S[Ψ]/V 26. Ψ λ=1. Schnabl s solution. 1 2π 2 g 2

Size: px
Start display at page:

Download "S[Ψ]/V 26. Ψ λ=1. Schnabl s solution. 1 2π 2 g 2"

Transcription

1

2

3 Schnabl s solution Ψ λ=1 S[Ψ]/V 26 Ψ λ=1 Ψ λ=1 Ψ 1 2π 2 g 2

4 S[Ψ] = 1 g 2 ( 1 2 Ψ,QΨ Ψ, Ψ Ψ ) Ψ = φ(x)c A μ (x)α μ 1 c ib(x)c ( dz Q = ct m + bc c + 3 ) 2πi 2 2 c QΨ + Ψ Ψ =0 δ Λ Ψ=QΛ + Ψ Λ Λ Ψ

5 O V (Ψ) = I V (i) Ψ = Φ V, Ψ V (i) = c(i)c( i)v m (i, i) matter primary, dim (1,1) I V (i) On-shell closed string state: Φ V = V (i) I

6 O V (Ψ) QΦ V =0, Φ V, Ψ Λ = Φ V, Λ Ψ on-shell V: dim (0,0), midpoint O V (δ Λ Ψ) = 0 O V (e Λ Qe Λ )=0

7 Ψ λ = = λ r f n (λ) ψ λe r r=0 = n r 1 r n! ψ r r=0 n=0 ( ) N lim ψ N+1 r ψ r r=n (λ =1) N n=0 λ n+1 r ψ r r=n (λ 1) n=0 ψ r 2 π U r+2 U r+2 [ 1 ] π (B 0 + B 0 ) c(πr 4 ) c( πr 4 )+1 2 ( c( πr 4 )+ c(πr 4 )) 0 U r+2 = ( 2 r +2 ) L0

8 i z arctan z = z i z φ( z) = (cos z) 2h φ(tan z) for primary with dim h B 0 = b 0 + k=1 2( 1) k+1 4k 2 1 b 2k L 0 = {Q, B 0 } = L 0 + k=1 2( 1) k+1 4k 2 1 L 2k

9 S[Ψ λ ]/V 26 = 1 2π 2 g 2 (λ =1) 0 ( λ < 1)

10 O V (Ψ) O V (Ψ λ ) = Φ V, Ψ λ = I Φ V Ψ λ

11 Φ V = ζ mn c(i)v m (i)c( i)v n ( i) I m,n = m,n ζ mn U 1 U 1 c(i )Ṽ m (i ) c( i )Ṽ n ( i ) 0 ±i ±im Φ V,M m,n ζ mn U 1 U 1 c(im)ṽ m (im) c( im)ṽ n ( im) 0

12 U r U r φ 1 ( x 1 ) φ n ( x n ) 0 U s U s ψ 1 (ỹ 1 ) ψ m (ỹ m ) 0 = U r+s 1 U r+s 1 φ 1 ( x 1 ) φ n ( x n ) ψ 1 (ỹ 1 ) ψ m (ỹ m ) 0 ((B 0 + B 0 )Ψ 1) Ψ 2 =(B 0 + B 0 )(Ψ 1 Ψ 2 )+( 1) Ψ 1 π 2 Ψ 1 B 1 Ψ 2,

13 V m (y)v n (z) ψ r v mn + finite (y z) (y z) 2 Φ V,M,ψ r = C ( V sinh 4M 2πi r +1 4M π sin π )( cosh 4M r +1 r +1 cos = mat 0 0 mat ζ mn v mn. C V Φ V,ψ r = m,n lim Φ V,M,ψ r = C V M + 2πi π r +1 )( sinh 4M ) 2, r +1 independent of r O V (Ψ λ )= k=0 f k (λ) k r k! Φ V,ψ r r=0 = f 0 (λ) Φ V,ψ 0 = { CV 2πi (λ =1) 0 (λ = 1)

14 λ = 1 O V (Ψ λ=1 )= lim N ( Φ V,ψ N+1 N n=0 r Φ V,ψ r r=n ) lim N ( ) lim Φ V,M,ψ N+1 M + ( ) lim lim Φ V,M,ψ N+1 M + N = 0

15 λ = 1 Ψ λ=1 = lim N = lim N = ψ 0 + ( ( ψ N+1 ψ 0 + N n=0 N n=0 r ψ r r=n ) (ψ n+1 ψ n r ψ r r=n ) (ψ n+1 ψ n r ψ r r=n ) n=0 )

16 Φ k = 1 4i lim θ π 2 c(e iθ )c(e iθ ):e ik X(eiθ,e iθ) : I = 1 4 ee m+e gh c 0 c 1 0 E m = ( 1) n 2n α n α n n=1 E gh = ( 1) n c n b n n=1 n=1 2i 2α ( 1) n k i α i 2n+1 2n 1, k i k i k i =4/α Q Φ k = 0

17 Φ η = = E = 1 52α i η μν lim c(e iθ ) X μ (e iθ )c(e iθ ) X ν (e iθ ) I θ π 2 ( ) (m n)π mn cos α m α n e E c 0 c 1 0, 13 2 n,m=1 ( ( 1) n 1 ) 2n α n α n + c n b n n=1 Q Φ η = 0

18 V c = c cv m 0 ˆγ(1 c, 2) V c 1c = 2 Φ V V m = e ik ix i Φ k V m = 1 X X 26 Φ η

19 ˆγ(1 c, 2) φ c 1c ψ 2 = h 1 [φ c (0, 0)]h 2 [ψ(0)] h i M h i O h 1 (w) = i w 1 w +1 h 2 (w) = 1 2 (w 1 w )

20 ˆγ(1 c, 2) (Q (1) c + Q (1) c + Q (2) )=0 ˆγ(1 c, 2) (L (2) ( = ˆγ(1 c, 2) 2m 1 + L(2) 2m+1 ) 4(2m 1)i( 1) m (L (1) 0 L (1) 0 ) ) (f 2m 1,k L (1) k 1 + f 2m 1,k L (1) k 1 k=2 ˆγ(1 c, 2) (L (2) ( = ˆγ(1 c, 2) 2m L(2) 2m ) ( 1) m m c 2 8m( 1)m (L (1) 0 + L (1) 0 ) ) (f 2m,k L (1) k 1 + f 2m,k L (1) k 1 k=2

21 ψ r ψ r 2 = k=1, + r 2π 2 e u 2k(r)L 2k ( sin 2π r [ 1 π sin 2π r ) 2 s 2;s:even ( 1 r 2π sin 2π r ) ( 1) s 2 +1 ( ) 2 s s 2 1 r p 1;p:odd p,q 1;p+q:odd ( 2 r cot π r ) p c p 0 ( 2 ( 1) q r cot π ) p+q ] b s c p c q 0 r u 2 (r) = r2 4 3r 2, u 4(r) = r r 4, u 6(r) = 16(r2 4)(r 2 1)(r 2 +5) 945r 6,... ψ N+1 = O(N 3 ) (N )

22 LMathematica O η (Ψ λ,l )= λ n+1 r Φ η,ψ r,l r=n n=0 1 λ 1 λ = 1

23 O L=8 L=10 L=12 L=14 L=0 L=2 L=4 L=

24 0.040 L= L= L=4 L= L=12 L=14 L=8 L=

25 0.16 L=12 L=14 L=6 L=8 L=10 L=4 L=2 L=

26 O η (Ψ λ ) = L 1 2π (λ =1) 0 (λ 1) O η (Ψ λ=1,l )

27 S[Ψ λ=1 ]/(V 26 T 25 ) S[Ψ λ ]/(V 26 T 25 ) λ

28 b 0 Ψ N = 0 O η (Ψ N ) O η (Ψ N ) 1 2π = O η (Ψ N ) O η (Ψ λ=1 )

29 Table 1 2π 2 g 2 S[Ψ N ]/V 26 2π 2 g 2 S[Ψ N ]/V 26 O η (Ψ N )

30 L 0 L O k (Ψ λ L ) = O η (Ψ λ L ) O k (Ψ N L ) = O η (Ψ N L ) ψ L = O k (ψ L ) = O η (ψ L ) p,q 0,n i 2,j i 1,k i 0 n 1 + +np+j 1 + +j l +k 1 + +kq =L C (L) n i,j i,k i L (m) n 1 L (m) n p b j1 b jq c k1 c kq c 1 0 (L (m) 2n L(m) 2n ) Φ c cv m =( 1) n 3n Φ c cvm, (L (m) 2n 1 + L(m) 2n+1 ) Φ c cv m = 0

31 Ψ λ λ = 1 { { 1 1 (λ =1) (λ =1) 2π 2 g 2 O 0 ( λ < 1) k/η (Ψ λ )= 2π 0 ( 1 λ<1) S[Ψ λ ]/V 26 = Ψ λ=1 Ψ λ <1 Ψ λ=1 Ψ N S[Ψ λ=1 ] S[Ψ N ] O k/η (Ψ λ=1 ) O k/η (Ψ N ) Ψ λ=1 Ψ N

32 O V (Ψ λ=1 )= ˆγ(1 c, 2) ψ 0 2 c (1) 1 c (1) 1 V m 1c B N c 0 c 1 c 1 V m ˆγ(1 c, 2) ψ 0 2 P 1c = 1 2π B N c 0 O V (Ψ) = A disk Ψ (V ) Adisk 0 (V )

33 ˆγ(1 c, 2) Ψ λ=1 2 Pb 0 = 1 2π B N + ˆγ(1 c, 2) χ 2 Pb 0 Ψ λ=1 = ψ 0 + (ψ n+1 ψ n r ψ r r=n ) ψ 0 + χ n=0 Q( Ψ λ=1 ) + ( Ψ λ=1 ) ( Ψ λ=1 ) = 0 Q Q +ad Ψλ=1 Ψ λ=1

Energy from the gauge invariant observables

Energy from the gauge invariant observables .... Energy from the gauge invariant observables Nobuyuki Ishibashi University of Tsukuba October 2012 1 / 31 Ÿ1 Introduction A great variety of analytic classical solutions of Witten type OSFT has been

More information

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17.

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17. MTH0 Spring 07 HW Assignment : Sec. 6: #6,7; Sec. : #5,7; Sec. 8: #8; Sec. 0: # The due date for this assignment is //7. Sec. 6: #6. Use results in Sec. to verify that the function g z = ln r + iθ r >

More information

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya The boundary state from open string fields Yuji Okawa University of Tokyo, Komaba March 9, 2009 at Nagoya Based on arxiv:0810.1737 in collaboration with Kiermaier and Zwiebach (MIT) 1 1. Introduction Quantum

More information

Math 715 Homework 1 Solutions

Math 715 Homework 1 Solutions . [arrier, Krook and Pearson Section 2- Exercise ] Show that no purely real function can be analytic, unless it is a constant. onsider a function f(z) = u(x, y) + iv(x, y) where z = x + iy and where u

More information

MTH 3102 Complex Variables Final Exam May 1, :30pm-5:30pm, Skurla Hall, Room 106

MTH 3102 Complex Variables Final Exam May 1, :30pm-5:30pm, Skurla Hall, Room 106 Name (Last name, First name): MTH 02 omplex Variables Final Exam May, 207 :0pm-5:0pm, Skurla Hall, Room 06 Exam Instructions: You have hour & 50 minutes to complete the exam. There are a total of problems.

More information

On gauge invariant observables for identity-based marginal solutions in bosonic and super string field theory

On gauge invariant observables for identity-based marginal solutions in bosonic and super string field theory On gauge invariant observables for identity-based marginal solutions in bosonic and super string field theory Isao Kishimoto Niigata University, Japan July 31, 2014 String Field Theory and Related Aspects

More information

Some Properties of Classical Solutions in CSFT

Some Properties of Classical Solutions in CSFT Some Properties of Classical Solutions in CSFT Isao Kishimoto (Univ. of Tokyo, Hongo) I.K.-K.Ohmori, hep-th/69 I.K.-T.Takahashi, hep-th/5nnn /5/9 seminar@komaba Introduction Sen s conjecture There is a

More information

Second Midterm Exam Name: Practice Problems March 10, 2015

Second Midterm Exam Name: Practice Problems March 10, 2015 Math 160 1. Treibergs Second Midterm Exam Name: Practice Problems March 10, 015 1. Determine the singular points of the function and state why the function is analytic everywhere else: z 1 fz) = z + 1)z

More information

CHAPTER 4. Elementary Functions. Dr. Pulak Sahoo

CHAPTER 4. Elementary Functions. Dr. Pulak Sahoo CHAPTER 4 Elementary Functions BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University Of Kalyani West Bengal, India E-mail : sahoopulak1@gmail.com 1 Module-4: Multivalued Functions-II

More information

MA 201 Complex Analysis Lecture 6: Elementary functions

MA 201 Complex Analysis Lecture 6: Elementary functions MA 201 Complex Analysis : The Exponential Function Recall: Euler s Formula: For y R, e iy = cos y + i sin y and for any x, y R, e x+y = e x e y. Definition: If z = x + iy, then e z or exp(z) is defined

More information

Scattering theory for the Aharonov-Bohm effect

Scattering theory for the Aharonov-Bohm effect Scattering theory for the Aharonov-Bohm effect Takuya MINE Kyoto Institute of Technology 5th September 2017 Tosio Kato Centennial Conference at University of Tokyo Takuya MINE (KIT) Aharonov-Bohm effect

More information

Solution for Final Review Problems 1

Solution for Final Review Problems 1 Solution for Final Review Problems Final time and location: Dec. Gymnasium, Rows 23, 25 5, 2, Wednesday, 9-2am, Main ) Let fz) be the principal branch of z i. a) Find f + i). b) Show that fz )fz 2 ) λfz

More information

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing CHAPTER 3 ELEMENTARY FUNCTIONS We consider here various elementary functions studied in calculus and define corresponding functions of a complex variable. To be specific, we define analytic functions of

More information

Physics/Astronomy 226, Problem set 4, Due 2/10 Solutions. Solution: Our vectors consist of components and basis vectors:

Physics/Astronomy 226, Problem set 4, Due 2/10 Solutions. Solution: Our vectors consist of components and basis vectors: Physics/Astronomy 226, Problem set 4, Due 2/10 Solutions Reading: Carroll, Ch. 3 1. Derive the explicit expression for the components of the commutator (a.k.a. Lie bracket): [X, Y ] u = X λ λ Y µ Y λ λ

More information

1 Discussion on multi-valued functions

1 Discussion on multi-valued functions Week 3 notes, Math 7651 1 Discussion on multi-valued functions Log function : Note that if z is written in its polar representation: z = r e iθ, where r = z and θ = arg z, then log z log r + i θ + 2inπ

More information

Complex Homework Summer 2014

Complex Homework Summer 2014 omplex Homework Summer 24 Based on Brown hurchill 7th Edition June 2, 24 ontents hw, omplex Arithmetic, onjugates, Polar Form 2 2 hw2 nth roots, Domains, Functions 2 3 hw3 Images, Transformations 3 4 hw4

More information

Complex Analysis for Applications, Math 132/1, Home Work Solutions-II Masamichi Takesaki

Complex Analysis for Applications, Math 132/1, Home Work Solutions-II Masamichi Takesaki Page 48, Problem. Complex Analysis for Applications, Math 3/, Home Work Solutions-II Masamichi Takesaki Γ Γ Γ 0 Page 9, Problem. If two contours Γ 0 and Γ are respectively shrunkable to single points in

More information

Exact calculation for AB-phase effective potential via supersymmetric localization

Exact calculation for AB-phase effective potential via supersymmetric localization Exact calculation for AB-phase effective potential via supersymmetric localization Exact calculation for AB-phase effective potential via supersymmetric localization Todayʼs concern is purely theoretical...

More information

A Brief Introduction to Relativistic Quantum Mechanics

A Brief Introduction to Relativistic Quantum Mechanics A Brief Introduction to Relativistic Quantum Mechanics Hsin-Chia Cheng, U.C. Davis 1 Introduction In Physics 215AB, you learned non-relativistic quantum mechanics, e.g., Schrödinger equation, E = p2 2m

More information

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y. 90 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Test Form A Chapter 5 Name Class Date Section. Find the derivative: f ln. 6. Differentiate: y. ln y y y y. Find dy d if ey y. y

More information

String calculation of the long range Q Q potential

String calculation of the long range Q Q potential String calculation of the long range Q Q potential Héctor Martínez in collaboration with N. Brambilla, M. Groher (ETH) and A. Vairo April 4, 13 Outline 1 Motivation The String Hypothesis 3 O(1/m ) corrections

More information

1 z n = 1. 9.(Problem) Evaluate each of the following, that is, express each in standard Cartesian form x + iy. (2 i) 3. ( 1 + i. 2 i.

1 z n = 1. 9.(Problem) Evaluate each of the following, that is, express each in standard Cartesian form x + iy. (2 i) 3. ( 1 + i. 2 i. . 5(b). (Problem) Show that z n = z n and z n = z n for n =,,... (b) Use polar form, i.e. let z = re iθ, then z n = r n = z n. Note e iθ = cos θ + i sin θ =. 9.(Problem) Evaluate each of the following,

More information

Nontrivial solutions around identity-based marginal solutions in cubic superstring field theory

Nontrivial solutions around identity-based marginal solutions in cubic superstring field theory Nontrivial solutions around identity-based marginal solutions in cubic superstring field theory Isao Kishimoto October 28 (212) SFT212@IAS, The Hebrew University of Jerusalem References I. K. and T. Takahashi,

More information

Vibrating-string problem

Vibrating-string problem EE-2020, Spring 2009 p. 1/30 Vibrating-string problem Newton s equation of motion, m u tt = applied forces to the segment (x, x, + x), Net force due to the tension of the string, T Sinθ 2 T Sinθ 1 T[u

More information

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation invariant,

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation invariant, FYST5 Quantum Mechanics II 9..212 1. intermediate eam (1. välikoe): 4 problems, 4 hours 1. As you remember, the Hamilton operator for a charged particle interacting with an electromagentic field can be

More information

arxiv:hep-th/ v2 13 Aug 2002

arxiv:hep-th/ v2 13 Aug 2002 hep-th/0205275 UT-02-29 Open String Field Theory around Universal Solutions Isao Kishimoto 1, ) and Tomohiko Takahashi 2, ) arxiv:hep-th/0205275v2 13 Aug 2002 1 Department of Phyisics, University of Tokyo,

More information

Analytic Progress in Open String Field Theory

Analytic Progress in Open String Field Theory Analytic Progress in Open String Field Theory Strings, 2007 B. Zwiebach, MIT In the years 1999-2003 evidence accumulated that classical open string field theory (OSFT) gives at least a partial description

More information

Part IB. Further Analysis. Year

Part IB. Further Analysis. Year Year 2004 2003 2002 2001 10 2004 2/I/4E Let τ be the topology on N consisting of the empty set and all sets X N such that N \ X is finite. Let σ be the usual topology on R, and let ρ be the topology on

More information

Chapter 9. Analytic Continuation. 9.1 Analytic Continuation. For every complex problem, there is a solution that is simple, neat, and wrong.

Chapter 9. Analytic Continuation. 9.1 Analytic Continuation. For every complex problem, there is a solution that is simple, neat, and wrong. Chapter 9 Analytic Continuation For every complex problem, there is a solution that is simple, neat, and wrong. - H. L. Mencken 9.1 Analytic Continuation Suppose there is a function, f 1 (z) that is analytic

More information

Suggested Homework Solutions

Suggested Homework Solutions Suggested Homework Solutions Chapter Fourteen Section #9: Real and Imaginary parts of /z: z = x + iy = x + iy x iy ( ) x iy = x #9: Real and Imaginary parts of ln z: + i ( y ) ln z = ln(re iθ ) = ln r

More information

Covariant Gauges in String Field Theory

Covariant Gauges in String Field Theory Covariant Gauges in String Field Theory Mitsuhiro Kato @ RIKEN symposium SFT07 In collaboration with Masako Asano (Osaka P.U.) New covariant gauges in string field theory PTP 117 (2007) 569, Level truncated

More information

[ zd z zdz dψ + 2i. 2 e i ψ 2 dz. (σ 2 ) 2 +(σ 3 ) 2 = (1+ z 2 ) 2

[ zd z zdz dψ + 2i. 2 e i ψ 2 dz. (σ 2 ) 2 +(σ 3 ) 2 = (1+ z 2 ) 2 2 S 2 2 2 2 2 M M 4 S 2 S 2 z, w : C S 2 z = 1/w e iψ S 1 S 2 σ 1 = 1 ( ) [ zd z zdz dψ + 2i 2 1 + z 2, σ 2 = Re 2 e i ψ 2 dz 1 + z 2 ], σ 3 = Im [ 2 e i ψ 2 dz 1 + z 2 σ 2 σ 3 (σ 2 ) 2 (σ 3 ) 2 σ 2 σ

More information

Exercises involving elementary functions

Exercises involving elementary functions 017:11:0:16:4:09 c M K Warby MA3614 Complex variable methods and applications 1 Exercises involving elementary functions 1 This question was in the class test in 016/7 and was worth 5 marks a) Let z +

More information

Topic 4 Notes Jeremy Orloff

Topic 4 Notes Jeremy Orloff Topic 4 Notes Jeremy Orloff 4 auchy s integral formula 4. Introduction auchy s theorem is a big theorem which we will use almost daily from here on out. Right away it will reveal a number of interesting

More information

Theories with Compact Extra Dimensions

Theories with Compact Extra Dimensions Instituto de Física USP PASI 2012 UBA Theories with Compact Extra dimensions Part II Generating Large Hierarchies with ED Theories Warped Extra Dimensions Warped Extra Dimensions One compact extra dimension.

More information

arxiv:hep-th/ v1 2 Jul 2003

arxiv:hep-th/ v1 2 Jul 2003 IFT-P.027/2003 CTP-MIT-3393 hep-th/0307019 Yang-Mills Action from Open Superstring Field Theory arxiv:hep-th/0307019v1 2 Jul 2003 Nathan Berkovits 1 Instituto de Física Teórica, Universidade Estadual Paulista,

More information

The form factor program a review and new results

The form factor program a review and new results The form factor program a review and new results the nested SU(N)-off-shell Bethe ansatz H. Babujian, A. Foerster, and M. Karowski FU-Berlin Budapest, June 2006 Babujian, Foerster, Karowski (FU-Berlin)

More information

Applied Mathematics Masters Examination Fall 2016, August 18, 1 4 pm.

Applied Mathematics Masters Examination Fall 2016, August 18, 1 4 pm. Applied Mathematics Masters Examination Fall 16, August 18, 1 4 pm. Each of the fifteen numbered questions is worth points. All questions will be graded, but your score for the examination will be the

More information

MAT389 Fall 2016, Problem Set 11

MAT389 Fall 2016, Problem Set 11 MAT389 Fall 216, Problem Set 11 Improper integrals 11.1 In each of the following cases, establish the convergence of the given integral and calculate its value. i) x 2 x 2 + 1) 2 ii) x x 2 + 1)x 2 + 2x

More information

Solution to Homework 4, Math 7651, Tanveer 1. Show that the function w(z) = 1 2

Solution to Homework 4, Math 7651, Tanveer 1. Show that the function w(z) = 1 2 Solution to Homework 4, Math 7651, Tanveer 1. Show that the function w(z) = 1 (z + 1/z) maps the exterior of a unit circle centered around the origin in the z-plane to the exterior of a straight line cut

More information

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India NPTEL web course on Complex Analysis A. Swaminathan I.I.T. Roorkee, India and V.K. Katiyar I.I.T. Roorkee, India A.Swaminathan and V.K.Katiyar (NPTEL) Complex Analysis 1 / 28 Complex Analysis Module: 6:

More information

Lecture 18 April 5, 2010

Lecture 18 April 5, 2010 Lecture 18 April 5, 2010 Darwin Particle dynamics: x j (t) evolves by F k j ( x j (t), x k (t)), depends on where other particles are at the same instant. Violates relativity! If the forces are given by

More information

VALUES OF THE RIEMANN ZETA FUNCTION AND INTEGRALS INVOLVING log(2sinhf) AND log (2 sin f)

VALUES OF THE RIEMANN ZETA FUNCTION AND INTEGRALS INVOLVING log(2sinhf) AND log (2 sin f) PACIFIC JOURNAL OF MATHEMATICS Vol. 168, No. 2, 1995 VALUES OF THE RIEMANN ZETA FUNCTION AND INTEGRALS INVOLVING log(2sinhf) AND log (2 sin f) ZHANG NAN-YUE AND KENNETH S. WILLIAMS (1.1) Integrals involving

More information

Loop Integrands from Ambitwistor Strings

Loop Integrands from Ambitwistor Strings Loop Integrands from Ambitwistor Strings Yvonne Geyer Institute for Advanced Study QCD meets Gravity UCLA arxiv:1507.00321, 1511.06315, 1607.08887 YG, L. Mason, R. Monteiro, P. Tourkine arxiv:1711.09923

More information

Introduction Calculation in Gauge Theory Calculation in String Theory Another Saddle Point Summary and Future Works

Introduction Calculation in Gauge Theory Calculation in String Theory Another Saddle Point Summary and Future Works Introduction AdS/CFT correspondence N = 4 SYM type IIB superstring Wilson loop area of world-sheet Wilson loop + heavy local operator area of deformed world-sheet Zarembo s solution (1/2 BPS Wilson Loop)

More information

Holographic Entanglement Entropy for Surface Operators and Defects

Holographic Entanglement Entropy for Surface Operators and Defects Holographic Entanglement Entropy for Surface Operators and Defects Michael Gutperle UCLA) UCSB, January 14th 016 Based on arxiv:1407.569, 1506.0005, 151.04953 with Simon Gentle and Chrysostomos Marasinou

More information

Boundary Value Problems in Cylindrical Coordinates

Boundary Value Problems in Cylindrical Coordinates Boundary Value Problems in Cylindrical Coordinates 29 Outline Differential Operators in Various Coordinate Systems Laplace Equation in Cylindrical Coordinates Systems Bessel Functions Wave Equation the

More information

String Theory I GEORGE SIOPSIS AND STUDENTS

String Theory I GEORGE SIOPSIS AND STUDENTS String Theory I GEORGE SIOPSIS AND STUDENTS Department of Physics and Astronomy The University of Tennessee Knoxville, TN 37996-2 U.S.A. e-mail: siopsis@tennessee.edu Last update: 26 ii Contents 4 Tree-level

More information

MATH243 First Semester 2013/14. Exercises 1

MATH243 First Semester 2013/14. Exercises 1 Complex Functions Dr Anna Pratoussevitch MATH43 First Semester 013/14 Exercises 1 Submit your solutions to questions marked with [HW] in the lecture on Monday 30/09/013 Questions or parts of questions

More information

1. Four equal and positive charges +q are arranged as shown on figure 1.

1. Four equal and positive charges +q are arranged as shown on figure 1. AP Physics C Coulomb s Law Free Response Problems 1. Four equal and positive charges +q are arranged as shown on figure 1. a. Calculate the net electric field at the center of square. b. Calculate the

More information

Math 113 Fall 2005 key Departmental Final Exam

Math 113 Fall 2005 key Departmental Final Exam Math 3 Fall 5 key Departmental Final Exam Part I: Short Answer and Multiple Choice Questions Do not show your work for problems in this part.. Fill in the blanks with the correct answer. (a) The integral

More information

NONINTEGER FLUXES, DOLBEAULT COMPLEXES, AND SUPERSYMMETRIC QUANTUM MECHANICS. based on [ ] and [ ] Hannover, August 1, 2011

NONINTEGER FLUXES, DOLBEAULT COMPLEXES, AND SUPERSYMMETRIC QUANTUM MECHANICS. based on [ ] and [ ] Hannover, August 1, 2011 NONINTEGER FLUXES, DOLBEAULT COMPLEXES, AND SUPERSYMMETRIC QUANTUM MECHANICS based on [1104.3986] and [1105.3935] Hannover, August 1, 2011 WHAT IS WRONG WITH NONINTEGER FLUX? Quantization of Dirac monopole

More information

MTH 3102 Complex Variables Solutions: Practice Exam 2 Mar. 26, 2017

MTH 3102 Complex Variables Solutions: Practice Exam 2 Mar. 26, 2017 Name Last name, First name): MTH 31 omplex Variables Solutions: Practice Exam Mar. 6, 17 Exam Instructions: You have 1 hour & 1 minutes to complete the exam. There are a total of 7 problems. You must show

More information

FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 2017

FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 2017 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II November 5, 207 Prof. Alan Guth FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 207 A few items below are marked

More information

Discontinuous Galerkin methods for fractional diffusion problems

Discontinuous Galerkin methods for fractional diffusion problems Discontinuous Galerkin methods for fractional diffusion problems Bill McLean Kassem Mustapha School of Maths and Stats, University of NSW KFUPM, Dhahran Leipzig, 7 October, 2010 Outline Sub-diffusion Equation

More information

Synopsis of Complex Analysis. Ryan D. Reece

Synopsis of Complex Analysis. Ryan D. Reece Synopsis of Complex Analysis Ryan D. Reece December 7, 2006 Chapter Complex Numbers. The Parts of a Complex Number A complex number, z, is an ordered pair of real numbers similar to the points in the real

More information

Final Exam - MATH 630: Solutions

Final Exam - MATH 630: Solutions Final Exam - MATH 630: Solutions Problem. Find all x R satisfying e xeix e ix. Solution. Comparing the moduli of both parts, we obtain e x cos x, and therefore, x cos x 0, which is possible only if x 0

More information

The Mathematics of Maps Lecture 4. Dennis The The Mathematics of Maps Lecture 4 1/29

The Mathematics of Maps Lecture 4. Dennis The The Mathematics of Maps Lecture 4 1/29 The Mathematics of Maps Lecture 4 Dennis The The Mathematics of Maps Lecture 4 1/29 Mercator projection Dennis The The Mathematics of Maps Lecture 4 2/29 The Mercator projection (1569) Dennis The The Mathematics

More information

Solutions to Exercises 6.1

Solutions to Exercises 6.1 34 Chapter 6 Conformal Mappings Solutions to Exercises 6.. An analytic function fz is conformal where f z. If fz = z + e z, then f z =e z z + z. We have f z = z z += z =. Thus f is conformal at all z.

More information

Time-dependent backgrounds of compactified 2D string theory:

Time-dependent backgrounds of compactified 2D string theory: Time-dependent backgrounds of compactified 2D string theory: complex curve and instantons Ivan Kostov kostov@spht.saclay.cea.fr SPhT, CEA-Saclay I.K., hep-th/007247, S. Alexandrov V. Kazakov & I.K., hep-th/0205079

More information

THE DIRAC EQUATION (A REVIEW) We will try to find the relativistic wave equation for a particle.

THE DIRAC EQUATION (A REVIEW) We will try to find the relativistic wave equation for a particle. THE DIRAC EQUATION (A REVIEW) We will try to find the relativistic wave equation for a particle. First, we introduce four dimensional notation for a vector by writing x µ = (x, x 1, x 2, x 3 ) = (ct, x,

More information

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder.

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder. Lent 29 COMPLEX METHODS G. Taylor A star means optional and not necessarily harder. Conformal maps. (i) Let f(z) = az + b, with ad bc. Where in C is f conformal? cz + d (ii) Let f(z) = z +. What are the

More information

Errata 1. p. 5 The third line from the end should read one of the four rows... not one of the three rows.

Errata 1. p. 5 The third line from the end should read one of the four rows... not one of the three rows. Errata 1 Front inside cover: e 2 /4πɛ 0 should be 1.44 10 7 ev-cm. h/e 2 should be 25800 Ω. p. 5 The third line from the end should read one of the four rows... not one of the three rows. p. 8 The eigenstate

More information

Mathematics, Algebra, and Geometry

Mathematics, Algebra, and Geometry Mathematics, Algebra, and Geometry by Satya http://www.thesatya.com/ Contents 1 Algebra 1 1.1 Logarithms............................................ 1. Complex numbers........................................

More information

Distributed and Recursive Parameter Estimation in Parametrized Linear State-Space Models

Distributed and Recursive Parameter Estimation in Parametrized Linear State-Space Models 1 Distributed and Recursive Parameter Estimation in Parametrized Linear State-Space Models S. Sundhar Ram, V. V. Veeravalli, and A. Nedić Abstract We consider a network of sensors deployed to sense a spatio-temporal

More information

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 4, and Di Bartolo, Chap. 2. 2π nx i a. ( ) = G n.

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 4, and Di Bartolo, Chap. 2. 2π nx i a. ( ) = G n. Chapter. Electrostatic II Notes: Most of the material presented in this chapter is taken from Jackson, Chap.,, and 4, and Di Bartolo, Chap... Mathematical Considerations.. The Fourier series and the Fourier

More information

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012 INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012 September 5, 2012 Mapping Properties Lecture 13 We shall once again return to the study of general behaviour of holomorphic functions

More information

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial. Lecture 3 Usual complex functions MATH-GA 245.00 Complex Variables Polynomials. Construction f : z z is analytic on all of C since its real and imaginary parts satisfy the Cauchy-Riemann relations and

More information

Hyperbolic volumes and zeta values An introduction

Hyperbolic volumes and zeta values An introduction Hyperbolic volumes and zeta values An introduction Matilde N. Laĺın University of Alberta mlalin@math.ulberta.ca http://www.math.ualberta.ca/~mlalin Annual North/South Dialogue in Mathematics University

More information

Math 417 Midterm Exam Solutions Friday, July 9, 2010

Math 417 Midterm Exam Solutions Friday, July 9, 2010 Math 417 Midterm Exam Solutions Friday, July 9, 010 Solve any 4 of Problems 1 6 and 1 of Problems 7 8. Write your solutions in the booklet provided. If you attempt more than 5 problems, you must clearly

More information

3 Elementary Functions

3 Elementary Functions 3 Elementary Functions 3.1 The Exponential Function For z = x + iy we have where Euler s formula gives The note: e z = e x e iy iy = cos y + i sin y When y = 0 we have e x the usual exponential. When z

More information

Emergent space-time and gravity in the IIB matrix model

Emergent space-time and gravity in the IIB matrix model Emergent space-time and gravity in the IIB matrix model Harold Steinacker Department of physics Veli Losinj, may 2013 Geometry and physics without space-time continuum aim: (toy-?) model for quantum theory

More information

Complete action of open superstring field theory

Complete action of open superstring field theory Complete action of open superstring field theory Yuji Okawa The University of Tokyo, Komaba Based on arxiv:1508.00366 in collaboration with Hiroshi Kunitomo November 12, 2015 at the YITP workshop Developments

More information

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N Applied Analysis prelim July 15, 216, with solutions Solve 4 of the problems 1-5 and 2 of the problems 6-8. We will only grade the first 4 problems attempted from1-5 and the first 2 attempted from problems

More information

Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends

Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends Kenichi ITO (University of Tokyo) joint work with Erik SKIBSTED (Aarhus University) 3 July 2018 Example: Free

More information

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31 1 / 31 Axions Kerstin Helfrich Seminar on Theoretical Particle Physics, 06.07.06 2 / 31 Structure 1 Introduction 2 Repetition: Instantons Formulae The θ-vacuum 3 The U(1) and the strong CP problem The

More information

Math 220A Homework 4 Solutions

Math 220A Homework 4 Solutions Math 220A Homework 4 Solutions Jim Agler 26. (# pg. 73 Conway). Prove the assertion made in Proposition 2. (pg. 68) that g is continuous. Solution. We wish to show that if g : [a, b] [c, d] C is a continuous

More information

Math 122 Test 3. April 17, 2018

Math 122 Test 3. April 17, 2018 SI: Math Test 3 April 7, 08 EF: 3 4 5 6 7 8 9 0 Total Name Directions:. No books, notes or April showers. You may use a calculator to do routine arithmetic computations. You may not use your calculator

More information

Nobuhito Maru (Kobe)

Nobuhito Maru (Kobe) Calculable One-Loop Contributions to S and T Parameters in the Gauge-Higgs Unification Nobuhito Maru Kobe with C.S.Lim Kobe PRD75 007 50 [hep-ph/07007] 8/6/007 String theory & QFT @Kinki Univ. Introduction

More information

Part IB. Complex Methods. Year

Part IB. Complex Methods. Year Part IB Year 218 217 216 215 214 213 212 211 21 29 28 27 26 25 24 23 22 21 218 Paper 1, Section I 2A Complex Analysis or 7 (a) Show that w = log(z) is a conformal mapping from the right half z-plane, Re(z)

More information

From Matrices to Quantum Geometry

From Matrices to Quantum Geometry From Matrices to Quantum Geometry Harold Steinacker University of Vienna Wien, june 25, 2013 Geometry and physics without space-time continuum aim: (toy-?) model for quantum theory of all fund. interactions

More information

Gravitational perturbations on branes

Gravitational perturbations on branes º ( Ò Ò ) Ò ± 2015.4.9 Content 1. Introduction and Motivation 2. Braneworld solutions in various gravities 2.1 General relativity 2.2 Scalar-tensor gravity 2.3 f(r) gravity 3. Gravitational perturbation

More information

Complex Numbers and the Complex Exponential

Complex Numbers and the Complex Exponential Complex Numbers and the Complex Exponential φ (2+i) i 2 θ φ 2+i θ 1 2 1. Complex numbers The equation x 2 + 1 0 has no solutions, because for any real number x the square x 2 is nonnegative, and so x 2

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Friday April 1 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

EE2007 Tutorial 7 Complex Numbers, Complex Functions, Limits and Continuity

EE2007 Tutorial 7 Complex Numbers, Complex Functions, Limits and Continuity EE27 Tutorial 7 omplex Numbers, omplex Functions, Limits and ontinuity Exercise 1. These are elementary exercises designed as a self-test for you to determine if you if have the necessary pre-requisite

More information

Summation of Series and Gaussian Quadratures

Summation of Series and Gaussian Quadratures Summation of Series Gaussian Quadratures GRADIMIR V. MILOVANOVIĆ Dedicated to Walter Gautschi on the occasion of his 65th birthday Abstract. In 985, Gautschi the author constructed Gaussian quadrature

More information

Mid Term-1 : Solutions to practice problems

Mid Term-1 : Solutions to practice problems Mid Term- : Solutions to practice problems 0 October, 06. Is the function fz = e z x iy holomorphic at z = 0? Give proper justification. Here we are using the notation z = x + iy. Solution: Method-. Use

More information

Vacuum Polarization in the Presence of Magnetic Flux at Finite Temperature in the Cosmic String Background

Vacuum Polarization in the Presence of Magnetic Flux at Finite Temperature in the Cosmic String Background Vacuum Polarization in the Presence of Magnetic Flux at Finite Temperature in the Cosmic String Background Univ. Estadual da Paraíba (UEPB), Brazil E-mail: jeanspinelly@ig.com.br E. R. Bezerra de Mello

More information

Milnor s Exotic 7-Spheres Jhan-Cyuan Syu ( June, 2017 Introduction

Milnor s Exotic 7-Spheres Jhan-Cyuan Syu ( June, 2017 Introduction 許展銓 1 2 3 R 4 R 4 R n n 4 R 4 ξ : E π M 2n J : E E R J J(v) = v v E ξ ξ ξ R ξ : E π M M ξ : Ē π M ξ ξ R = ξ R i : E Ē i(cv) = ci(v) c C v E ξ : E π M n M c(ξ) = c i (ξ) H 2n (M, Z) i 0 c 0 (ξ) = 1 c i

More information

Chapter 2: Complex numbers

Chapter 2: Complex numbers Chapter 2: Complex numbers Complex numbers are commonplace in physics and engineering. In particular, complex numbers enable us to simplify equations and/or more easily find solutions to equations. We

More information

Boundary-value Problems in Rectangular Coordinates

Boundary-value Problems in Rectangular Coordinates Boundary-value Problems in Rectangular Coordinates 2009 Outline Separation of Variables: Heat Equation on a Slab Separation of Variables: Vibrating String Separation of Variables: Laplace Equation Review

More information

Formalism of the Tersoff potential

Formalism of the Tersoff potential Originally written in December 000 Translated to English in June 014 Formalism of the Tersoff potential 1 The original version (PRB 38 p.990, PRB 37 p.6991) Potential energy Φ = 1 u ij i (1) u ij = f ij

More information

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2 6 FAMAT Convention Mu Integration. A. 3 3 7 6 6 3 ] 3 6 6 3. B. For quadratic functions, Simpson s Rule is eact. Thus, 3. D.. B. lim 5 3 + ) 3 + ] 5 8 8 cot θ) dθ csc θ ) dθ cot θ θ + C n k n + k n lim

More information

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r 2. A harmonic conjugate always exists locally: if u is a harmonic function in an open set U, then for any disk D(z 0, r) U, there is f, which is analytic in D(z 0, r) and satisfies that Re f u. Since such

More information

On the quantum theory of rotating electrons

On the quantum theory of rotating electrons Zur Quantentheorie des rotierenden Elektrons Zeit. f. Phys. 8 (98) 85-867. On the quantum theory of rotating electrons By Friedrich Möglich in Berlin-Lichterfelde. (Received on April 98.) Translated by

More information

Collider signatures of gauge-higgs unification

Collider signatures of gauge-higgs unification Collider signatures of gauge-higgs unification Gauge-Higgs Unification in 5 dimensions 4-dim. components A µ extra-dim. component A y Hosotani 1983, 1989 Davies, McLachlan 1988, 1989 Hatanaka, Inami, Lim,

More information

Part IB. Complex Analysis. Year

Part IB. Complex Analysis. Year Part IB Complex Analysis Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 Paper 1, Section I 2A Complex Analysis or Complex Methods 7 (a) Show that w = log(z) is a conformal

More information

Complex Analysis Homework 1: Solutions

Complex Analysis Homework 1: Solutions Complex Analysis Fall 007 Homework 1: Solutions 1.1.. a) + i)4 + i) 8 ) + 1 + )i 5 + 14i b) 8 + 6i) 64 6) + 48 + 48)i 8 + 96i c) 1 + ) 1 + i 1 + 1 i) 1 + i)1 i) 1 + i ) 5 ) i 5 4 9 ) + 4 4 15 i ) 15 4

More information

Virasoro and Kac-Moody Algebra

Virasoro and Kac-Moody Algebra Virasoro and Kac-Moody Algebra Di Xu UCSC Di Xu (UCSC) Virasoro and Kac-Moody Algebra 2015/06/11 1 / 24 Outline Mathematical Description Conformal Symmetry in dimension d > 3 Conformal Symmetry in dimension

More information

Ambitwistor strings, the scattering equations, tree formulae and beyond

Ambitwistor strings, the scattering equations, tree formulae and beyond Ambitwistor strings, the scattering equations, tree formulae and beyond Lionel Mason The Mathematical Institute, Oxford lmason@maths.ox.ac.uk Les Houches 18/6/2014 With David Skinner. arxiv:1311.2564 and

More information