intersections of nuclear physics and cold atom physics Intersections of nuclear physics and cold atom physics Thomas Schaefer North Carolina State University Unitarity limit Consider simple square well potential a < 0 a =, ǫ B = 0 a > 0, ǫ B > 0 Unitarity

More information

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks Thomas Schaefer, North Carolina State University RHIC serves the perfect fluid Experiments at RHIC are consistent with the idea that a thermalized

More information

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 Hydrodynamics Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 What is Hydrodynamics? Describes the evolution of physical systems (classical or quantum particles, fluids or fields) close to thermal

More information

Lifshitz Hydrodynamics

Lifshitz Hydrodynamics Lifshitz Hydrodynamics Yaron Oz (Tel-Aviv University) With Carlos Hoyos and Bom Soo Kim, arxiv:1304.7481 Outline Introduction and Summary Lifshitz Hydrodynamics Strange Metals Open Problems Strange Metals

More information

Collaborators: Aleksas Mazeliauskas (Heidelberg) & Derek Teaney (Stony Brook) Refs: , /25

Collaborators: Aleksas Mazeliauskas (Heidelberg) & Derek Teaney (Stony Brook) Refs: , /25 2017 8 28 30 @ Collaborators: Aleksas Mazeliauskas (Heidelberg) & Derek Teaney (Stony Brook) Refs: 1606.07742, 1708.05657 1/25 1. Introduction 2/25 Ultra-relativistic heavy-ion collisions and the Bjorken

More information

Quantum limited spin transport in ultracold atomic gases

Quantum limited spin transport in ultracold atomic gases Quantum limited spin transport in ultracold atomic gases Searching for the perfect SPIN fluid... Tilman Enss (Uni Heidelberg) Rudolf Haussmann (Uni Konstanz) Wilhelm Zwerger (TU München) Technical University

More information

Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity. Debarati Chatterjee

Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity. Debarati Chatterjee Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity Debarati Chatterjee Recap: Hydrodynamics of nearly perfect fluids Hydrodynamics: correlation functions at low

More information

Strongly interacting quantum fluids: Experimental status

Strongly interacting quantum fluids: Experimental status Strongly interacting quantum fluids: Experimental status Thomas Schaefer North Carolina State University Perfect fluids: The contenders QGP (T=180 MeV) Liquid Helium (T=0.1 mev) Trapped Atoms (T=0.1 nev)

More information

Strongly interacting quantum fluids: Transport theory

Strongly interacting quantum fluids: Transport theory Strongly interacting quantum fluids: Transport theory Thomas Schaefer North Carolina State University Fluids: Gases, Liquids, Plasmas,... Hydrodynamics: Long-wavelength, low-frequency dynamics of conserved

More information

The Big Picture. Thomas Schaefer. North Carolina State University

The Big Picture. Thomas Schaefer. North Carolina State University The Big Picture Thomas Schaefer North Carolina State University 1 Big Questions What is QCD? What is a Phase of QCD? What is a Plasma? What is a (perfect) Liquid? What is a wqgp/sqgp? 2 What is QCD (Quantum

More information

Gerry and Fermi Liquid Theory. Thomas Schaefer North Carolina State

Gerry and Fermi Liquid Theory. Thomas Schaefer North Carolina State Ë Ë Ë³ Gerry and Fermi Liquid Theory Thomas Schaefer North Carolina State Introduction I learned about Fermi liquid theory (FLT from Gerry. I was under the imression that the theory amounted to the oeration

More information

arxiv: v1 [nucl-th] 9 Jun 2008

arxiv: v1 [nucl-th] 9 Jun 2008 Dissipative effects from transport and viscous hydrodynamics arxiv:0806.1367v1 [nucl-th] 9 Jun 2008 1. Introduction Denes Molnar 1,2 and Pasi Huovinen 1 1 Purdue University, Physics Department, 525 Northwestern

More information

In this chapter we will discuss the effect of shear viscosity on evolution of fluid, p T

In this chapter we will discuss the effect of shear viscosity on evolution of fluid, p T Chapter 3 Shear viscous evolution In this chapter we will discuss the effect of shear viscosity on evolution of fluid, p T spectra, and elliptic flow (v ) of pions using a +1D relativistic viscous hydrodynamics

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/27 History/motivation BCS/BEC crossover Unitarity regime Schrödinger symmetry Plan Geometric

More information

Hadronic equation of state and relativistic heavy-ion collisions

Hadronic equation of state and relativistic heavy-ion collisions Hadronic equation of state and relativistic heavy-ion collisions Pasi Huovinen J. W. Goethe Universität Workshop on Excited Hadronic States and the Deconfinement Transition Feb 23, 2011, Thomas Jefferson

More information

Towards new relativistic hydrodynamcis from AdS/CFT

Towards new relativistic hydrodynamcis from AdS/CFT Towards new relativistic hydrodynamcis from AdS/CFT Michael Lublinsky Stony Brook with Edward Shuryak QGP is Deconfined QGP is strongly coupled (sqgp) behaves almost like a perfect liquid (Navier-Stokes

More information

Euler equation and Navier-Stokes equation

Euler equation and Navier-Stokes equation Euler equation and Navier-Stokes equation WeiHan Hsiao a a Department of Physics, The University of Chicago E-mail: weihanhsiao@uchicago.edu ABSTRACT: This is the note prepared for the Kadanoff center

More information

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Hydrodynamical description of ultrarelativistic heavy-ion collisions Frankfurt Institute for Advanced Studies June 27, 2011 with G. Denicol, E. Molnar, P. Huovinen, D. H. Rischke 1 Fluid dynamics (Navier-Stokes equations) Conservation laws momentum conservation Thermal

More information

Probing Universality in AdS/CFT

Probing Universality in AdS/CFT 1 / 24 Probing Universality in AdS/CFT Adam Ritz University of Victoria with P. Kovtun [0801.2785, 0806.0110] and J. Ward [0811.4195] Shifmania workshop Minneapolis May 2009 2 / 24 Happy Birthday Misha!

More information

Heavy Ions at the LHC: First Results

Heavy Ions at the LHC: First Results Heavy Ions at the LHC: First Results Thomas Schaefer North Carolina State University Heavy ion collision: Geometry R Au /γ y R Au x b z rapidity : y = 1 2 log ( E + pz E p z ) transverse momentum : p 2

More information

Second-Order Relativistic Hydrodynamics

Second-Order Relativistic Hydrodynamics Second-Order Relativistic Hydrodynamics Guy D. Moore, Mark York, Kiyoumars Sohrabi, Paul Romatschke, Pavel Kovtun Why do we want to do relativistic Hydro? Why second order hydro, and what are coefficients?

More information

Temperature dependence of shear viscosity of SU(3) gluodynamics within lattice simulation

Temperature dependence of shear viscosity of SU(3) gluodynamics within lattice simulation Temperature dependence of shear viscosity of SU(3) gluodynamics within lattice simulation V.V. Braguta ITEP 20 April, 2017 Outline: Introduction Details of the calculation Shear viscocity Fitting of the

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

Universal Quantum Viscosity in a Unitary Fermi Gas

Universal Quantum Viscosity in a Unitary Fermi Gas Universal Quantum Viscosity in a Unitary Fermi Gas Chenglin Cao Duke University July 5 th, 011 Advisor: Prof. John E Thomas Dr.Ilya Arakelyan Dr.James Joseph Dr.Haibin Wu Yingyi Zhang Ethan Elliott Willie

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

Recent lessons about hydrodynamics from holography

Recent lessons about hydrodynamics from holography Recent lessons about hydrodynamics from holography Michał P. Heller m.p.heller@uva.nl University of Amsterdam, The Netherlands & National Centre for Nuclear Research, Poland (on leave) based on 03.3452

More information

Status of viscous hydrodynamic code development

Status of viscous hydrodynamic code development Status of viscous hydrodynamic code development Yuriy KARPENKO Transport group meeting, Jan 17, 2013 Yuriy Karpenko (FIAS/BITP) Status of viscous hydro code Transport group meeting, Jan 17, 2013 1 / 21

More information

Viscosity in strongly coupled gauge theories Lessons from string theory

Viscosity in strongly coupled gauge theories Lessons from string theory Viscosity in strongly coupled gauge theories Lessons from string theory Pavel Kovtun KITP, University of California, Santa Barbara A.Buchel, (University of Western Ontario) C.Herzog, (University of Washington,

More information

Hydrodynamic Fluctuations in relativistic heavy ion collisions

Hydrodynamic Fluctuations in relativistic heavy ion collisions Hydrodynamic Fluctuations in relativistic heavy ion collisions J.I. Kapusta, BM & M. Stephanov, PRC 85, 054906 (2012) Berndt Müller INT Workshop on the Ridge 5-11 May 2012 Sources of fluctuations Initial-state

More information

Quantum gases in the unitary limit and...

Quantum gases in the unitary limit and... Quantum gases in the unitary limit and... Andre LeClair Cornell university Benasque July 2 2010 Outline The unitary limit of quantum gases S-matrix based approach to thermodynamics Application to the unitary

More information

The critical point in QCD

The critical point in QCD The critical point in QCD Thomas Scha fer North Carolina State University The phase diagram of QCD L = q f (id/ m f )q f 1 4g 2 Ga µνg a µν 2000: Dawn of the collider era at RHIC Au + Au @200 AGeV What

More information

Physics 127a: Class Notes

Physics 127a: Class Notes Physics 7a: Class Notes Lecture 4: Bose Condensation Ideal Bose Gas We consider an gas of ideal, spinless Bosons in three dimensions. The grand potential (T,µ,V) is given by kt = V y / ln( ze y )dy, ()

More information

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger Julius-Maximilians-Universität Würzburg 1 New Gauge/Gravity Duality group at Würzburg University Permanent members 2 Gauge/Gravity

More information

Chiral Magnetic and Vortical Effects at Weak Coupling

Chiral Magnetic and Vortical Effects at Weak Coupling Chiral Magnetic and Vortical Effects at Weak Coupling University of Illinois at Chicago and RIKEN-BNL Research Center June 19, 2014 XQCD 2014 Stonybrook University, June 19-20, 2014 Chiral Magnetic and

More information

Towards a quantitative FRG approach for the BCS-BEC crossover

Towards a quantitative FRG approach for the BCS-BEC crossover Towards a quantitative FRG approach for the BCS-BEC crossover Michael M. Scherer Theoretisch Physikalisches Institut, Jena University in collaboration with Sebastian Diehl, Stefan Flörchinger, Holger Gies,

More information

Relativistic hydrodynamics at large gradients

Relativistic hydrodynamics at large gradients Relativistic hydrodynamics at large gradients Michał P. Heller Perimeter Institute for Theoretical Physics, Canada National Centre for Nuclear Research, Poland based on 03.3452, 302.0697, 409.5087 & 503.0754

More information

Equilibrium and nonequilibrium properties of unitary Fermi gas from Quantum Monte Carlo

Equilibrium and nonequilibrium properties of unitary Fermi gas from Quantum Monte Carlo Equilibrium and nonequilibrium properties of unitary ermi gas from Quantum Monte Carlo Piotr Magierski Warsaw University of Technology Collaborators: A. Bulgac - University of Washington J.E. Drut - University

More information

Astro 448 Lecture Notes Set 1 Wayne Hu

Astro 448 Lecture Notes Set 1 Wayne Hu Astro 448 Lecture Notes Set 1 Wayne Hu Recombination Equilibrium number density distribution of a non-relativistic species n i = g i ( mi T 2π ) 3/2 e m i/t Apply to the e + p H system: Saha Equation n

More information

Hydrodynamic Modes of Incoherent Black Holes

Hydrodynamic Modes of Incoherent Black Holes Hydrodynamic Modes of Incoherent Black Holes Vaios Ziogas Durham University Based on work in collaboration with A. Donos, J. Gauntlett [arxiv: 1707.xxxxx, 170x.xxxxx] 9th Crete Regional Meeting on String

More information

Shock waves in the unitary Fermi gas

Shock waves in the unitary Fermi gas Shock waves in the unitary Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova Banff, May 205 Collaboration with: Francesco Ancilotto and Flavio Toigo Summary.

More information

Universal quantum transport in ultracold Fermi gases

Universal quantum transport in ultracold Fermi gases Universal quantum transport in ultracold Fermi gases How slowly can spins diffuse? Tilman Enss (U Heidelberg) Rudolf Haussmann (U Konstanz) Wilhelm Zwerger (TU München) Aarhus, 26 June 24 Transport in

More information

Non-relativistic AdS/CFT

Non-relativistic AdS/CFT Non-relativistic AdS/CFT Christopher Herzog Princeton October 2008 References D. T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78,

More information

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN SEZIONE DI CATANIA

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN SEZIONE DI CATANIA UNIVERSITÀ DEGLI STUDI DI CATANIA INFN SEZIONE DI CATANIA MOMENTUM ANISOTROPIES IN A TRANSPORT APPROACH V. BARAN, M. DI TORO, V. GRECO, S. PLUMARI Transport Theory with a Mean Field at fixed η/s. Effective

More information

Incompressible MHD simulations

Incompressible MHD simulations Incompressible MHD simulations Felix Spanier 1 Lehrstuhl für Astronomie Universität Würzburg Simulation methods in astrophysics Felix Spanier (Uni Würzburg) Simulation methods in astrophysics 1 / 20 Outline

More information

On the effective action in hydrodynamics

On the effective action in hydrodynamics On the effective action in hydrodynamics Pavel Kovtun, University of Victoria arxiv: 1502.03076 August 2015, Seattle Outline Introduction Effective action: Phenomenology Effective action: Bottom-up Effective

More information

Hydrodynamics in the Dirac fluid in graphene. Andrew Lucas

Hydrodynamics in the Dirac fluid in graphene. Andrew Lucas Hydrodynamics in the Dirac fluid in graphene Andrew Lucas Stanford Physics Fluid flows from graphene to planet atmospheres; Simons Center for Geometry and Physics March 20, 2017 Collaborators 2 Subir Sachdev

More information

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001 Chemical Engineering 160/260 Polymer Science and Engineering Lecture 14: Amorphous State February 14, 2001 Objectives! To provide guidance toward understanding why an amorphous polymer glass may be considered

More information

Quick Recapitulation of Fluid Mechanics

Quick Recapitulation of Fluid Mechanics Quick Recapitulation of Fluid Mechanics Amey Joshi 07-Feb-018 1 Equations of ideal fluids onsider a volume element of a fluid of density ρ. If there are no sources or sinks in, the mass in it will change

More information

Thermo-electric transport in holographic systems with moment

Thermo-electric transport in holographic systems with moment Thermo-electric Perugia 2015 Based on: Thermo-electric gauge/ models with, arxiv:1406.4134, JHEP 1409 (2014) 160. Analytic DC thermo-electric conductivities in with gravitons, arxiv:1407.0306, Phys. Rev.

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Trans-series & hydrodynamics far from equilibrium

Trans-series & hydrodynamics far from equilibrium Trans-series & hydrodynamics far from equilibrium Michal P. Heller Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Germany National Centre for Nuclear Research, Poland many

More information

Theory of metallic transport in strongly coupled matter. 4. Magnetotransport. Andrew Lucas

Theory of metallic transport in strongly coupled matter. 4. Magnetotransport. Andrew Lucas Theory of metallic transport in strongly coupled matter 4. Magnetotransport Andrew Lucas Stanford Physics Geometry and Holography for Quantum Criticality; Asia-Pacific Center for Theoretical Physics August

More information

Hydrodynamics and QCD Critical Point in Magnetic Field

Hydrodynamics and QCD Critical Point in Magnetic Field Hydrodynamics and QCD Critical Point in Magnetic Field University of Illinois at Chicago May 25, 2018 INT Workshop Multi Scale Problems Using Effective Field Theories Reference: Phys.Rev. D97 (2018) no.5,

More information

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

PEAT SEISMOLOGY Lecture 2: Continuum mechanics PEAT8002 - SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a

More information

Chapter 2: Fluid Dynamics Review

Chapter 2: Fluid Dynamics Review 7 Chapter 2: Fluid Dynamics Review This chapter serves as a short review of basic fluid mechanics. We derive the relevant transport equations (or conservation equations), state Newton s viscosity law leading

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Microstructural studies for rheology. Chapter 7: Microstructural studies for rheology. Separation of length scales. Micro & macro views

Microstructural studies for rheology. Chapter 7: Microstructural studies for rheology. Separation of length scales. Micro & macro views Chapter 7: Microstructural studies for rheology Microstructural studies for rheology To calculate the flow of complex fluids, need governing equations, in particular, the constitutive equation relating

More information

QGP, Hydrodynamics and the AdS/CFT correspondence

QGP, Hydrodynamics and the AdS/CFT correspondence QGP, Hydrodynamics and the AdS/CFT correspondence Adrián Soto Stony Brook University October 25th 2010 Adrián Soto (Stony Brook University) QGP, Hydrodynamics and AdS/CFT October 25th 2010 1 / 18 Outline

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

Diffusive Transport Enhanced by Thermal Velocity Fluctuations

Diffusive Transport Enhanced by Thermal Velocity Fluctuations Diffusive Transport Enhanced by Thermal Velocity Fluctuations Aleksandar Donev 1 Courant Institute, New York University & Alejandro L. Garcia, San Jose State University John B. Bell, Lawrence Berkeley

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

- Marine Hydrodynamics. Lecture 4. Knowns Equations # Unknowns # (conservation of mass) (conservation of momentum)

- Marine Hydrodynamics. Lecture 4. Knowns Equations # Unknowns # (conservation of mass) (conservation of momentum) 2.20 - Marine Hydrodynamics, Spring 2005 Lecture 4 2.20 - Marine Hydrodynamics Lecture 4 Introduction Governing Equations so far: Knowns Equations # Unknowns # density ρ( x, t) Continuity 1 velocities

More information

Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter

Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter Oleg Andreev Landau Institute, Moscow & ASC, München Based on Int.J.Mod.Phys.

More information

arxiv: v1 [cond-mat.quant-gas] 23 Aug 2010

arxiv: v1 [cond-mat.quant-gas] 23 Aug 2010 Dissipative fluid dynamics for the dilute Fermi gas at unitarity: Free expansion and rotation arxiv:1008.3876v1 [cond-mat.quant-gas] 23 Aug 2010 T. Schäfer Department of Physics, North Carolina State University,

More information

The Navier-Stokes Equations

The Navier-Stokes Equations s University of New Hampshire February 22, 202 and equations describe the non-relativistic time evolution of mass and momentum in fluid substances. mass density field: ρ = ρ(t, x, y, z) velocity field:

More information

Applications of AdS/CFT correspondence to cold atom physics

Applications of AdS/CFT correspondence to cold atom physics Applications of AdS/CFT correspondence to cold atom physics Sergej Moroz in collaboration with Carlos Fuertes ITP, Heidelberg Outline Basics of AdS/CFT correspondence Schrödinger group and correlation

More information

Functional renormalization for ultracold quantum gases

Functional renormalization for ultracold quantum gases Functional renormalization for ultracold quantum gases Stefan Floerchinger (Heidelberg) S. Floerchinger and C. Wetterich, Phys. Rev. A 77, 053603 (2008); S. Floerchinger and C. Wetterich, arxiv:0805.2571.

More information

Hydrodynamical Model and Shear Viscosity from Black Holes (η/s from AdS/CFT)

Hydrodynamical Model and Shear Viscosity from Black Holes (η/s from AdS/CFT) Hydrodynamical Model and Shear Viscosity from Black Holes (η/s from AdS/CFT) Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg Space-time evolution QGP life time 10 fm/c 3 10-23

More information

Towards the shear viscosity of a cold unitary fermi gas

Towards the shear viscosity of a cold unitary fermi gas Towards the shear viscosity of a cold unitary fermi gas Jiunn-Wei Chen National Taiwan U. Shear viscosity y V x (y) x Frictional force T ij iv j ( x) V 2 j i ( x) 1 ij V ( x). 3 Shear viscosity measures

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Linear transport and hydrodynamic fluctuations

Linear transport and hydrodynamic fluctuations Linear transport and hydrodynamic fluctuations Pavel Kovtun University of Victoria Vienna, August 25, 2010 Pavel Kovtun (University of Victoria) Linear transport and hydro fluctuations Vienna, August 25,

More information

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature Chapter 1 Continuum mechanics review We will assume some familiarity with continuum mechanics as discussed in the context of an introductory geodynamics course; a good reference for such problems is Turcotte

More information

Sarma phase in relativistic and non-relativistic systems

Sarma phase in relativistic and non-relativistic systems phase in relativistic and non-relativistic systems Tina Katharina Herbst In Collaboration with I. Boettcher, J. Braun, J. M. Pawlowski, D. Roscher, N. Strodthoff, L. von Smekal and C. Wetterich arxiv:149.5232

More information

CH.9. CONSTITUTIVE EQUATIONS IN FLUIDS. Multimedia Course on Continuum Mechanics

CH.9. CONSTITUTIVE EQUATIONS IN FLUIDS. Multimedia Course on Continuum Mechanics CH.9. CONSTITUTIVE EQUATIONS IN FLUIDS Multimedia Course on Continuum Mechanics Overview Introduction Fluid Mechanics What is a Fluid? Pressure and Pascal s Law Constitutive Equations in Fluids Fluid Models

More information

The glass transition as a spin glass problem

The glass transition as a spin glass problem The glass transition as a spin glass problem Mike Moore School of Physics and Astronomy, University of Manchester UBC 2007 Co-Authors: Joonhyun Yeo, Konkuk University Marco Tarzia, Saclay Mike Moore (Manchester)

More information

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario.

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario. Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario. Shear viscosity from BAMPS Andrej El Zhe Xu Carsten Greiner Institut für Theoretische Physik

More information

Fluid dynamics of electrons in graphene. Andrew Lucas

Fluid dynamics of electrons in graphene. Andrew Lucas Fluid dynamics of electrons in graphene Andrew Lucas Stanford Physics Condensed Matter Seminar, Princeton October 17, 2016 Collaborators 2 Subir Sachdev Harvard Physics & Perimeter Institute Philip Kim

More information

Aditi Mitra New York University

Aditi Mitra New York University Superconductivity following a quantum quench Aditi Mitra New York University Supported by DOE-BES and NSF- DMR 1 Initially system of free electrons. Quench involves turning on attractive pairing interactions.

More information

Hydrodynamics of the superfluid CFL phase and r-mode instabilities

Hydrodynamics of the superfluid CFL phase and r-mode instabilities Hydrodynamics of the superfluid CFL phase and r-mode instabilities Cristina Manuel Instituto de Ciencias del Espacio (IEEC-CSIC) Barcelona Hirschegg 2009 Outline Introduction Superfluid hydrodynamics Hydrodynamics

More information

Past, Present, and Future of the QGP Physics

Past, Present, and Future of the QGP Physics Past, Present, and Future of the QGP Physics Masayuki Asakawa Department of Physics, Osaka University November 8, 2018 oward Microscopic Understanding In Condensed Matter Physics 1st Macroscopic Properties

More information

The Superfluid Phase s of Helium 3

The Superfluid Phase s of Helium 3 The Superfluid Phase s of Helium 3 DIETER VOLLHARD T Rheinisch-Westfälische Technische Hochschule Aachen, Federal Republic of German y PETER WÖLFL E Universität Karlsruhe Federal Republic of Germany PREFACE

More information

The BCS-BEC Crossover and the Unitary Fermi Gas

The BCS-BEC Crossover and the Unitary Fermi Gas Lecture Notes in Physics 836 The BCS-BEC Crossover and the Unitary Fermi Gas Bearbeitet von Wilhelm Zwerger 1. Auflage 2011. Taschenbuch. xvi, 532 S. Paperback ISBN 978 3 642 21977 1 Format (B x L): 15,5

More information

Superfluidity in bosonic systems

Superfluidity in bosonic systems Superfluidity in bosonic systems Rico Pires PI Uni Heidelberg Outline Strongly coupled quantum fluids 2.1 Dilute Bose gases 2.2 Liquid Helium Wieman/Cornell A. Leitner, from wikimedia When are quantum

More information

Effective Field Theory and. the Nuclear Many-Body Problem

Effective Field Theory and. the Nuclear Many-Body Problem Effective Field Theory and the Nuclear Many-Body Problem Thomas Schaefer North Carolina State University 1 Schematic Phase Diagram of Dense Matter T nuclear matter µ e neutron matter? quark matter µ 2

More information

TASI lectures: Holography for strongly coupled media

TASI lectures: Holography for strongly coupled media TASI lectures: Holography for strongly coupled media Dam T. Son Below is only the skeleton of the lectures, containing the most important formulas. I. INTRODUCTION One of the main themes of this school

More information

Review of fluid dynamics

Review of fluid dynamics Chapter 2 Review of fluid dynamics 2.1 Preliminaries ome basic concepts: A fluid is a substance that deforms continuously under stress. A Material olume is a tagged region that moves with the fluid. Hence

More information

The Silk Damping Tail of the CMB l. Wayne Hu Oxford, December 2002

The Silk Damping Tail of the CMB l. Wayne Hu Oxford, December 2002 The Silk Damping Tail of the CMB 100 T (µk) 10 10 100 1000 l Wayne Hu Oxford, December 2002 Outline Damping tail of temperature power spectrum and its use as a standard ruler Generation of polarization

More information