Electroweak unification

Size: px
Start display at page:

Download "Electroweak unification"

Transcription

1 Electroweak unification Electroweak unification τ Experimental facts τ SU(2) L U(1) Y gauge theory τ Charged current interaction τ Neutral current interaction τ Gauge self-interactions III/1

2 Experimental facts III/2

3 SU(2) L U(1) Y L 0 < iξ φ j j λ λ ξ j σ < Pauli matrices ξ ξ ξ 1 1 ξ exp{ exp{i i σ θ σ θ / 2} 2}exp{ exp{ iy α 1 / 2} 2} ξ 1 θ θ ξ exp{, σ, iσ 2} / 2}exp{ exp{,, iyα α2} / 2} ξ ξ exp{ iy α / 2} ξ ξ exp{, iy ξ exp{ α 2} ξ ξ exp{, α 2} ξ 1 1 α / 2} ξ ξ exp{ ξ 3 αtransforms 2} ξ ξ as ξexp{, 2 α 2} ξ III/3

4 III/4 SU(2) L U(1) Y ) ( 1 k j k j ijk i i i O W g W W δ λ λ λ λ, )} ( 2 / exp{ ) ( ; ) ( 2 / ) ( x i x U x W x W σ σ λ λ θ θ θ θ ) (, ) ( x x α α < θ < θ ) ( )] ( 2) / '( ) ( [ ) ( x x B y ig x igw x D ξ ξ λ λ λ λ,, ) ( ) ( ) (1/ ) ( ) ( ) ( ) ( ) ( ') (1/ ) ( ) ( ) ( )} ( 2) / )exp{ ( ( ) ( x U x U g x U x W x U x W x g x B x B x D x y i x U x D λ λ λ λ λ λ λ λ α ξ α ξ = x,α=α(x) Wλ(x) σ 2 Wλ (x) ; U x exp{ σ 2 (x)}

5 Charged currents III/5

6 Neutral currents III/6

7 Neutral currents 3 2 v < T, 2Q sin π a < T f f j W f 3 f, T 3 f is the weak isospin III/7

8 Charged & neutral currents s π < sin π c < W π cosπ W III/8

9 Gauge self-interactions III/9

10 Gauge self-interactions e, e cot π W e 2 sin 2 π W e 2, e 2 cotπ W, e 2 cot 2 π W III/10

11 W pair production at LEP2 III/11

12 W pair production at LEP2 III/12

13 Z pair production at LEP2 NB! No e e, Z/φ ZZ vertex in the Standard Model III/13

14 Electroweak unification: summary III/14

15 Higgs mechanism Higgs mechanism τ Spontaneous symmetry breaking τ Higgs mechanism τ The Higgs boson τ Fermion masses τ Fermion mixing III/15

16 Spontaneous symmetry breaking We have been able to generate electromagnetism and the strong interactions through local gauge invariance. We would like to do the same for the weak interactions, but we immediately face a problem. Unlike the photon and the gluons, the W and Z have non-zero masses. A mass term in the Lagrangian, ½ m 2 A λ A λ, would not be gauge invariant. Suppose we forget about gauge invariance and just put it in anyway. Then theory becomes non-renormalizable, i.e. we obtain divergances that we cannot get ride off. There is a more subtle way to generate a mass for the W and Z, called spontaneous symmetry breaking. Let us first consider a real scalar field ε with an arbitrary potential. L = ½ ( λ ε) 2 V(ε) We require the L to be invariant under ε ε. if we expand V, it will have only even values of ε: Then, L = ½ ( λ ε) 2 ½ λ 2 ε 2 - ¼κ ε 4... III/16

17 Spontaneous symmetry breaking But what happens if λ 2 is allowed to be negative L = ½ ( λ ε) 2, ½ λ 2 ε 2, ¼κ ε 4... The sign of the mass term has changed giving an imaginary mass. This makes no sense. The potential looks like in the figure. The minimum is now at ε =,λ 2 /κ. Feynman diagrams represent a perturbation serie. The serie would not converge if we expand about ε = 0, since this is a local maximum. We need to expand about the global minimum, say,λ 2 /κ. ε(x λ )=,λ 2 /κ γ(x λ ), and then γ = 0 corresponds to the minimum. Then L = ½[ λ (,λ 2 /κ γ(x λ ))] 2, ½λ 2 (,λ 2 /κ γ(x λ )) 2, ¼κ(,λ 2 /κ γ(x λ )) 4 L = ½( λ γ(x λ )) 2 ¼λ 4 /κ λ 2 γ 2 (x λ ),,λ 2 κγ 3 (x λ ), ¼κγ 4 (x λ ) = constant m =,2λ 2 III/17

18 Spontaneous symmetry breaking The γ and ε fields are the same fields, but we now see that the γ has a mass of,2λ 2, and does not have reflection symmetry γ,γ. This symmetry has been spontaneously broken. A more intersting case occurs, when we consider a complex field, ε = (1/ 2)(ι 1 iι 2 ) L = ( λ ε)*( λ ε), λ 2 ε*ε, κ(ε*ε) 2 L = ½( λ ι 1 ) 2 ½( λ ι 2 ) 2, ½λ 2 (ι 12 ι 22 ), ¼κ(ι 12 ι 22 ) 2 The minimum is now a circle: ι 12 ι 22 =, λ 1 /κ We choose to expand about ι 1 =, λ 1 /κ, ι 2 = 0. ε(x λ ) = (1/ 2) [, λ 1 /κ γ(x λ ) iω(x λ )] We get: L = ½( λ γ(x λ )) 2 ½( λ ω(x λ )) 2 ¼λ 4 /κ λ 1 γ 1 (x λ ),λ 1 κ [γ 3 (x λ ) γ(x λ )ω 2 (x λ )], ¼κ[γ 4 (x λ ) ω 4 (x λ ) 2γ 2 (x λ )ω 2 (x λ )] The γ field gets a mass,2λ 1, as before, but the ω field is massless. This always happens whenever a continuous symmetry is spontaneously broken. The massless particle is called a Goldstone boson. III/18

19 Spontaneous symmetry breaking Let us consider a complex scalar field which is invariant under a local gauge transformation ε exp(i (x λ )) ε λ D λ λ,iqa λ A λ A λ (1/q) λ (x λ ) L = ( λ iqa λ )ε*( λ, iqa λ )ε, λ 2 ε*ε, κ(ε*ε) 2, ¼F λµ F λµ As before ε = (1/ 2)(ι 1 iι 2 ), we choose ι 1 (x λ )=,λ 1 /κ γ(x λ ); ι 2 (x λ ) = ω(x λ ) and we get L = ½( λ γ) 2 ½( λ ω) 2 ¼λ 3 /κ λ 2 γ 2, ¼F λµ F λµ,½q 2 (,λ 1 /κ) 2 A λ A λ q(,λ 1 /κ)( λ ω)a λ (+ interaction terms in γ, ω and A.) Note: (a) The A field has aquired a mass q(,λ 1 /κ) (b) There is still a Goldstone boson, ω. (c) There is a strange term q(,λ 1 /κ)( λ ω)a λ ω A This indicates that we haven t chosen the correct fields. III/19

20 Higgs mechanism We can use our freedom to choose a gauge so that ε(x λ ) (1/ 2)[,λ 1 /κ h(x λ )] exp{iπ(x λ )/(,λ 1 /κ)} (h(x λ ) and π(x λ ) are real) A λ A λ (1/q(,λ 1 /κ)) λ π(x λ ) L = ½( λ h(x λ )) 2 λ 2 h 2 (x λ ) ¼λ 3 /κ, ¼F λµ F λµ, ½q 2 (,λ 1 /κ) A λ A λ (,λ 1 /κ)q 2 h A λ A λ ½q 2 h 2 A λ A λ,,λ 1 /κ h 3, ¼κh 4 A h A h etc.. A h A We have 1 massive scalar h and 1 massive vector A. Note that we started with two scalars (γ and ω) or (h and π) and one massless vector A. This is 4 spin degrees of freedom, (2x1 1x2). We end with one scalar and one massive vector. This is still 4 spin degrees of freedom (1x1 1x3). The gauge field has eaten up the Goldstone boson. This is the Higgs mechanism, and h is called the Higgs boson. III/20

21 Higgs mechanism µ vacuum expectation value III/21

22 Higgs mechanism III/22

23 Bosonic dof s III/23

24 The Higgs boson should exist!!! LHC: discovery of a Higgs-like particle !!! (direct) (indirect) m H = GeV (average ATLAS & CMS) Up to now all measurements of the newly discovered particle consistent with the Standard Model Higgs boson! Tevatron direct search: M H < 158 GeV or M H > 175 GeV III/24

25 Higgs-weak boson couplings III/25

26 Fermion masses III/26

27 Fermion generations Phenomenology 2016 III/27

28 Fermion generations III/28

29 Fermion mixing III/29

30 Quark mixing III/30

31 Quark mixing CKM = Cabibbo-Kobayashi-Maskawa As observed for K 0, D 0 and B 0 mesons: III/31

32 Electroweak precision measurements Electroweak precision measurement τ LEP and its experiments τ Electroweak radiative corrections τ Z precision measurements τ Global electroweak fit III/32

33 The LEP collider ALEPH OPAL DELPHI L3 An electron,positron collider at CERN, European laboratory for particle physics, in a tunnel situated m underground. Four experiments focused on studying the Standard Model (electroweak measurements ~ W & Z, QCD measurement & Higgs searches) LEP1, s m Z ( ) LEP2, s = GeV ( ) III/33

34 Electron positron annihilation III/34

35 Z physics at LEP III/35

36 Luminosity determination III/36

37 Standard Model couplings a f v f III/37

38 Radiative corrections QED ISR QCD FSR III/38

39 Radiative corrections = ( )= III/39

40 Initial state radiation III/40

41 Differential cross section III/41

42 Total cross section & partial widths = III/42

43 Cross sections III/43

44 Lepton forward-backward asymmetries III/44

45 Neutral current lepton universality III/45

46 Global electroweak fit Inputs to Measurements of W, Z, quark, properties + excluding coupling m H constants from LEP/CERN, SLD/SLAC (e + e - Z 0 ) Tevatron/Fermilab, LHC/CERN & lower se + e - colliders. Results & plots: J. Haller et al. (Gfitter group), arxiv: remarkable consistency, the Standard Model works well!! III/46

47 Global electroweak fit including m H III/47

48 Global electroweak fit consistency between m W & m t from radiative corrections and direct measurements. a measure of Standard Model success: m t from radiative corrections vs m t direct measurement. III/48

49 Global electroweak fit 131 prefered Prefered mminimum H mass of fit: m H 114 = 90 GeV 21 (=,18 lower GeV limit from direct search) direct measurement (ATLAS+CMS) m H = GeV Overall SM fit: β 2 = 18.6 for n dof = 15 P-value = 0.23 NB! minimum of electroweak fit strongly correlated with m W & m (March 2018) t SM still very reasonable!! III/49

50 Standard Model parameters III/50

IX. Electroweak unification

IX. Electroweak unification IX. Electroweak unification The problem of divergence A theory of weak interactions only by means of W ± bosons leads to infinities e + e - γ W - W + e + W + ν e ν µ e - W - µ + µ Divergent integrals Figure

More information

The search for the (SM) Higgs Boson

The search for the (SM) Higgs Boson Tevatron and LHC WS16/17 TUM S.Bethke, F. Simon V9: Search for the Higgs Boson (1) 1 Lecture 9: The search for the (SM) Higgs Boson theoretical basics Higgs production and decay Higgs search in e + e annihilation

More information

Lecture III: Higgs Mechanism

Lecture III: Higgs Mechanism ecture III: Higgs Mechanism Spontaneous Symmetry Breaking The Higgs Mechanism Mass Generation for eptons Quark Masses & Mixing III.1 Symmetry Breaking One example is the infinite ferromagnet the nearest

More information

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Rogerio Rosenfeld IFT-UNESP Lecture 1: Motivation/QFT/Gauge Symmetries/QED/QCD Lecture 2: QCD tests/electroweak

More information

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM Lecture 03 The Standard Model of Particle Physics Part II The Higgs Boson Properties of the SM The Standard Model So far we talked about all the particles except the Higgs If we know what the particles

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

The Standard Model Part. II

The Standard Model Part. II Our Story Thus Far The Standard Model Part. II!!We started with QED (and!)!!we extended this to the Fermi theory of weak interactions! Adding G F!!Today we will extended this to Glashow-Weinberg-Salam

More information

Two-Higgs-doublet models with Higgs symmetry

Two-Higgs-doublet models with Higgs symmetry Two-Higgs-doublet models with Higgs symmetry Chaehyun Yu a a School of Physics, KIAS, Seoul 130-722, Korea Abstract We investigate two-higgs-doublet models (2HDMs) with local U(1) H Higgs flavor symmetry

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information

Introduction and Theoretical Background

Introduction and Theoretical Background Chapter 1 Introduction and Theoretical Background The Standard Model of particle physics has been tested by many experiments and has been shown to accurately describe particle interactions at the highest

More information

The Role and Discovery of the Higgs

The Role and Discovery of the Higgs The Role and Discovery of the Higgs David Clarke Abstract This paper summarizes the importance of the Higgs boson in QFT and outlines experiments leading up to the discovery of the Higgs boson. First we

More information

Hunting for the Higgs Boson. Ulrich Heintz Brown University

Hunting for the Higgs Boson. Ulrich Heintz Brown University Hunting for the Higgs Boson Ulrich Heintz Brown University the standard model electromagnetism acts on all charged particles strong force acts on all quarks weak force acts on all particles spin ½ spin

More information

Introduction to particle physics Lecture 12: Weak interactions

Introduction to particle physics Lecture 12: Weak interactions Introduction to particle physics Lecture 12: Weak interactions Frank Krauss IPPP Durham U Durham, Epiphany term 2010 1 / 22 Outline 1 Gauge theory of weak interactions 2 Spontaneous symmetry breaking 3

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

Elementary Particle Physics

Elementary Particle Physics Yorikiyo Nagashima Elementary Particle Physics Volume 2: Foundations of the Standard Model WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI Acknowledgments XV Color Plates XVII Part One

More information

PARTICLE PHYSICS Major Option

PARTICLE PHYSICS Major Option PATICE PHYSICS Major Option Michaelmas Term 00 ichard Batley Handout No 8 QED Maxwell s equations are invariant under the gauge transformation A A A χ where A ( φ, A) and χ χ ( t, x) is the 4-vector potential

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Introduction to the SM (5)

Introduction to the SM (5) Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 1 Introduction to the SM (5) Yuval Grossman Cornell Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 2 Yesterday... Yesterday: Symmetries Today SSB the

More information

An Introduction to the Standard Model of Particle Physics

An Introduction to the Standard Model of Particle Physics An Introduction to the Standard Model of Particle Physics W. N. COTTINGHAM and D. A. GREENWOOD Ж CAMBRIDGE UNIVERSITY PRESS Contents Preface. page xiii Notation xv 1 The particle physicist's view of Nature

More information

Electroweak Theory, SSB, and the Higgs: Lecture 2

Electroweak Theory, SSB, and the Higgs: Lecture 2 1 Electroweak Theory, SSB, and the iggs: Lecture Spontaneous symmetry breaking (iggs mechanism) - Gauge invariance implies massless gauge bosons and fermions - Weak interactions short ranged spontaneous

More information

The Higgs discovery - a portal to new physics

The Higgs discovery - a portal to new physics The Higgs discovery - a portal to new physics Department of astronomy and theoretical physics, 2012-10-17 1 / 1 The Higgs discovery 2 / 1 July 4th 2012 - a historic day in many ways... 3 / 1 July 4th 2012

More information

A first trip to the world of particle physics

A first trip to the world of particle physics A first trip to the world of particle physics Itinerary Massimo Passera Padova - 13/03/2013 1 Massimo Passera Padova - 13/03/2013 2 The 4 fundamental interactions! Electromagnetic! Weak! Strong! Gravitational

More information

2 The Equation Of Energy-Momentum And Five Solutions. Factoring E 2 3

2 The Equation Of Energy-Momentum And Five Solutions. Factoring E 2 3 Contents 1 Introduction 2 2 The Equation Of Energy-Momentum And Five Solutions. Factoring E 2 3 3 Model Higgs Vacuum: Virtual Vacuum With Contribution To The Total Mass, Zero; Of Particles With Zero Rest

More information

Abdelhak DJOUADI ( LPT Orsay)

Abdelhak DJOUADI ( LPT Orsay) Physics at the LHC bdelhak DJOUDI ( LPT Orsay) Standard Physics at the LHC 1 The Standard Model QCD at the LHC 3 Tests of the SM at the LHC The SM Higgs at the LHC SUSY and SUSY Higgs at the LHC Physics

More information

Introduction to particle physics Lecture 6

Introduction to particle physics Lecture 6 Introduction to particle physics Lecture 6 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Fermi s theory, once more 2 From effective to full theory: Weak gauge bosons 3 Massive gauge bosons:

More information

Physics Highlights from 12 Years at LEP

Physics Highlights from 12 Years at LEP Physics Highlights from 12 Years at LEP Colloquium Frascati,, 8.2.2001 Dieter Schlatter CERN / Geneva 1 Standard Model In 1989 ingredients of Standard Model were known: Matter particles: u,d,s,c,b,t quarks

More information

Electroweak and Higgs Physics

Electroweak and Higgs Physics Electroweak and Higgs Physics Lecture 2 : Higgs Mechanism in the Standard and Supersymmetric Models Alexei Raspereza DESY Summer Student Program Hamburg August 2017 Standard Model (Summary) Building blocks

More information

The Higgs boson. Marina Cobal University of Udine

The Higgs boson. Marina Cobal University of Udine The Higgs boson Marina Cobal University of Udine Suggested books F.Halzen, A.D.Martin, Quarks & Leptons: An Introductory Course in Modern Particle Physics, Wiley 1984 Cap.14,15 W.E.Burcham,M.Jobes, Nuclear

More information

The Scale-Symmetric Theory as the Origin of the Standard Model

The Scale-Symmetric Theory as the Origin of the Standard Model Copyright 2017 by Sylwester Kornowski All rights reserved The Scale-Symmetric Theory as the Origin of the Standard Model Sylwester Kornowski Abstract: Here we showed that the Scale-Symmetric Theory (SST)

More information

Patrick Kirchgaeßer 07. Januar 2016

Patrick Kirchgaeßer 07. Januar 2016 Patrick Kirchgaeßer 07. Januar 2016 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

More information

The electroweak fit at NNLO and prospects for LHC and ILC. Klaus Mönig

The electroweak fit at NNLO and prospects for LHC and ILC. Klaus Mönig The electroweak fit at NNLO and prospects for LHC and ILC Klaus Mönig The idea of electroweak fits Electroweak interactions are the puzzling part of the Standard Model: parity (and CP) violation non-trivial

More information

Gauge Symmetry in QED

Gauge Symmetry in QED Gauge Symmetry in QED The Lagrangian density for the free e.m. field is L em = 1 4 F µνf µν where F µν is the field strength tensor F µν = µ A ν ν A µ = Thus L em = 1 (E B ) 0 E x E y E z E x 0 B z B y

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Introduction and motivation: QCD and modern high-energy physics

More information

Elementary Particles, Flavour Physics and all that...

Elementary Particles, Flavour Physics and all that... Elementary Particles, Flavour Physics and all that... 1 Flavour Physics The term Flavour physics was coined in 1971 by Murray Gell-Mann and his student at the time, Harald Fritzsch, at a Baskin-Robbins

More information

Higgs Physics and QCD

Higgs Physics and QCD Higgs Physics and QCD William Kilgore Brookhaven National Laboratory CTEQ Summer School June, 004 Outline The Standard Model & the Higgs Mechanism Agents of Electro-weak Symmetry Breaking The Higgs Boson

More information

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab The Standard Model of Electroweak Physics Christopher T. Hill Head of Theoretical Physics Fermilab Lecture I: Incarnations of Symmetry Noether s Theorem is as important to us now as the Pythagorean Theorem

More information

Lecture 10: Weak Interaction. 1

Lecture 10: Weak Interaction.   1 Lecture 10: Weak Interaction http://faculty.physics.tamu.edu/kamon/teaching/phys627/ 1 Standard Model Lagrangian http://pdg.lbl.gov/2017/reviews/rpp2017-rev-standard-model.pdf Standard Model Lagrangian

More information

Confronting Theory with Experiment at the LHC

Confronting Theory with Experiment at the LHC Confronting Theory with Experiment at the LHC Mojtaba Mohammadi Najafabadi School of Particles and Accelerators 21 st IPM Physics Spring Conference May 21-22, 2014 1 Standard Model: a theory of interactions

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

Beyond the Standard Model

Beyond the Standard Model Beyond the Standard Model The Standard Model Problems with the Standard Model New Physics Supersymmetry Extended Electroweak Symmetry Grand Unification References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph]

More information

Standard Model & Beyond

Standard Model & Beyond XI SERC School on Experimental High-Energy Physics National Institute of Science Education and Research 13 th November 2017 Standard Model & Beyond Lecture III Sreerup Raychaudhuri TIFR, Mumbai 2 Fermions

More information

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet Lecture 23 November 16, 2017 Developing the SM s electroweak theory Research News: Higgs boson properties and use as a dark matter probe Fermion mass generation using a Higgs weak doublet Summary of the

More information

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion Weak Interactions OUTLINE CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion CHARGED WEAK INTERACTIONS OF QUARKS - Cabibbo-GIM Mechanism - Cabibbo-Kobayashi-Maskawa

More information

FYS3510 Subatomic Physics. Exam 2016

FYS3510 Subatomic Physics. Exam 2016 FYS3510 Subatomic Physics VS 2015 Farid Ould-Saada Exam 2016 In addition to the items marked in blue, don t forget all examples and related material given in the slides, including the ones presented during

More information

Particle physics today. Giulia Zanderighi (CERN & University of Oxford)

Particle physics today. Giulia Zanderighi (CERN & University of Oxford) Particle physics today Giulia Zanderighi (CERN & University of Oxford) Particle Physics Particle Physics is fundamental research, as opposed to many applied sciences (medicine, biology, chemistry, nano-science,

More information

Particle Physics. Dr Victoria Martin, Spring Semester 2013 Lecture 17: Electroweak and Higgs

Particle Physics. Dr Victoria Martin, Spring Semester 2013 Lecture 17: Electroweak and Higgs Particle Physics Dr Victoria Martin, Spring Semester 013 Lecture 17: Electroweak and Higgs Weak Isospin and Weak Hypercharge Weak Isospin and Weak Hypercharge currents γ W ± Z 0 bosons Spontaneous Symmetry

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles 1 Introduction The purpose of this chapter is to provide a brief introduction to the Standard Model of particle physics. In particular, it gives an overview of the fundamental particles and the relationship

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 13 Registration: https://uebungen.physik.uni-heidelberg.de/v/378 Experimental Tests of QED Part 1 1 Overview PART I Cross Sections and QED tests

More information

Discovery of the Higgs Boson

Discovery of the Higgs Boson Discovery of the Higgs Boson Seminar: Key Experiments in Particle Physics Martin Vogrin Munich, 22. July 2016 Outline Theoretical part Experiments Results Open problems Motivation The SM is really two

More information

University of Illinois at Champaign Urbana Department of Physics

University of Illinois at Champaign Urbana Department of Physics University of Illinois at Champaign Urbana Department of Physics Electroweak Symmetry Breaking. Higgs Particle Discovery Potential within the ATLAS Experiment Hovhannes Khandanyan Abstract. One of the

More information

Hunting New Physics in the Higgs Sector

Hunting New Physics in the Higgs Sector HS Hunting New Physics in the Higgs Sector SM Higgs Sector - Test of the Higgs Mechanism Oleg Kaikov KIT, Seminar WS 2015/16 Prof. Dr. M. Margarete Mühlleitner, Dr. Roger Wolf, Dr. Hendrik Mantler Advisor:

More information

The God particle at last? Astronomy Ireland, Oct 8 th, 2012

The God particle at last? Astronomy Ireland, Oct 8 th, 2012 The God particle at last? Astronomy Ireland, Oct 8 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV I The Higgs boson

More information

FYS3510 Subatomic Physics. Exam 2016

FYS3510 Subatomic Physics. Exam 2016 FYS3510 Subatomic Physics VS 2015 Farid Ould-Saada Exam 2016 In addition to the items marked in blue, don t forget all examples and related material given in the slides, including the ones presented during

More information

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Radovan Dermíšek Institute for Advanced Study, Princeton R.D. and J. F. Gunion, hep-ph/0502105 R.D. and J. F. Gunion, hep-ph/0510322

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

QED and the Standard Model Autumn 2014

QED and the Standard Model Autumn 2014 QED and the Standard Model Autumn 2014 Joel Goldstein University of Bristol Joel.Goldstein@bristol.ac.uk These lectures are designed to give an introduction to the gauge theories of the standard model

More information

Study of Higgs Boson Decaying to Four Muons at s =14 TeV

Study of Higgs Boson Decaying to Four Muons at s =14 TeV Study of Higgs Boson Decaying to Four Muons at s =14 TeV R.M. Aly 1, A.A. Abdelalim 1,2, M.N.El-Bakrey 1 and A. Mahrous 1 1 Department of physics, Faculty of science, Helwan University, Cairo, Egypt. 2

More information

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico&

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico& IGGS&AT&LC Electroweak&symmetry&breaking&and&iggs& Lecture&9& Shahram&Rahatlou Fisica&delle&Par,celle&Elementari,&Anno&Accademico&2014815 htt://www.roma1.infn.it/eole/rahatlou/articelle/ WO&NEEDS&IGGS?

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

Elementary Particles II

Elementary Particles II Elementary Particles II S Higgs: A Very Short Introduction Higgs Field, Higgs Boson, Production, Decays First Observation 1 Reminder - I Extend Abelian Higgs model to non-abelian gauge symmetry: ( x) +

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

Axions Theory SLAC Summer Institute 2007

Axions Theory SLAC Summer Institute 2007 Axions Theory p. 1/? Axions Theory SLAC Summer Institute 2007 Helen Quinn Stanford Linear Accelerator Center Axions Theory p. 2/? Lectures from an Axion Workshop Strong CP Problem and Axions Roberto Peccei

More information

Weak interactions and vector bosons

Weak interactions and vector bosons Weak interactions and vector bosons What do we know now about weak interactions? Theory of weak interactions Fermi's theory of weak interactions V-A theory Current - current theory, current algebra W and

More information

The mass of the Higgs boson

The mass of the Higgs boson The mass of the Higgs boson LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12 a prediction Higgs boson found standard model Higgs boson T.Plehn, M.Rauch Spontaneous symmetry breaking confirmed

More information

Photon Coupling with Matter, u R

Photon Coupling with Matter, u R 1 / 16 Photon Coupling with Matter, u R Consider the up quark. We know that the u R has electric charge 2 3 e (where e is the proton charge), and that the photon A is a linear combination of the B and

More information

Electroweak Theory: 3

Electroweak Theory: 3 Electroweak Theory: 3 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS January, 2011 Paul Langacker IAS 55 References Slides

More information

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector - Boson - May 7, 2017 - Boson - The standard model of particle physics is the state of the art in quantum field theory All the knowledge we have developed so far in this field enters in its definition:

More information

Basics of Higgs Physics

Basics of Higgs Physics Basics of iggs Physics Sven einemeyer, IFCA (Santander) Karlsruhe, 07/2007 1. The iggs Boson in the SM 2. The iggs Boson in the MSSM Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007

More information

HIGGS AT HADRON COLLIDER

HIGGS AT HADRON COLLIDER IGGS AT ADRON COLLIDER Electroweak symmetry breaking and iggs Lecture 8 24 October 2012 Shahram Rahatlou Fisica Nucleare e Subnucleare III, Anno Accademico 2012-2013 htt://www.roma1.infn.it/eole/rahatlou/fns3/

More information

Weak Interactions. The Theory of GLASHOW, SALAM and WEINBERG

Weak Interactions. The Theory of GLASHOW, SALAM and WEINBERG Weak Interactions The Theory of GLASHOW, SALAM and WEINBERG ~ 1959-1968 (Nobel 1979) Theory of the unified weak and electromagnetic interaction, transmitted by exchange of intermediate vector bosons mass

More information

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006 Anomaly Kenichi KONISHI University of Pisa College de France, 14 February 2006 Abstract Symmetry and quantization U A (1) anomaly and π 0 decay Origin of anomalies Chiral and nonabelian anomaly Anomally

More information

DESY, 12. September Precision Electroweak Measurements. Stefan Roth RWTH Aachen

DESY, 12. September Precision Electroweak Measurements. Stefan Roth RWTH Aachen DESY, 12. September 2006 Precision Electroweak Measurements Stefan Roth RWTH Aachen Outline 1. Theory of electroweak interaction 2. Precision measurements of electroweak processes 3. Global electroweak

More information

FACTA UNIVERSITATIS Series: Physics, Chemistry and Technology Vol. 4, N o 2, 2006, pp

FACTA UNIVERSITATIS Series: Physics, Chemistry and Technology Vol. 4, N o 2, 2006, pp FACTA UNIVERSITATIS Series: Physics, Chemistry and Technology Vol. 4, N o 2, 2006, pp 331-339 Phenomenology of New Vector Resonances at Future e + e Colliders M. Gintner 1, I. Melo 2, B. Trpišová 3 123

More information

The God particle at last? Science Week, Nov 15 th, 2012

The God particle at last? Science Week, Nov 15 th, 2012 The God particle at last? Science Week, Nov 15 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV Why is the Higgs particle

More information

( ) 2 = #$ 2 % 2 + #$% 3 + # 4 % 4

( ) 2 = #$ 2 % 2 + #$% 3 + # 4 % 4 PC 477 The Early Universe Lectures 9 & 0 One is forced to make a choice of vacuum, and the resulting phenomena is known as spontaneous symmetry breaking (SSB.. Discrete Goldstone Model L =! µ"! µ " # V

More information

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple Symmetry Groups Symmetry plays an essential role in particle theory. If a theory is invariant under transformations by a symmetry group one obtains a conservation law and quantum numbers. For example,

More information

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements 8.882 LHC Physics Experimental Methods and Measurements Higgs Physics and Other Essentials [Lecture 22, April 29, 2009] Organization Next week lectures: Monday 2pm and Tuesday 9:30am (which room?) Project

More information

(a) (b) Notes 6: The Higgs. Spontaneous symmetry breaking

(a) (b) Notes 6: The Higgs. Spontaneous symmetry breaking Notes 6: The Higgs This is a middle difficulty explaination. The text books are either much more detailed or simpler. This is a useful guide for those who want to look at HM, Griffiths or Burcham and Jobes

More information

Foundations of Physics III Quantum and Particle Physics Lecture 13

Foundations of Physics III Quantum and Particle Physics Lecture 13 Foundations of Physics III Quantum and Particle Physics Lecture 13 Frank Krauss February 27, 2012 1 Construction of the Standard Model 2 The Standard Model: Tests and status 3 Beyond the Standard Model?

More information

Electroweak physics and the LHC an introduction to the Standard Model

Electroweak physics and the LHC an introduction to the Standard Model Electroweak physics and the LHC an introduction to the Standard Model Paolo Gambino INFN Torino LHC School Martignano 12-18 June 2006 Outline Prologue on weak interactions Express review of gauge theories

More information

W Physics at LEP. 1. WW cross sections and W branching fractions. Corfu Summer Institute on Elementary Particle Physics, Monica Pepe Altarelli

W Physics at LEP. 1. WW cross sections and W branching fractions. Corfu Summer Institute on Elementary Particle Physics, Monica Pepe Altarelli Corfu Summer Institute on Elementary Particle Physics, 998 PROCEEDINGS Physics at LEP INFN - Laboratori Nazionali di Frascati and CERN, EP Division E-mail: Monica.Pepe.Altarelli@CERN.CH Abstract: A summary

More information

Finding the Higgs boson

Finding the Higgs boson Finding the Higgs boson Sally Dawson, BN XIII Mexican School of Particles and Fields ecture 1, Oct, 008 Properties of the Higgs boson Higgs production at the Tevatron and HC Discovery vs spectroscopy Collider

More information

Electroweak Physics at the LHC Introductory Lecture

Electroweak Physics at the LHC Introductory Lecture Electroweak Physics at the LHC Introductory Lecture Stefan Dittmaier MPI München Universität Wien, October 2007 Stefan Dittmaier (MPI München), Electroweak Physics at the LHC Introductory Lecture 1 1 The

More information

Detection Prospects of Doubly Charged Higgs Bosons from the Higgs Triplet Model at the LHC

Detection Prospects of Doubly Charged Higgs Bosons from the Higgs Triplet Model at the LHC UPTEC F11 44 Examensarbete 3 hp Juni 11 Detection Prospects of Doubly Charged Higgs Bosons from the Higgs Triplet Model at the LHC Viveca Lindahl Abstract Detection Prospects of Doubly Charged Higgs Bosons

More information

Introduction to particle physics Lecture 13: The Standard Model

Introduction to particle physics Lecture 13: The Standard Model Introduction to particle physics Lecture 13: The Standard Model Frank Krauss IPPP Durham U Durham, Epiphany term 2010 1 / 23 Outline 1 The Standard Model: Construction 2 The Standard Model: Tests and status

More information

Particle Physics. Tommy Ohlsson. Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden

Particle Physics. Tommy Ohlsson. Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden Particle Physics Tommy Ohlsson Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden International Baccalaureate T. Ohlsson (KTH) Particle Physics 1/

More information

Adding families: GIM mechanism and CKM matrix

Adding families: GIM mechanism and CKM matrix Particules Élémentaires, Gravitation et Cosmologie Année 2007-08 08 Le Modèle Standard et ses extensions Cours VII: 29 février f 2008 Adding families: GIM mechanism and CKM matrix 29 fevrier 2008 G. Veneziano,

More information

arxiv:hep-ph/ v1 12 Jan 1999

arxiv:hep-ph/ v1 12 Jan 1999 INTRODUCTION TO ELECTROWEAK SYMMETRY BREAKING arxiv:hep-ph/990180 v1 1 Jan 1999 S. Dawson Physics Department, Brookhaven National Laboratory, Upton, NY 11973 An introduction to the physics of electroweak

More information

+ µ 2 ) H (m 2 H 2

+ µ 2 ) H (m 2 H 2 I. THE HIGGS POTENTIAL AND THE LIGHT HIGGS BOSON In the previous chapter, it was demonstrated that a negative mass squared in the Higgs potential is generated radiatively for a large range of boundary

More information

5. Higgs Searches. The Higgs-mechanism in the SM Yukava-coupling, masses of fermions Higgs Production: Higgs decay channels. Higgs search at the LHC

5. Higgs Searches. The Higgs-mechanism in the SM Yukava-coupling, masses of fermions Higgs Production: Higgs decay channels. Higgs search at the LHC 5. Higgs Searches The Higgs-mechanism in the S Yukava-coupling, masses of fermions Higgs Production: Searches at TEVATRON Higgs decay channels Coupling constants Branching ratios Higgs search at the LHC

More information

Searching for the Higgs at the LHC

Searching for the Higgs at the LHC Searching for the Higgs at the LHC Philip Lawson Boston University - PY 898 - Special Topics in LHC Physics 3/16/2009 1 Outline Theory & Background of Higgs Mechanism Production Modes Decay Modes - Discovery

More information

Electroweak Theory: The Experimental Evidence and Precision Tests PPP-II Lecture 8 (FS 2012)

Electroweak Theory: The Experimental Evidence and Precision Tests PPP-II Lecture 8 (FS 2012) 1 Electroweak Theory: The Experimental Evidence and Precision Tests PPP-II Lecture 8 (FS 2012) Michael Dittmar (ETH-Zürich/CMS) 17.4.2012 1950ies From the messy world of hadrons to weak decays and neutrinos.

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

PHYSICS PARTICLE. An Introductory Course of. Palash B. Pal. CRC Press. Saha Institute of Nuclear Physics. Kolkata, India. Taylor &.

PHYSICS PARTICLE. An Introductory Course of. Palash B. Pal. CRC Press. Saha Institute of Nuclear Physics. Kolkata, India. Taylor &. An Introductory Course of PARTICLE PHYSICS Palash B. Pal Saha Institute of Nuclear Physics Kolkata, India W CRC Press Taylor &. Francis Croup Boca Raton London New York CRC Press is an imprint of the &

More information

Kern- und Teilchenphysik I Lecture 13:Quarks and QCD

Kern- und Teilchenphysik I Lecture 13:Quarks and QCD Kern- und Teilchenphysik I Lecture 13:Quarks and QCD (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Patrick Owen, Dr. Silva Coutinho http://www.physik.uzh.ch/de/lehre/phy211/hs2016.html

More information

Higgs Searches at CMS

Higgs Searches at CMS Higgs Searches at CMS Ashok Kumar Department of Physics and Astrophysics University of Delhi 110007 Delhi, India 1 Introduction A search for the Higgs boson in the Standard Model (SM) and the Beyond Standard

More information

arxiv:hep-ph/ v1 12 Feb 2001

arxiv:hep-ph/ v1 12 Feb 2001 WM-01-115 April 5, 2008 Extra neutral gauge bosons and Higgs bosons in an E 6 -based model Shuquan Nie 1 and Marc Sher 2 arxiv:hep-ph/0102139v1 12 Feb 2001 Nuclear and Particle Theory Group Physics Department

More information

Electroweak Physics. Precision Experiments: Historical Perspective. LEP/SLC Physics. Probing the Standard Model. Beyond the Standard Model

Electroweak Physics. Precision Experiments: Historical Perspective. LEP/SLC Physics. Probing the Standard Model. Beyond the Standard Model Electroweak Physics Precision Experiments: Historical Perspective LEP/SLC Physics Probing the Standard Model Beyond the Standard Model The Z, the W, and the Weak Neutral Current Primary prediction and

More information