Variable Selection in Predictive Regressions

Size: px
Start display at page:

Download "Variable Selection in Predictive Regressions"

Transcription

1 Variable Selection in Predictive Regressions Alessandro Stringhi Advanced Financial Econometrics III Winter/Spring 2018

2 Overview This chapter considers linear models for explaining a scalar variable when a researcher is given T historical observations and N potentially relevant predictors The problem is to identify the set of relevant predictors Three types of variable selection model will be discussed: Criterion based methods Regularization Dimension Reduction procedure Criterion based methods are presented in the case N<T Then we will turn to the case in which N is large 2

3 Overview Criterion based methods perform better when N is small and there is a natural hierarchy of the variables Regularization seems to better suit situations when all but a few observed predictors have non-zero effect on the regression function Dimension reduction methods seem more appropriate when the predictors are highly collinear and possibly have a factor stucture Desptite that the variable selection problem is by no means solved. Moreover when one of these models is implemented there is a trade-off between consistency and accurate prediction 3

4 Notation Matrix: for an arbitrary matrix AA, let AA jj denote the j-th column of AA and let AA 1:rr the sub-matrix formed from the first rr columns of AA Norms: for an arbitrary vector zz RR nn the LL 2 norm is zz 2 2 = nn ii zz 2 ii, the LL 1 norm is zz 1 = nn ii zz ii and the LL 0 norm is zz 0 = nn ii II zzii 0 yy is the variable of interest and yy TT+h TT is the forecast h period ahead. The forecast accuracy is measured in terms of mean-squared forecast errors Predictors: XX tt will be the set of N potentially relevant predictors and XX AA will be the set of empirically relevant predictors 4

5 Criterion Based Methods N<T Criterion based methods are employed mostly in the context of autoregression, where the number of lag pp is small compared to the sample size T Predictors in an autoregression have a natural time ordering, hence the model selection problem boils down to the determination of the lag length pp, therefore the problem is computationally simple Two different approach can be used: Information Criteria and Sequential Testing Procedure The first method favors parsimonious models, while the second aims to find the last significant lag 5

6 Sequential Testing Procedure Sequential Testing Procedures can be used to select model when the number of candidate models is small, as in the case of autoregressions Sequential testing procedures can be done using two different approaches: General-to-Specific (top-down) and Specific-to-General (bottom-up) General-to-Specific: the method starts from the largest model, which in the case of autoregression would be the pp mmmmmm lags of the dependent variable. The model is estimated and the last lag significance is checked. If it is not significant the model is re-estimated using pp mmmmmm 1 regressors and the last regressor is checked. If it is not significant the precedure is repeated. 6

7 Sequential Testing Procedure Specific-to-General: the estimation starts from the simplest model and adds lags since these are significant It is proved that Specific-to-General approach is not valid in a pure AR model and its finite sample properties are inferior to General-to-Specific approach These procedures are defined an greedy because the locally optimal decisions made at each stage may not be globally optimal These procedures also perform an hard tresholding, meaning that a variable is either in or out of the predictor set. Moreover hard tresholding is sensitive to small changes in the data and if the sample size is too small few variables will be selected 7

8 Information Criterion Information criteria are used to infer the quality of a model with respect other candidates, penalazing models with too many parameters The criteria here considered are: Mallow (1973) CP, Akaike (AIC) and Bayesian information criterion (BIC) Mallow criterion determines XX AA using the scaled sum of squared errors Where pp refers to the number of regressors included 8

9 Information Criterion Mallow 1973 Assuming that the errors are homoskedastic Mallow shows SSSSSS that a useful estimate of EE( pp σσ 2 ) is The CP criterion defines XX AA as the subset of explanatory variables that corresponds to the lowest point in the plot of CP against pp Mallow does not reccomend to blindly follow this criterion because it is not reliable when a large number of subset are close competirors of the minimizer of CP 9

10 Information Criterion Akaike AIC Akaike AIC estimates the relative quality of a model, hence we can regard it as a tool for variable selection AIC is founded on information theory and deal with the trade-off between the goodness of fit of the model and the semplicity of the model (overfitting can cause trouble when forecasting) The preferred model is the one with the minimum AIC AAAAAA = 2pp 2 ln LL Where LL is the likelihood function 10

11 Information Criterion BIC Similarly to AIC, BIC impose a penality to model with too many parameters, but the penality is larger in BIC BIC was developed by G. Schwarz (1978) and he gave a bayesian argument for adopting it BIC is defined as BBBBBB = ln(tt) pp 2 ln LL Again, the model with the lowest BIC will be selected 11

12 Criterion Based Methods Drawbacks When there are a large number of predictors with no natural ordering, 2 NN estimation are needed, which is very impractical even with powerfull computers Criterion based methods work well in the estimation sample, but not necessarily perform well in the prediction sample This could lead to over fitting, with the conseguence of poor out-of-sample fit Information criterion and sequential testing perform LL 0 regularization (hard thresholding) 12

13 Regularization Methods The parameters estimated with information criteria are sensitive to small changes in the data when the eigenvalues are close to zero, which leads to beta bouncing problems A way to alleviate this problem is to down-weight the less important predictors, a method known as shrinkage For variable selection a general shrinkage framework is Bridge regression 13

14 Regularization Methods The Ridge estimator (Tikhonov Regularization) is a special case of the Bridge estimator with η = 2. Thus impose a LL 2 penality While the Ridge estimator will alleviate the problem of highly collinear regressor, most coefficient estimates will remain non-zero This is due to the LL 2 penality that shrinks coefficients toward zero, but never sets them to zero exactly 14

15 Regularization Methods - LASSO A method that received a great deal of attention is the Least Absolute Shrinkage Selection Operator (LASSO) LASSO can be view as a Bridge operator with η = 1 and it is given by The main difference between LASSO and Ridge operator is the use of the LL 1 penality instead of the LL 2 The LL 1 penality can set coefficients exactly to zero, excluding the corresponding variable LASSO thus perform shrinkage and variable selection simultaneously 15

16 Regularization Methods - LASSO Another difference is that the Ridge coefficients of correlated predictors are shrunk toward each other, while LASSO tends to pick one and ignore the rest of the correlated predictors 16

17 Dimension Reduction Methods While regularization picks out the empirical relevant variables, a different approach is to use all data available in a clever way We will focus on methods that simultaneously consider all predictors Principal Components: this technique combines the potentially relevant predictor XX tt into new predictors that are linear combinations of the old ones The principal components are ranked, namely the j-th principal component XX PPPP,jj is the linear combination that captures the j-th largerst variation in XX 17

18 Dimension Reduction Methods Principal component The principal component regression replace the TT NN predictor matrix XX with a TT rr XX sub-matrix of principal components XX PPPP,1:rrXX are the first rr xx columns of XX PPPP that corresponds to the rr XX eigenvalue of XX The estimator using the first rr XX principal components as regressors is 18

19 Dimension Reduction Methods Principal component Compared to the least squares estimator it involves only rr XX < NN components In other words ββ PPPP puts unit weight on the first rr XX components and ignore the remaining ones Principal components analysis is often sees as a numerical tool that reduce the dimension of the data, but has weak statistical foundation because no probability model is specified It is an unsupervised dimension reduction technique 19

20 Dimension Reduction Methods - Factors In contrast with principal components, factor analysis assume that the data have a specific structure Suppose that yy tt can be well approximated by the infeasible regression Where FF tt is a rr yy 1 vector of unobserved common factors, ββ FF is a polynomial in the lag operator of order pp FF and WW tt is the set of must have regressors A factor augmented regression is obtained when FF tt is used in place of FF tt 20

21 Dimension Reduction Methods - Factors Then a h period ahead forecast is The key of augmented regressions is that the latent factors can be precisely estimated from a large number of the observed predictors xx iiii that can be represented by the factor model Where FF tt is a rr xx 1 vector of latent factors and λ ii are the factor loadings Notice that the factors relevant for forecasting need not to be the same as the set of factors in XX 21

22 Dimension Reduction Methods - Factors When yy tt also belong to XX tt, rr yy can be set to rr xx, making FF tt the rr xx static principal components of XX. Thus we can rewrite The relation between factors and principal components is easy to see when pp FF = 0 and WW tt is empty. A criticism to factor augmented regressions is that the factors are estimated without taking into account that the objective is to forecast YY. Factors that have good explanatory power for XX may not be good predictors for YY, even if yy tt XX tt 22

23 Dimension Reduction Methods - Factors More precisely, a factor augmented regression first estimate FF by maximizing Estimates of α and β are then obtained by maximizing Therefore the FF are constructed in a way irrespective of YY Two model that address this problem are Reduced Rank and Partial Least Square Regressions 23

MS-C1620 Statistical inference

MS-C1620 Statistical inference MS-C1620 Statistical inference 10 Linear regression III Joni Virta Department of Mathematics and Systems Analysis School of Science Aalto University Academic year 2018 2019 Period III - IV 1 / 32 Contents

More information

Model Selection. Frank Wood. December 10, 2009

Model Selection. Frank Wood. December 10, 2009 Model Selection Frank Wood December 10, 2009 Standard Linear Regression Recipe Identify the explanatory variables Decide the functional forms in which the explanatory variables can enter the model Decide

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

ISyE 691 Data mining and analytics

ISyE 691 Data mining and analytics ISyE 691 Data mining and analytics Regression Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering Building)

More information

STAT 535 Lecture 5 November, 2018 Brief overview of Model Selection and Regularization c Marina Meilă

STAT 535 Lecture 5 November, 2018 Brief overview of Model Selection and Regularization c Marina Meilă STAT 535 Lecture 5 November, 2018 Brief overview of Model Selection and Regularization c Marina Meilă mmp@stat.washington.edu Reading: Murphy: BIC, AIC 8.4.2 (pp 255), SRM 6.5 (pp 204) Hastie, Tibshirani

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Final Review. Yang Feng. Yang Feng (Columbia University) Final Review 1 / 58

Final Review. Yang Feng.   Yang Feng (Columbia University) Final Review 1 / 58 Final Review Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Final Review 1 / 58 Outline 1 Multiple Linear Regression (Estimation, Inference) 2 Special Topics for Multiple

More information

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Moving average processes Autoregressive

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 2: Vector Data: Prediction Instructor: Yizhou Sun yzsun@cs.ucla.edu October 8, 2018 TA Office Hour Time Change Junheng Hao: Tuesday 1-3pm Yunsheng Bai: Thursday 1-3pm

More information

Alfredo A. Romero * College of William and Mary

Alfredo A. Romero * College of William and Mary A Note on the Use of in Model Selection Alfredo A. Romero * College of William and Mary College of William and Mary Department of Economics Working Paper Number 6 October 007 * Alfredo A. Romero is a Visiting

More information

Day 4: Shrinkage Estimators

Day 4: Shrinkage Estimators Day 4: Shrinkage Estimators Kenneth Benoit Data Mining and Statistical Learning March 9, 2015 n versus p (aka k) Classical regression framework: n > p. Without this inequality, the OLS coefficients have

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

Forecast comparison of principal component regression and principal covariate regression

Forecast comparison of principal component regression and principal covariate regression Forecast comparison of principal component regression and principal covariate regression Christiaan Heij, Patrick J.F. Groenen, Dick J. van Dijk Econometric Institute, Erasmus University Rotterdam Econometric

More information

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher Lecture 3 STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher Previous lectures What is machine learning? Objectives of machine learning Supervised and

More information

Machine Learning Linear Regression. Prof. Matteo Matteucci

Machine Learning Linear Regression. Prof. Matteo Matteucci Machine Learning Linear Regression Prof. Matteo Matteucci Outline 2 o Simple Linear Regression Model Least Squares Fit Measures of Fit Inference in Regression o Multi Variate Regession Model Least Squares

More information

MLR Model Selection. Author: Nicholas G Reich, Jeff Goldsmith. This material is part of the statsteachr project

MLR Model Selection. Author: Nicholas G Reich, Jeff Goldsmith. This material is part of the statsteachr project MLR Model Selection Author: Nicholas G Reich, Jeff Goldsmith This material is part of the statsteachr project Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini June 9, 2018 1 / 21 Model selection Choosing the best model among a collection of models {M 1, M 2..., M N }. What is a good model? 1. fits the data well (model

More information

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina Direct Learning: Linear Regression Parametric learning We consider the core function in the prediction rule to be a parametric function. The most commonly used function is a linear function: squared loss:

More information

How the mean changes depends on the other variable. Plots can show what s happening...

How the mean changes depends on the other variable. Plots can show what s happening... Chapter 8 (continued) Section 8.2: Interaction models An interaction model includes one or several cross-product terms. Example: two predictors Y i = β 0 + β 1 x i1 + β 2 x i2 + β 12 x i1 x i2 + ɛ i. How

More information

9. Model Selection. statistical models. overview of model selection. information criteria. goodness-of-fit measures

9. Model Selection. statistical models. overview of model selection. information criteria. goodness-of-fit measures FE661 - Statistical Methods for Financial Engineering 9. Model Selection Jitkomut Songsiri statistical models overview of model selection information criteria goodness-of-fit measures 9-1 Statistical models

More information

Linear model selection and regularization

Linear model selection and regularization Linear model selection and regularization Problems with linear regression with least square 1. Prediction Accuracy: linear regression has low bias but suffer from high variance, especially when n p. It

More information

Linear Model Selection and Regularization

Linear Model Selection and Regularization Linear Model Selection and Regularization Recall the linear model Y = β 0 + β 1 X 1 + + β p X p + ɛ. In the lectures that follow, we consider some approaches for extending the linear model framework. In

More information

Dimension Reduction Methods

Dimension Reduction Methods Dimension Reduction Methods And Bayesian Machine Learning Marek Petrik 2/28 Previously in Machine Learning How to choose the right features if we have (too) many options Methods: 1. Subset selection 2.

More information

Statistical Learning with the Lasso, spring The Lasso

Statistical Learning with the Lasso, spring The Lasso Statistical Learning with the Lasso, spring 2017 1 Yeast: understanding basic life functions p=11,904 gene values n number of experiments ~ 10 Blomberg et al. 2003, 2010 The Lasso fmri brain scans function

More information

Lecture 2: Univariate Time Series

Lecture 2: Univariate Time Series Lecture 2: Univariate Time Series Analysis: Conditional and Unconditional Densities, Stationarity, ARMA Processes Prof. Massimo Guidolin 20192 Financial Econometrics Spring/Winter 2017 Overview Motivation:

More information

Linear Regression Models

Linear Regression Models Linear Regression Models Model Description and Model Parameters Modelling is a central theme in these notes. The idea is to develop and continuously improve a library of predictive models for hazards,

More information

Linear regression methods

Linear regression methods Linear regression methods Most of our intuition about statistical methods stem from linear regression. For observations i = 1,..., n, the model is Y i = p X ij β j + ε i, j=1 where Y i is the response

More information

Introduction to Statistical modeling: handout for Math 489/583

Introduction to Statistical modeling: handout for Math 489/583 Introduction to Statistical modeling: handout for Math 489/583 Statistical modeling occurs when we are trying to model some data using statistical tools. From the start, we recognize that no model is perfect

More information

Support Vector Machines. CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Support Vector Machines. CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Support Vector Machines CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 A Linearly Separable Problem Consider the binary classification

More information

Lecture 6: Univariate Volatility Modelling: ARCH and GARCH Models

Lecture 6: Univariate Volatility Modelling: ARCH and GARCH Models Lecture 6: Univariate Volatility Modelling: ARCH and GARCH Models Prof. Massimo Guidolin 019 Financial Econometrics Winter/Spring 018 Overview ARCH models and their limitations Generalized ARCH models

More information

Univariate ARIMA Models

Univariate ARIMA Models Univariate ARIMA Models ARIMA Model Building Steps: Identification: Using graphs, statistics, ACFs and PACFs, transformations, etc. to achieve stationary and tentatively identify patterns and model components.

More information

Data Mining Stat 588

Data Mining Stat 588 Data Mining Stat 588 Lecture 02: Linear Methods for Regression Department of Statistics & Biostatistics Rutgers University September 13 2011 Regression Problem Quantitative generic output variable Y. Generic

More information

LATVIAN GDP: TIME SERIES FORECASTING USING VECTOR AUTO REGRESSION

LATVIAN GDP: TIME SERIES FORECASTING USING VECTOR AUTO REGRESSION LATVIAN GDP: TIME SERIES FORECASTING USING VECTOR AUTO REGRESSION BEZRUCKO Aleksandrs, (LV) Abstract: The target goal of this work is to develop a methodology of forecasting Latvian GDP using ARMA (AutoRegressive-Moving-Average)

More information

COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017

COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017 COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University UNDERDETERMINED LINEAR EQUATIONS We

More information

SGN Advanced Signal Processing: Lecture 8 Parameter estimation for AR and MA models. Model order selection

SGN Advanced Signal Processing: Lecture 8 Parameter estimation for AR and MA models. Model order selection SG 21006 Advanced Signal Processing: Lecture 8 Parameter estimation for AR and MA models. Model order selection Ioan Tabus Department of Signal Processing Tampere University of Technology Finland 1 / 28

More information

Analysis Methods for Supersaturated Design: Some Comparisons

Analysis Methods for Supersaturated Design: Some Comparisons Journal of Data Science 1(2003), 249-260 Analysis Methods for Supersaturated Design: Some Comparisons Runze Li 1 and Dennis K. J. Lin 2 The Pennsylvania State University Abstract: Supersaturated designs

More information

On Autoregressive Order Selection Criteria

On Autoregressive Order Selection Criteria On Autoregressive Order Selection Criteria Venus Khim-Sen Liew Faculty of Economics and Management, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia This version: 1 March 2004. Abstract This study

More information

Heteroskedasticity ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD

Heteroskedasticity ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD Heteroskedasticity ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD Introduction For pedagogical reasons, OLS is presented initially under strong simplifying assumptions. One of these is homoskedastic errors,

More information

Model comparison and selection

Model comparison and selection BS2 Statistical Inference, Lectures 9 and 10, Hilary Term 2008 March 2, 2008 Hypothesis testing Consider two alternative models M 1 = {f (x; θ), θ Θ 1 } and M 2 = {f (x; θ), θ Θ 2 } for a sample (X = x)

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Regularization: Ridge Regression and Lasso Week 14, Lecture 2

MA 575 Linear Models: Cedric E. Ginestet, Boston University Regularization: Ridge Regression and Lasso Week 14, Lecture 2 MA 575 Linear Models: Cedric E. Ginestet, Boston University Regularization: Ridge Regression and Lasso Week 14, Lecture 2 1 Ridge Regression Ridge regression and the Lasso are two forms of regularized

More information

Variable Selection in Restricted Linear Regression Models. Y. Tuaç 1 and O. Arslan 1

Variable Selection in Restricted Linear Regression Models. Y. Tuaç 1 and O. Arslan 1 Variable Selection in Restricted Linear Regression Models Y. Tuaç 1 and O. Arslan 1 Ankara University, Faculty of Science, Department of Statistics, 06100 Ankara/Turkey ytuac@ankara.edu.tr, oarslan@ankara.edu.tr

More information

10. Alternative case influence statistics

10. Alternative case influence statistics 10. Alternative case influence statistics a. Alternative to D i : dffits i (and others) b. Alternative to studres i : externally-studentized residual c. Suggestion: use whatever is convenient with the

More information

1 Introduction. 2 AIC versus SBIC. Erik Swanson Cori Saviano Li Zha Final Project

1 Introduction. 2 AIC versus SBIC. Erik Swanson Cori Saviano Li Zha Final Project Erik Swanson Cori Saviano Li Zha Final Project 1 Introduction In analyzing time series data, we are posed with the question of how past events influences the current situation. In order to determine this,

More information

Consistent high-dimensional Bayesian variable selection via penalized credible regions

Consistent high-dimensional Bayesian variable selection via penalized credible regions Consistent high-dimensional Bayesian variable selection via penalized credible regions Howard Bondell bondell@stat.ncsu.edu Joint work with Brian Reich Howard Bondell p. 1 Outline High-Dimensional Variable

More information

Variable Selection under Measurement Error: Comparing the Performance of Subset Selection and Shrinkage Methods

Variable Selection under Measurement Error: Comparing the Performance of Subset Selection and Shrinkage Methods Variable Selection under Measurement Error: Comparing the Performance of Subset Selection and Shrinkage Methods Ellen Sasahara Bachelor s Thesis Supervisor: Prof. Dr. Thomas Augustin Department of Statistics

More information

A Modern Look at Classical Multivariate Techniques

A Modern Look at Classical Multivariate Techniques A Modern Look at Classical Multivariate Techniques Yoonkyung Lee Department of Statistics The Ohio State University March 16-20, 2015 The 13th School of Probability and Statistics CIMAT, Guanajuato, Mexico

More information

Introduction to Machine Learning and Cross-Validation

Introduction to Machine Learning and Cross-Validation Introduction to Machine Learning and Cross-Validation Jonathan Hersh 1 February 27, 2019 J.Hersh (Chapman ) Intro & CV February 27, 2019 1 / 29 Plan 1 Introduction 2 Preliminary Terminology 3 Bias-Variance

More information

A Survey of L 1. Regression. Céline Cunen, 20/10/2014. Vidaurre, Bielza and Larranaga (2013)

A Survey of L 1. Regression. Céline Cunen, 20/10/2014. Vidaurre, Bielza and Larranaga (2013) A Survey of L 1 Regression Vidaurre, Bielza and Larranaga (2013) Céline Cunen, 20/10/2014 Outline of article 1.Introduction 2.The Lasso for Linear Regression a) Notation and Main Concepts b) Statistical

More information

Multiple Regression Analysis: Inference ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD

Multiple Regression Analysis: Inference ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD Multiple Regression Analysis: Inference ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD Introduction When you perform statistical inference, you are primarily doing one of two things: Estimating the boundaries

More information

Regression I: Mean Squared Error and Measuring Quality of Fit

Regression I: Mean Squared Error and Measuring Quality of Fit Regression I: Mean Squared Error and Measuring Quality of Fit -Applied Multivariate Analysis- Lecturer: Darren Homrighausen, PhD 1 The Setup Suppose there is a scientific problem we are interested in solving

More information

Averaging Estimators for Regressions with a Possible Structural Break

Averaging Estimators for Regressions with a Possible Structural Break Averaging Estimators for Regressions with a Possible Structural Break Bruce E. Hansen University of Wisconsin y www.ssc.wisc.edu/~bhansen September 2007 Preliminary Abstract This paper investigates selection

More information

Advanced Econometrics

Advanced Econometrics Advanced Econometrics Marco Sunder Nov 04 2010 Marco Sunder Advanced Econometrics 1/ 25 Contents 1 2 3 Marco Sunder Advanced Econometrics 2/ 25 Music Marco Sunder Advanced Econometrics 3/ 25 Music Marco

More information

Optimizing forecasts for inflation and interest rates by time-series model averaging

Optimizing forecasts for inflation and interest rates by time-series model averaging Optimizing forecasts for inflation and interest rates by time-series model averaging Presented at the ISF 2008, Nice 1 Introduction 2 The rival prediction models 3 Prediction horse race 4 Parametric bootstrap

More information

Theorems. Least squares regression

Theorems. Least squares regression Theorems In this assignment we are trying to classify AML and ALL samples by use of penalized logistic regression. Before we indulge on the adventure of classification we should first explain the most

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Prediction Instructor: Yizhou Sun yzsun@ccs.neu.edu September 14, 2014 Today s Schedule Course Project Introduction Linear Regression Model Decision Tree 2 Methods

More information

Week 5 Quantitative Analysis of Financial Markets Modeling and Forecasting Trend

Week 5 Quantitative Analysis of Financial Markets Modeling and Forecasting Trend Week 5 Quantitative Analysis of Financial Markets Modeling and Forecasting Trend Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 :

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Vector Data: Clustering: Part II Instructor: Yizhou Sun yzsun@cs.ucla.edu May 3, 2017 Methods to Learn: Last Lecture Classification Clustering Vector Data Text Data Recommender

More information

High-dimensional regression modeling

High-dimensional regression modeling High-dimensional regression modeling David Causeur Department of Statistics and Computer Science Agrocampus Ouest IRMAR CNRS UMR 6625 http://www.agrocampus-ouest.fr/math/causeur/ Course objectives Making

More information

Shrinkage regression

Shrinkage regression Shrinkage regression Rolf Sundberg Volume 4, pp 1994 1998 in Encyclopedia of Environmetrics (ISBN 0471 899976) Edited by Abdel H. El-Shaarawi and Walter W. Piegorsch John Wiley & Sons, Ltd, Chichester,

More information

Nonconcave Penalized Likelihood with A Diverging Number of Parameters

Nonconcave Penalized Likelihood with A Diverging Number of Parameters Nonconcave Penalized Likelihood with A Diverging Number of Parameters Jianqing Fan and Heng Peng Presenter: Jiale Xu March 12, 2010 Jianqing Fan and Heng Peng Presenter: JialeNonconcave Xu () Penalized

More information

Model Choice. Hoff Chapter 9, Clyde & George Model Uncertainty StatSci, Hoeting et al BMA StatSci. October 27, 2015

Model Choice. Hoff Chapter 9, Clyde & George Model Uncertainty StatSci, Hoeting et al BMA StatSci. October 27, 2015 Model Choice Hoff Chapter 9, Clyde & George Model Uncertainty StatSci, Hoeting et al BMA StatSci October 27, 2015 Topics Variable Selection / Model Choice Stepwise Methods Model Selection Criteria Model

More information

Vector Autoregressive Model. Vector Autoregressions II. Estimation of Vector Autoregressions II. Estimation of Vector Autoregressions I.

Vector Autoregressive Model. Vector Autoregressions II. Estimation of Vector Autoregressions II. Estimation of Vector Autoregressions I. Vector Autoregressive Model Vector Autoregressions II Empirical Macroeconomics - Lect 2 Dr. Ana Beatriz Galvao Queen Mary University of London January 2012 A VAR(p) model of the m 1 vector of time series

More information

A NOTE ON THE SELECTION OF TIME SERIES MODELS. June 2001

A NOTE ON THE SELECTION OF TIME SERIES MODELS. June 2001 A NOTE ON THE SELECTION OF TIME SERIES MODELS Serena Ng Pierre Perron June 2001 Abstract We consider issues related to the order of an autoregression selected using information criteria. We study the sensitivity

More information

Least Squares Model Averaging. Bruce E. Hansen University of Wisconsin. January 2006 Revised: August 2006

Least Squares Model Averaging. Bruce E. Hansen University of Wisconsin. January 2006 Revised: August 2006 Least Squares Model Averaging Bruce E. Hansen University of Wisconsin January 2006 Revised: August 2006 Introduction This paper developes a model averaging estimator for linear regression. Model averaging

More information

Outlier detection in ARIMA and seasonal ARIMA models by. Bayesian Information Type Criteria

Outlier detection in ARIMA and seasonal ARIMA models by. Bayesian Information Type Criteria Outlier detection in ARIMA and seasonal ARIMA models by Bayesian Information Type Criteria Pedro Galeano and Daniel Peña Departamento de Estadística Universidad Carlos III de Madrid 1 Introduction The

More information

Python 데이터분석 보충자료. 윤형기

Python 데이터분석 보충자료. 윤형기 Python 데이터분석 보충자료 윤형기 (hky@openwith.net) 단순 / 다중회귀분석 Logistic Regression 회귀분석 REGRESSION Regression 개요 single numeric D.V. (value to be predicted) 과 one or more numeric I.V. (predictors) 간의관계식. "regression"

More information

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson Bayesian variable selection via penalized credible regions Brian Reich, NC State Joint work with Howard Bondell and Ander Wilson Brian Reich, NCSU Penalized credible regions 1 Motivation big p, small n

More information

Cointegrated VAR s. Eduardo Rossi University of Pavia. November Rossi Cointegrated VAR s Financial Econometrics / 56

Cointegrated VAR s. Eduardo Rossi University of Pavia. November Rossi Cointegrated VAR s Financial Econometrics / 56 Cointegrated VAR s Eduardo Rossi University of Pavia November 2013 Rossi Cointegrated VAR s Financial Econometrics - 2013 1 / 56 VAR y t = (y 1t,..., y nt ) is (n 1) vector. y t VAR(p): Φ(L)y t = ɛ t The

More information

Outline Introduction OLS Design of experiments Regression. Metamodeling. ME598/494 Lecture. Max Yi Ren

Outline Introduction OLS Design of experiments Regression. Metamodeling. ME598/494 Lecture. Max Yi Ren 1 / 34 Metamodeling ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 1, 2015 2 / 34 1. preliminaries 1.1 motivation 1.2 ordinary least square 1.3 information

More information

Measures of Fit from AR(p)

Measures of Fit from AR(p) Measures of Fit from AR(p) Residual Sum of Squared Errors Residual Mean Squared Error Root MSE (Standard Error of Regression) R-squared R-bar-squared = = T t e t SSR 1 2 ˆ = = T t e t p T s 1 2 2 ˆ 1 1

More information

Comparison of Stochastic Soybean Yield Response Functions to Phosphorus Fertilizer

Comparison of Stochastic Soybean Yield Response Functions to Phosphorus Fertilizer "Science Stays True Here" Journal of Mathematics and Statistical Science, Volume 016, 111 Science Signpost Publishing Comparison of Stochastic Soybean Yield Response Functions to Phosphorus Fertilizer

More information

Lecture 3. Linear Regression

Lecture 3. Linear Regression Lecture 3. Linear Regression COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Andrey Kan Copyright: University of Melbourne Weeks 2 to 8 inclusive Lecturer: Andrey Kan MS: Moscow, PhD:

More information

Automatic Forecasting

Automatic Forecasting Automatic Forecasting Summary The Automatic Forecasting procedure is designed to forecast future values of time series data. A time series consists of a set of sequential numeric data taken at equally

More information

General Linear Models. with General Linear Hypothesis Tests and Likelihood Ratio Tests

General Linear Models. with General Linear Hypothesis Tests and Likelihood Ratio Tests General Linear Models with General Linear Hypothesis Tests and Likelihood Ratio Tests 1 Background Linear combinations of Normals are Normal XX nn ~ NN μμ, ΣΣ AAAA ~ NN AAμμ, AAAAAA A sum of squared, standardized

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 Exam policy: This exam allows two one-page, two-sided cheat sheets; No other materials. Time: 2 hours. Be sure to write your name and

More information

CSC 578 Neural Networks and Deep Learning

CSC 578 Neural Networks and Deep Learning CSC 578 Neural Networks and Deep Learning Fall 2018/19 3. Improving Neural Networks (Some figures adapted from NNDL book) 1 Various Approaches to Improve Neural Networks 1. Cost functions Quadratic Cross

More information

Note: The primary reference for these notes is Enders (2004). An alternative and more technical treatment can be found in Hamilton (1994).

Note: The primary reference for these notes is Enders (2004). An alternative and more technical treatment can be found in Hamilton (1994). Chapter 4 Analysis of a Single Time Series Note: The primary reference for these notes is Enders (4). An alternative and more technical treatment can be found in Hamilton (994). Most data used in financial

More information

Lecture 14: Shrinkage

Lecture 14: Shrinkage Lecture 14: Shrinkage Reading: Section 6.2 STATS 202: Data mining and analysis October 27, 2017 1 / 19 Shrinkage methods The idea is to perform a linear regression, while regularizing or shrinking the

More information

The prediction of house price

The prediction of house price 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Tuning Parameter Selection in L1 Regularized Logistic Regression

Tuning Parameter Selection in L1 Regularized Logistic Regression Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2012 Tuning Parameter Selection in L1 Regularized Logistic Regression Shujing Shi Virginia Commonwealth University

More information

10. Time series regression and forecasting

10. Time series regression and forecasting 10. Time series regression and forecasting Key feature of this section: Analysis of data on a single entity observed at multiple points in time (time series data) Typical research questions: What is the

More information

Statistics 262: Intermediate Biostatistics Model selection

Statistics 262: Intermediate Biostatistics Model selection Statistics 262: Intermediate Biostatistics Model selection Jonathan Taylor & Kristin Cobb Statistics 262: Intermediate Biostatistics p.1/?? Today s class Model selection. Strategies for model selection.

More information

Regularization: Ridge Regression and the LASSO

Regularization: Ridge Regression and the LASSO Agenda Wednesday, November 29, 2006 Agenda Agenda 1 The Bias-Variance Tradeoff 2 Ridge Regression Solution to the l 2 problem Data Augmentation Approach Bayesian Interpretation The SVD and Ridge Regression

More information

Machine Learning. Regularization and Feature Selection. Fabio Vandin November 14, 2017

Machine Learning. Regularization and Feature Selection. Fabio Vandin November 14, 2017 Machine Learning Regularization and Feature Selection Fabio Vandin November 14, 2017 1 Regularized Loss Minimization Assume h is defined by a vector w = (w 1,..., w d ) T R d (e.g., linear models) Regularization

More information

Machine Learning for Economists: Part 4 Shrinkage and Sparsity

Machine Learning for Economists: Part 4 Shrinkage and Sparsity Machine Learning for Economists: Part 4 Shrinkage and Sparsity Michal Andrle International Monetary Fund Washington, D.C., October, 2018 Disclaimer #1: The views expressed herein are those of the authors

More information

Prediction of Bike Rental using Model Reuse Strategy

Prediction of Bike Rental using Model Reuse Strategy Prediction of Bike Rental using Model Reuse Strategy Arun Bala Subramaniyan and Rong Pan School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, USA. {bsarun, rong.pan}@asu.edu

More information

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra Worksheets for GCSE Mathematics Algebraic Expressions Mr Black 's Maths Resources for Teachers GCSE 1-9 Algebra Algebraic Expressions Worksheets Contents Differentiated Independent Learning Worksheets

More information

11. Further Issues in Using OLS with TS Data

11. Further Issues in Using OLS with TS Data 11. Further Issues in Using OLS with TS Data With TS, including lags of the dependent variable often allow us to fit much better the variation in y Exact distribution theory is rarely available in TS applications,

More information

Model Choice. Hoff Chapter 9. Dec 8, 2010

Model Choice. Hoff Chapter 9. Dec 8, 2010 Model Choice Hoff Chapter 9 Dec 8, 2010 Topics Variable Selection / Model Choice Stepwise Methods Model Selection Criteria Model Averaging Variable Selection Reasons for reducing the number of variables

More information

Business Statistics. Tommaso Proietti. Model Evaluation and Selection. DEF - Università di Roma 'Tor Vergata'

Business Statistics. Tommaso Proietti. Model Evaluation and Selection. DEF - Università di Roma 'Tor Vergata' Business Statistics Tommaso Proietti DEF - Università di Roma 'Tor Vergata' Model Evaluation and Selection Predictive Ability of a Model: Denition and Estimation We aim at achieving a balance between parsimony

More information

1. Introduction Over the last three decades a number of model selection criteria have been proposed, including AIC (Akaike, 1973), AICC (Hurvich & Tsa

1. Introduction Over the last three decades a number of model selection criteria have been proposed, including AIC (Akaike, 1973), AICC (Hurvich & Tsa On the Use of Marginal Likelihood in Model Selection Peide Shi Department of Probability and Statistics Peking University, Beijing 100871 P. R. China Chih-Ling Tsai Graduate School of Management University

More information

Variable Targeting and Reduction in High-Dimensional Vector Autoregressions

Variable Targeting and Reduction in High-Dimensional Vector Autoregressions Variable Targeting and Reduction in High-Dimensional Vector Autoregressions Tucker McElroy (U.S. Census Bureau) Frontiers in Forecasting February 21-23, 2018 1 / 22 Disclaimer This presentation is released

More information

Lecture 2 Machine Learning Review

Lecture 2 Machine Learning Review Lecture 2 Machine Learning Review CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago March 29, 2017 Things we will look at today Formal Setup for Supervised Learning Things

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Prediction Instructor: Yizhou Sun yzsun@ccs.neu.edu September 21, 2015 Announcements TA Monisha s office hour has changed to Thursdays 10-12pm, 462WVH (the same

More information

Standard Errors & Confidence Intervals. N(0, I( β) 1 ), I( β) = [ 2 l(β, φ; y) β i β β= β j

Standard Errors & Confidence Intervals. N(0, I( β) 1 ), I( β) = [ 2 l(β, φ; y) β i β β= β j Standard Errors & Confidence Intervals β β asy N(0, I( β) 1 ), where I( β) = [ 2 l(β, φ; y) ] β i β β= β j We can obtain asymptotic 100(1 α)% confidence intervals for β j using: β j ± Z 1 α/2 se( β j )

More information

Additive Outlier Detection in Seasonal ARIMA Models by a Modified Bayesian Information Criterion

Additive Outlier Detection in Seasonal ARIMA Models by a Modified Bayesian Information Criterion 13 Additive Outlier Detection in Seasonal ARIMA Models by a Modified Bayesian Information Criterion Pedro Galeano and Daniel Peña CONTENTS 13.1 Introduction... 317 13.2 Formulation of the Outlier Detection

More information

TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES

TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES COMPUTERS AND STRUCTURES, INC., FEBRUARY 2016 TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES Introduction This technical note

More information

Linear Models for Regression. Sargur Srihari

Linear Models for Regression. Sargur Srihari Linear Models for Regression Sargur srihari@cedar.buffalo.edu 1 Topics in Linear Regression What is regression? Polynomial Curve Fitting with Scalar input Linear Basis Function Models Maximum Likelihood

More information

Why Forecast Recruitment?

Why Forecast Recruitment? Predictability of Future Recruitment by Parametric and Non-parametric models : Case study of G. of Alaska walleye pollock. Yong-Woo Lee 1* Bernard A. Megrey 1 S. Allen Macklin 2 National Oceanic and Atmospheric

More information

Outside the Box: Using Synthetic Control Methods as a Forecasting Technique

Outside the Box: Using Synthetic Control Methods as a Forecasting Technique Outside the Box: Using Synthetic Control Methods as a Forecasting Technique Stefan Klößner (Saarland University) Gregor Pfeifer (University of Hohenheim) October 6, 2016 Abstract We introduce synthetic

More information