Lecture 14: Shrinkage

Size: px
Start display at page:

Download "Lecture 14: Shrinkage"

Transcription

1 Lecture 14: Shrinkage Reading: Section 6.2 STATS 202: Data mining and analysis October 27, / 19

2 Shrinkage methods The idea is to perform a linear regression, while regularizing or shrinking the coefficients ˆβ toward 0. 2 / 19

3 Shrinkage methods The idea is to perform a linear regression, while regularizing or shrinking the coefficients ˆβ toward 0. Why would shrunk coefficients be better? 2 / 19

4 Shrinkage methods The idea is to perform a linear regression, while regularizing or shrinking the coefficients ˆβ toward 0. Why would shrunk coefficients be better? This introduces bias, but may significantly decrease the variance of the estimates. If the latter effect is larger, this would decrease the test error. 2 / 19

5 Shrinkage methods The idea is to perform a linear regression, while regularizing or shrinking the coefficients ˆβ toward 0. Why would shrunk coefficients be better? This introduces bias, but may significantly decrease the variance of the estimates. If the latter effect is larger, this would decrease the test error. There are Bayesian motivations to do this: the prior tends to shrink the parameters. 2 / 19

6 Ridge regression Ridge regression solves the following optimization: min β n y i β 0 i=1 β j x i,j 2 + λ In blue, we have the RSS of the model (the loss). In red, we have the squared l 2 norm of β, or β 2 2 (the penalty or regularization). Note that the intercept is not penalized, just the slopes! The parameter λ is a tuning parameter. It modulates the importance of fit vs. shrinkage. β 2 j We find an estimate ˆβ λ R cross-validation. for many values of λ and then choose λ by 3 / 19

7 Bias-variance tradeoff In a simulation study, we compute bias, variance, and test error as a function of λ. Mean Squared Error Mean Squared Error e 01 1e+01 1e λ ˆβ R λ 2/ ˆβ 2 4 / 19

8 Ridge regression In least-squares linear regression, scaling the variables has no effect on the fit of the model: Y = β 0 + β 1 X 1 + β 2 X β p X p. Multiplying X 1 by c can be compensated by dividing ˆβ 1 by c, ie. after doing this we have the same RSS. 5 / 19

9 Ridge regression In least-squares linear regression, scaling the variables has no effect on the fit of the model: Y = β 0 + β 1 X 1 + β 2 X β p X p. Multiplying X 1 by c can be compensated by dividing ˆβ 1 by c, ie. after doing this we have the same RSS. In ridge regression, this is not true as the penalty term discourages large coefficients. 5 / 19

10 Ridge regression In least-squares linear regression, scaling the variables has no effect on the fit of the model: Y = β 0 + β 1 X 1 + β 2 X β p X p. Multiplying X 1 by c can be compensated by dividing ˆβ 1 by c, ie. after doing this we have the same RSS. In ridge regression, this is not true as the penalty term discourages large coefficients. In practice, what do we do? Scale each variable such that it has sample variance 1 before running the regression. This prevents penalizing some coefficients more than others. 5 / 19

11 Example. Ridge regression Ridge regression of default in the Credit dataset. Standardized Coefficients e 02 1e+00 1e+02 1e+04 Income Limit Rating Student Standardized Coefficients λ ˆβ R λ 2/ ˆβ 2 6 / 19

12 Selecting λ by cross-validation Cross Validation Error e 03 5e 02 5e 01 5e+00 λ Standardized Coefficients e 03 5e 02 5e 01 5e+00 λ 7 / 19

13 The Lasso Lasso regression solves the following optimization: min β n y i β 0 i=1 β j x i,j 2 + λ In blue, we have the RSS of the model (the loss). β j In red, we have the l 1 norm of β, or β 1 (the penalty or regularization). 8 / 19

14 The Lasso Lasso regression solves the following optimization: min β n y i β 0 i=1 β j x i,j 2 + λ In blue, we have the RSS of the model (the loss). β j In red, we have the l 1 norm of β, or β 1 (the penalty or regularization). Why would we use the Lasso instead of Ridge regression? 8 / 19

15 The Lasso Lasso regression solves the following optimization: min β n y i β 0 i=1 β j x i,j 2 + λ In blue, we have the RSS of the model (the loss). β j In red, we have the l 1 norm of β, or β 1 (the penalty or regularization). Why would we use the Lasso instead of Ridge regression? Ridge regression shrinks all the coefficients to a non-zero value. 8 / 19

16 The Lasso Lasso regression solves the following optimization: min β n y i β 0 i=1 β j x i,j 2 + λ In blue, we have the RSS of the model (the loss). β j In red, we have the l 1 norm of β, or β 1 (the penalty or regularization). Why would we use the Lasso instead of Ridge regression? Ridge regression shrinks all the coefficients to a non-zero value. The Lasso shrinks some of the coefficients all the way to zero. Alternative to best subset selection or stepwise selection! 8 / 19

17 Example. Ridge regression Ridge regression of default in the Credit dataset. Standardized Coefficients e 02 1e+00 1e+02 1e+04 Income Limit Rating Student Standardized Coefficients λ ˆβ R λ 2/ ˆβ 2 A lot of pesky small coefficients throughout the regularization path. 9 / 19

18 Example. The Lasso Lasso regression of default in the Credit dataset. Standardized Coefficients Standardized Coefficients Income Limit Rating Student λ ˆβ L λ 1/ ˆβ 1 Those coefficients are shrunk to zero. 10 / 19

19 An alternative formulation for regularization Ridge: for every λ, there is an s such that ˆβ λ R solves: 2 n minimize y i β 0 β j x i,j β subject to βj 2 < s. i=1 11 / 19

20 An alternative formulation for regularization Ridge: for every λ, there is an s such that ˆβ λ R solves: 2 n minimize y i β 0 β j x i,j β subject to βj 2 < s. i=1 Lasso: for every λ, there is an s such that ˆβ λ L solves: 2 n minimize y i β 0 β j x i,j β subject to β j < s. i=1 11 / 19

21 An alternative formulation for regularization Ridge: for every λ, there is an s such that ˆβ λ R solves: 2 n minimize y i β 0 β j x i,j β subject to βj 2 < s. i=1 Lasso: for every λ, there is an s such that ˆβ λ L solves: 2 n minimize y i β 0 β j x i,j β subject to β j < s. i=1 Best subset: n minimize y i β 0 β i=1 2 β j x i,j s.t. 1(β j 0) < s. 11 / 19

22 Visualizing Ridge and the Lasso with 2 predictors The Lasso Ridge Regression : p β j < s : p β2 j < s (Red ellipses are equal RSS contours) 12 / 19

23 When is the Lasso better than Ridge? Example 1. All coefficients β j are non-zero. Mean Squared Error Mean Squared Error λ R 2 on Training Data 13 / 19

24 When is the Lasso better than Ridge? Example 1. All coefficients β j are non-zero. Mean Squared Error Mean Squared Error λ R 2 on Training Data Bias, Variance, MSE. The Lasso ( ), Ridge ( ). 13 / 19

25 When is the Lasso better than Ridge? Example 1. All coefficients β j are non-zero. Mean Squared Error Mean Squared Error λ R 2 on Training Data Bias, Variance, MSE. The Lasso ( ), Ridge ( ). The bias is about the same for both methods. 13 / 19

26 When is the Lasso better than Ridge? Example 1. All coefficients β j are non-zero. Mean Squared Error Mean Squared Error λ R 2 on Training Data Bias, Variance, MSE. The Lasso ( ), Ridge ( ). The bias is about the same for both methods. The variance of Ridge regression is smaller, so is the MSE. 13 / 19

27 When is the Lasso better than Ridge? Example 1. All coefficients β j are non-zero. Mean Squared Error Mean Squared Error λ R 2 on Training Data Bias, Variance, MSE. The Lasso ( ), Ridge ( ). The bias is about the same for both methods. The variance of Ridge regression is smaller, so is the MSE. Rule of thumb: Lasso typically no better than ridge for prediction when most variables are useful for predition. 13 / 19

28 When is the Lasso better than Ridge? Example 2. Only 2 of 45 coefficients β j are non-zero. Mean Squared Error Mean Squared Error λ R 2 on Training Data 14 / 19

29 When is the Lasso better than Ridge? Example 2. Only 2 of 45 coefficients β j are non-zero. Mean Squared Error Mean Squared Error λ R 2 on Training Data Bias, Variance, MSE. The Lasso ( ), Ridge ( ). 14 / 19

30 When is the Lasso better than Ridge? Example 2. Only 2 of 45 coefficients β j are non-zero. Mean Squared Error Mean Squared Error λ R 2 on Training Data Bias, Variance, MSE. The Lasso ( ), Ridge ( ). The bias, variance, and MSE are lower for the Lasso. 14 / 19

31 When is the Lasso better than Ridge? Example 2. Only 2 of 45 coefficients β j are non-zero. Mean Squared Error Mean Squared Error λ R 2 on Training Data Bias, Variance, MSE. The Lasso ( ), Ridge ( ). The bias, variance, and MSE are lower for the Lasso. Rule of thumb: Lasso especially effective when most variables are not useful for prediction. 14 / 19

32 Choosing λ by cross-validation Cross Validation Error Standardized Coefficients ˆβ L λ 1/ ˆβ ˆβ L λ 1/ ˆβ 1 15 / 19

33 A very special case Suppose n = p and our matrix of predictors is X = I. 16 / 19

34 A very special case Suppose n = p and our matrix of predictors is X = I. Then, the objective function in Ridge regression can be simplified: (y j β j ) 2 + λ β 2 j 16 / 19

35 A very special case Suppose n = p and our matrix of predictors is X = I. Then, the objective function in Ridge regression can be simplified: (y j β j ) 2 + λ and we can minimize the terms that involve each β j separately: (y j β j ) 2 + λβj 2. β 2 j 16 / 19

36 A very special case Suppose n = p and our matrix of predictors is X = I. Then, the objective function in Ridge regression can be simplified: (y j β j ) 2 + λ and we can minimize the terms that involve each β j separately: It is easy to show that (y j β j ) 2 + λβ 2 j. ˆβ R j = y j 1 + λ. β 2 j 16 / 19

37 A very special case Similar story for the Lasso; the objective function is: (y j β j ) 2 + λ β j 17 / 19

38 A very special case Similar story for the Lasso; the objective function is: (y j β j ) 2 + λ β j and we can minimize the terms that involve each β j separately: (y j β j ) 2 + λ β j. 17 / 19

39 A very special case Similar story for the Lasso; the objective function is: (y j β j ) 2 + λ β j and we can minimize the terms that involve each β j separately: (y j β j ) 2 + λ β j. It is easy to show that y j λ/2 if y j > λ/2; ˆβ j L = y j + λ/2 if y j < λ/2; 0 if y j < λ/2. 17 / 19

40 Lasso and Ridge coefficients as a function of λ Coefficient Estimate Ridge Least Squares Coefficient Estimate Lasso Least Squares y j y j 18 / 19

41 Bayesian interpretations Ridge: ˆβ R is the posterior mean, with a Normal prior on β. Lasso: ˆβ L is the posterior mode, with a Laplace prior on β. g(βj) g(βj) β j β j 19 / 19

Linear model selection and regularization

Linear model selection and regularization Linear model selection and regularization Problems with linear regression with least square 1. Prediction Accuracy: linear regression has low bias but suffer from high variance, especially when n p. It

More information

STAT 462-Computational Data Analysis

STAT 462-Computational Data Analysis STAT 462-Computational Data Analysis Chapter 5- Part 2 Nasser Sadeghkhani a.sadeghkhani@queensu.ca October 2017 1 / 27 Outline Shrinkage Methods 1. Ridge Regression 2. Lasso Dimension Reduction Methods

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Dimension Reduction Methods

Dimension Reduction Methods Dimension Reduction Methods And Bayesian Machine Learning Marek Petrik 2/28 Previously in Machine Learning How to choose the right features if we have (too) many options Methods: 1. Subset selection 2.

More information

Linear Model Selection and Regularization

Linear Model Selection and Regularization Linear Model Selection and Regularization Chapter 6 October 18, 2016 Chapter 6 October 18, 2016 1 / 80 1 Subset selection 2 Shrinkage methods 3 Dimension reduction methods (using derived inputs) 4 High

More information

Linear Model Selection and Regularization

Linear Model Selection and Regularization Linear Model Selection and Regularization Recall the linear model Y = β 0 + β 1 X 1 + + β p X p + ɛ. In the lectures that follow, we consider some approaches for extending the linear model framework. In

More information

Data Mining Stat 588

Data Mining Stat 588 Data Mining Stat 588 Lecture 02: Linear Methods for Regression Department of Statistics & Biostatistics Rutgers University September 13 2011 Regression Problem Quantitative generic output variable Y. Generic

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

Statistics 203: Introduction to Regression and Analysis of Variance Penalized models

Statistics 203: Introduction to Regression and Analysis of Variance Penalized models Statistics 203: Introduction to Regression and Analysis of Variance Penalized models Jonathan Taylor - p. 1/15 Today s class Bias-Variance tradeoff. Penalized regression. Cross-validation. - p. 2/15 Bias-variance

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

IEOR165 Discussion Week 5

IEOR165 Discussion Week 5 IEOR165 Discussion Week 5 Sheng Liu University of California, Berkeley Feb 19, 2016 Outline 1 1st Homework 2 Revisit Maximum A Posterior 3 Regularization IEOR165 Discussion Sheng Liu 2 About 1st Homework

More information

A Modern Look at Classical Multivariate Techniques

A Modern Look at Classical Multivariate Techniques A Modern Look at Classical Multivariate Techniques Yoonkyung Lee Department of Statistics The Ohio State University March 16-20, 2015 The 13th School of Probability and Statistics CIMAT, Guanajuato, Mexico

More information

A Short Introduction to the Lasso Methodology

A Short Introduction to the Lasso Methodology A Short Introduction to the Lasso Methodology Michael Gutmann sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology March 9, 2016 Michael

More information

Lecture 6: Linear Regression (continued)

Lecture 6: Linear Regression (continued) Lecture 6: Linear Regression (continued) Reading: Sections 3.1-3.3 STATS 202: Data mining and analysis October 6, 2017 1 / 23 Multiple linear regression Y = β 0 + β 1 X 1 + + β p X p + ε Y ε N (0, σ) i.i.d.

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

MS-C1620 Statistical inference

MS-C1620 Statistical inference MS-C1620 Statistical inference 10 Linear regression III Joni Virta Department of Mathematics and Systems Analysis School of Science Aalto University Academic year 2018 2019 Period III - IV 1 / 32 Contents

More information

Machine Learning Linear Regression. Prof. Matteo Matteucci

Machine Learning Linear Regression. Prof. Matteo Matteucci Machine Learning Linear Regression Prof. Matteo Matteucci Outline 2 o Simple Linear Regression Model Least Squares Fit Measures of Fit Inference in Regression o Multi Variate Regession Model Least Squares

More information

Day 4: Shrinkage Estimators

Day 4: Shrinkage Estimators Day 4: Shrinkage Estimators Kenneth Benoit Data Mining and Statistical Learning March 9, 2015 n versus p (aka k) Classical regression framework: n > p. Without this inequality, the OLS coefficients have

More information

Homework 1: Solutions

Homework 1: Solutions Homework 1: Solutions Statistics 413 Fall 2017 Data Analysis: Note: All data analysis results are provided by Michael Rodgers 1. Baseball Data: (a) What are the most important features for predicting players

More information

Tutorial on Linear Regression

Tutorial on Linear Regression Tutorial on Linear Regression HY-539: Advanced Topics on Wireless Networks & Mobile Systems Prof. Maria Papadopouli Evripidis Tzamousis tzamusis@csd.uoc.gr Agenda 1. Simple linear regression 2. Multiple

More information

The prediction of house price

The prediction of house price 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Linear regression methods

Linear regression methods Linear regression methods Most of our intuition about statistical methods stem from linear regression. For observations i = 1,..., n, the model is Y i = p X ij β j + ε i, j=1 where Y i is the response

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Regularization: Ridge Regression and Lasso Week 14, Lecture 2

MA 575 Linear Models: Cedric E. Ginestet, Boston University Regularization: Ridge Regression and Lasso Week 14, Lecture 2 MA 575 Linear Models: Cedric E. Ginestet, Boston University Regularization: Ridge Regression and Lasso Week 14, Lecture 2 1 Ridge Regression Ridge regression and the Lasso are two forms of regularized

More information

COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 10

COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 10 COS53: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 0 MELISSA CARROLL, LINJIE LUO. BIAS-VARIANCE TRADE-OFF (CONTINUED FROM LAST LECTURE) If V = (X n, Y n )} are observed data, the linear regression problem

More information

Shrinkage Methods: Ridge and Lasso

Shrinkage Methods: Ridge and Lasso Shrinkage Methods: Ridge and Lasso Jonathan Hersh 1 Chapman University, Argyros School of Business hersh@chapman.edu February 27, 2019 J.Hersh (Chapman) Ridge & Lasso February 27, 2019 1 / 43 1 Intro and

More information

Prediction & Feature Selection in GLM

Prediction & Feature Selection in GLM Tarigan Statistical Consulting & Coaching statistical-coaching.ch Doctoral Program in Computer Science of the Universities of Fribourg, Geneva, Lausanne, Neuchâtel, Bern and the EPFL Hands-on Data Analysis

More information

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina Direct Learning: Linear Regression Parametric learning We consider the core function in the prediction rule to be a parametric function. The most commonly used function is a linear function: squared loss:

More information

LECTURE 10: LINEAR MODEL SELECTION PT. 1. October 16, 2017 SDS 293: Machine Learning

LECTURE 10: LINEAR MODEL SELECTION PT. 1. October 16, 2017 SDS 293: Machine Learning LECTURE 10: LINEAR MODEL SELECTION PT. 1 October 16, 2017 SDS 293: Machine Learning Outline Model selection: alternatives to least-squares Subset selection - Best subset - Stepwise selection (forward and

More information

Lecture Data Science

Lecture Data Science Web Science & Technologies University of Koblenz Landau, Germany Lecture Data Science Regression Analysis JProf. Dr. Last Time How to find parameter of a regression model Normal Equation Gradient Decent

More information

LINEAR REGRESSION, RIDGE, LASSO, SVR

LINEAR REGRESSION, RIDGE, LASSO, SVR LINEAR REGRESSION, RIDGE, LASSO, SVR Supervised Learning Katerina Tzompanaki Linear regression one feature* Price (y) What is the estimated price of a new house of area 30 m 2? 30 Area (x) *Also called

More information

Machine Learning for Economists: Part 4 Shrinkage and Sparsity

Machine Learning for Economists: Part 4 Shrinkage and Sparsity Machine Learning for Economists: Part 4 Shrinkage and Sparsity Michal Andrle International Monetary Fund Washington, D.C., October, 2018 Disclaimer #1: The views expressed herein are those of the authors

More information

Applied Machine Learning Annalisa Marsico

Applied Machine Learning Annalisa Marsico Applied Machine Learning Annalisa Marsico OWL RNA Bionformatics group Max Planck Institute for Molecular Genetics Free University of Berlin 22 April, SoSe 2015 Goals Feature Selection rather than Feature

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Data Analysis and Machine Learning Lecture 12: Multicollinearity, Bias-Variance Trade-off, Cross-validation and Shrinkage Methods.

Data Analysis and Machine Learning Lecture 12: Multicollinearity, Bias-Variance Trade-off, Cross-validation and Shrinkage Methods. TheThalesians Itiseasyforphilosopherstoberichiftheychoose Data Analysis and Machine Learning Lecture 12: Multicollinearity, Bias-Variance Trade-off, Cross-validation and Shrinkage Methods Ivan Zhdankin

More information

Linear Regression Models. Based on Chapter 3 of Hastie, Tibshirani and Friedman

Linear Regression Models. Based on Chapter 3 of Hastie, Tibshirani and Friedman Linear Regression Models Based on Chapter 3 of Hastie, ibshirani and Friedman Linear Regression Models Here the X s might be: p f ( X = " + " 0 j= 1 X j Raw predictor variables (continuous or coded-categorical

More information

Regularization: Ridge Regression and the LASSO

Regularization: Ridge Regression and the LASSO Agenda Wednesday, November 29, 2006 Agenda Agenda 1 The Bias-Variance Tradeoff 2 Ridge Regression Solution to the l 2 problem Data Augmentation Approach Bayesian Interpretation The SVD and Ridge Regression

More information

A Survey of L 1. Regression. Céline Cunen, 20/10/2014. Vidaurre, Bielza and Larranaga (2013)

A Survey of L 1. Regression. Céline Cunen, 20/10/2014. Vidaurre, Bielza and Larranaga (2013) A Survey of L 1 Regression Vidaurre, Bielza and Larranaga (2013) Céline Cunen, 20/10/2014 Outline of article 1.Introduction 2.The Lasso for Linear Regression a) Notation and Main Concepts b) Statistical

More information

ISyE 691 Data mining and analytics

ISyE 691 Data mining and analytics ISyE 691 Data mining and analytics Regression Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering Building)

More information

9/26/17. Ridge regression. What our model needs to do. Ridge Regression: L2 penalty. Ridge coefficients. Ridge coefficients

9/26/17. Ridge regression. What our model needs to do. Ridge Regression: L2 penalty. Ridge coefficients. Ridge coefficients What our model needs to do regression Usually, we are not just trying to explain observed data We want to uncover meaningful trends And predict future observations Our questions then are Is β" a good estimate

More information

Linear Regression 9/23/17. Simple linear regression. Advertising sales: Variance changes based on # of TVs. Advertising sales: Normal error?

Linear Regression 9/23/17. Simple linear regression. Advertising sales: Variance changes based on # of TVs. Advertising sales: Normal error? Simple linear regression Linear Regression Nicole Beckage y " = β % + β ' x " + ε so y* " = β+ % + β+ ' x " Method to assess and evaluate the correlation between two (continuous) variables. The slope of

More information

Lecture 5: A step back

Lecture 5: A step back Lecture 5: A step back Last time Last time we talked about a practical application of the shrinkage idea, introducing James-Stein estimation and its extension We saw our first connection between shrinkage

More information

MS&E 226. In-Class Midterm Examination Solutions Small Data October 20, 2015

MS&E 226. In-Class Midterm Examination Solutions Small Data October 20, 2015 MS&E 226 In-Class Midterm Examination Solutions Small Data October 20, 2015 PROBLEM 1. Alice uses ordinary least squares to fit a linear regression model on a dataset containing outcome data Y and covariates

More information

Iterative Selection Using Orthogonal Regression Techniques

Iterative Selection Using Orthogonal Regression Techniques Iterative Selection Using Orthogonal Regression Techniques Bradley Turnbull 1, Subhashis Ghosal 1 and Hao Helen Zhang 2 1 Department of Statistics, North Carolina State University, Raleigh, NC, USA 2 Department

More information

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Examination in: STK4030 Modern data analysis - FASIT Day of examination: Friday 13. Desember 2013. Examination hours: 14.30 18.30. This

More information

Least Absolute Shrinkage is Equivalent to Quadratic Penalization

Least Absolute Shrinkage is Equivalent to Quadratic Penalization Least Absolute Shrinkage is Equivalent to Quadratic Penalization Yves Grandvalet Heudiasyc, UMR CNRS 6599, Université de Technologie de Compiègne, BP 20.529, 60205 Compiègne Cedex, France Yves.Grandvalet@hds.utc.fr

More information

Ridge regression. Patrick Breheny. February 8. Penalized regression Ridge regression Bayesian interpretation

Ridge regression. Patrick Breheny. February 8. Penalized regression Ridge regression Bayesian interpretation Patrick Breheny February 8 Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 1/27 Introduction Basic idea Standardization Large-scale testing is, of course, a big area and we could keep talking

More information

6. Regularized linear regression

6. Regularized linear regression Foundations of Machine Learning École Centrale Paris Fall 2015 6. Regularized linear regression Chloé-Agathe Azencot Centre for Computational Biology, Mines ParisTech chloe agathe.azencott@mines paristech.fr

More information

A New Bayesian Variable Selection Method: The Bayesian Lasso with Pseudo Variables

A New Bayesian Variable Selection Method: The Bayesian Lasso with Pseudo Variables A New Bayesian Variable Selection Method: The Bayesian Lasso with Pseudo Variables Qi Tang (Joint work with Kam-Wah Tsui and Sijian Wang) Department of Statistics University of Wisconsin-Madison Feb. 8,

More information

IEOR 165 Lecture 7 1 Bias-Variance Tradeoff

IEOR 165 Lecture 7 1 Bias-Variance Tradeoff IEOR 165 Lecture 7 Bias-Variance Tradeoff 1 Bias-Variance Tradeoff Consider the case of parametric regression with β R, and suppose we would like to analyze the error of the estimate ˆβ in comparison to

More information

Variable Selection under Measurement Error: Comparing the Performance of Subset Selection and Shrinkage Methods

Variable Selection under Measurement Error: Comparing the Performance of Subset Selection and Shrinkage Methods Variable Selection under Measurement Error: Comparing the Performance of Subset Selection and Shrinkage Methods Ellen Sasahara Bachelor s Thesis Supervisor: Prof. Dr. Thomas Augustin Department of Statistics

More information

High-dimensional regression

High-dimensional regression High-dimensional regression Advanced Methods for Data Analysis 36-402/36-608) Spring 2014 1 Back to linear regression 1.1 Shortcomings Suppose that we are given outcome measurements y 1,... y n R, and

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

An economic application of machine learning: Nowcasting Thai exports using global financial market data and time-lag lasso

An economic application of machine learning: Nowcasting Thai exports using global financial market data and time-lag lasso An economic application of machine learning: Nowcasting Thai exports using global financial market data and time-lag lasso PIER Exchange Nov. 17, 2016 Thammarak Moenjak What is machine learning? Wikipedia

More information

Penalized Regression

Penalized Regression Penalized Regression Deepayan Sarkar Penalized regression Another potential remedy for collinearity Decreases variability of estimated coefficients at the cost of introducing bias Also known as regularization

More information

COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017

COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017 COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University UNDERDETERMINED LINEAR EQUATIONS We

More information

Multiple (non) linear regression. Department of Computer Science, Czech Technical University in Prague

Multiple (non) linear regression. Department of Computer Science, Czech Technical University in Prague Multiple (non) linear regression Jiří Kléma Department of Computer Science, Czech Technical University in Prague Lecture based on ISLR book and its accompanying slides http://cw.felk.cvut.cz/wiki/courses/b4m36san/start

More information

Parameter Norm Penalties. Sargur N. Srihari

Parameter Norm Penalties. Sargur N. Srihari Parameter Norm Penalties Sargur N. srihari@cedar.buffalo.edu 1 Regularization Strategies 1. Parameter Norm Penalties 2. Norm Penalties as Constrained Optimization 3. Regularization and Underconstrained

More information

Lecture 6: Linear Regression

Lecture 6: Linear Regression Lecture 6: Linear Regression Reading: Sections 3.1-3 STATS 202: Data mining and analysis Jonathan Taylor, 10/5 Slide credits: Sergio Bacallado 1 / 30 Simple linear regression Model: y i = β 0 + β 1 x i

More information

Transportation Big Data Analytics

Transportation Big Data Analytics Transportation Big Data Analytics Regularization Xiqun (Michael) Chen College of Civil Engineering and Architecture Zhejiang University, Hangzhou, China Fall, 2016 Xiqun (Michael) Chen (Zhejiang University)

More information

Consistent high-dimensional Bayesian variable selection via penalized credible regions

Consistent high-dimensional Bayesian variable selection via penalized credible regions Consistent high-dimensional Bayesian variable selection via penalized credible regions Howard Bondell bondell@stat.ncsu.edu Joint work with Brian Reich Howard Bondell p. 1 Outline High-Dimensional Variable

More information

Linear Models: Comparing Variables. Stony Brook University CSE545, Fall 2017

Linear Models: Comparing Variables. Stony Brook University CSE545, Fall 2017 Linear Models: Comparing Variables Stony Brook University CSE545, Fall 2017 Statistical Preliminaries Random Variables Random Variables X: A mapping from Ω to ℝ that describes the question we care about

More information

Business Statistics. Tommaso Proietti. Model Evaluation and Selection. DEF - Università di Roma 'Tor Vergata'

Business Statistics. Tommaso Proietti. Model Evaluation and Selection. DEF - Università di Roma 'Tor Vergata' Business Statistics Tommaso Proietti DEF - Università di Roma 'Tor Vergata' Model Evaluation and Selection Predictive Ability of a Model: Denition and Estimation We aim at achieving a balance between parsimony

More information

Robust Variable Selection Methods for Grouped Data. Kristin Lee Seamon Lilly

Robust Variable Selection Methods for Grouped Data. Kristin Lee Seamon Lilly Robust Variable Selection Methods for Grouped Data by Kristin Lee Seamon Lilly A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree

More information

Stability and the elastic net

Stability and the elastic net Stability and the elastic net Patrick Breheny March 28 Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 1/32 Introduction Elastic Net Our last several lectures have concentrated on methods for

More information

Ratemaking application of Bayesian LASSO with conjugate hyperprior

Ratemaking application of Bayesian LASSO with conjugate hyperprior Ratemaking application of Bayesian LASSO with conjugate hyperprior Himchan Jeong and Emiliano A. Valdez University of Connecticut Actuarial Science Seminar Department of Mathematics University of Illinois

More information

Lecture 6: Methods for high-dimensional problems

Lecture 6: Methods for high-dimensional problems Lecture 6: Methods for high-dimensional problems Hector Corrada Bravo and Rafael A. Irizarry March, 2010 In this Section we will discuss methods where data lies on high-dimensional spaces. In particular,

More information

Ridge Regression: Regulating overfitting when using many features. Training, true, & test error vs. model complexity. CSE 446: Machine Learning

Ridge Regression: Regulating overfitting when using many features. Training, true, & test error vs. model complexity. CSE 446: Machine Learning Ridge Regression: Regulating overfitting when using many features Emily Fox University of Washington January 3, 207 Training, true, & test error vs. model complexity Overfitting if: Error y Model complexity

More information

Biostatistics Advanced Methods in Biostatistics IV

Biostatistics Advanced Methods in Biostatistics IV Biostatistics 140.754 Advanced Methods in Biostatistics IV Jeffrey Leek Assistant Professor Department of Biostatistics jleek@jhsph.edu Lecture 12 1 / 36 Tip + Paper Tip: As a statistician the results

More information

PENALIZED PRINCIPAL COMPONENT REGRESSION. Ayanna Byrd. (Under the direction of Cheolwoo Park) Abstract

PENALIZED PRINCIPAL COMPONENT REGRESSION. Ayanna Byrd. (Under the direction of Cheolwoo Park) Abstract PENALIZED PRINCIPAL COMPONENT REGRESSION by Ayanna Byrd (Under the direction of Cheolwoo Park) Abstract When using linear regression problems, an unbiased estimate is produced by the Ordinary Least Squares.

More information

arxiv: v3 [stat.ml] 14 Apr 2016

arxiv: v3 [stat.ml] 14 Apr 2016 arxiv:1307.0048v3 [stat.ml] 14 Apr 2016 Simple one-pass algorithm for penalized linear regression with cross-validation on MapReduce Kun Yang April 15, 2016 Abstract In this paper, we propose a one-pass

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Supervised Learning: Regression I Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com Some of the

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 http://intelligentoptimization.org/lionbook Roberto Battiti

More information

MSA220/MVE440 Statistical Learning for Big Data

MSA220/MVE440 Statistical Learning for Big Data MSA220/MVE440 Statistical Learning for Big Data Lecture 7/8 - High-dimensional modeling part 1 Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology Classification

More information

High-dimensional regression modeling

High-dimensional regression modeling High-dimensional regression modeling David Causeur Department of Statistics and Computer Science Agrocampus Ouest IRMAR CNRS UMR 6625 http://www.agrocampus-ouest.fr/math/causeur/ Course objectives Making

More information

The Adaptive Lasso and Its Oracle Properties Hui Zou (2006), JASA

The Adaptive Lasso and Its Oracle Properties Hui Zou (2006), JASA The Adaptive Lasso and Its Oracle Properties Hui Zou (2006), JASA Presented by Dongjun Chung March 12, 2010 Introduction Definition Oracle Properties Computations Relationship: Nonnegative Garrote Extensions:

More information

Chapter 3. Linear Models for Regression

Chapter 3. Linear Models for Regression Chapter 3. Linear Models for Regression Wei Pan Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 Email: weip@biostat.umn.edu PubH 7475/8475 c Wei Pan Linear

More information

ESL Chap3. Some extensions of lasso

ESL Chap3. Some extensions of lasso ESL Chap3 Some extensions of lasso 1 Outline Consistency of lasso for model selection Adaptive lasso Elastic net Group lasso 2 Consistency of lasso for model selection A number of authors have studied

More information

Statistics 262: Intermediate Biostatistics Model selection

Statistics 262: Intermediate Biostatistics Model selection Statistics 262: Intermediate Biostatistics Model selection Jonathan Taylor & Kristin Cobb Statistics 262: Intermediate Biostatistics p.1/?? Today s class Model selection. Strategies for model selection.

More information

CS 4491/CS 7990 SPECIAL TOPICS IN BIOINFORMATICS

CS 4491/CS 7990 SPECIAL TOPICS IN BIOINFORMATICS CS 4491/CS 7990 SPECIAL TOPICS IN BIOINFORMATICS * Some contents are adapted from Dr. Hung Huang and Dr. Chengkai Li at UT Arlington Mingon Kang, Ph.D. Computer Science, Kennesaw State University Problems

More information

High-Dimensional Statistical Learning: Introduction

High-Dimensional Statistical Learning: Introduction Classical Statistics Biological Big Data Supervised and Unsupervised Learning High-Dimensional Statistical Learning: Introduction Ali Shojaie University of Washington http://faculty.washington.edu/ashojaie/

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Linear Regression Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1

More information

Stat 602 Exam 1 Spring 2017 (corrected version)

Stat 602 Exam 1 Spring 2017 (corrected version) Stat 602 Exam Spring 207 (corrected version) I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed This is a very long Exam. You surely won't be able to

More information

Statistical Methods for Data Mining

Statistical Methods for Data Mining Statistical Methods for Data Mining Kuangnan Fang Xiamen University Email: xmufkn@xmu.edu.cn Linear Model Selection and Regularization Recall the linear model Y = 0 + 1 X 1 + + p X p +. In the lectures

More information

Regularization and Variable Selection via the Elastic Net

Regularization and Variable Selection via the Elastic Net p. 1/1 Regularization and Variable Selection via the Elastic Net Hui Zou and Trevor Hastie Journal of Royal Statistical Society, B, 2005 Presenter: Minhua Chen, Nov. 07, 2008 p. 2/1 Agenda Introduction

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

Proteomics and Variable Selection

Proteomics and Variable Selection Proteomics and Variable Selection p. 1/55 Proteomics and Variable Selection Alex Lewin With thanks to Paul Kirk for some graphs Department of Epidemiology and Biostatistics, School of Public Health, Imperial

More information

On prediction. Jussi Hakanen Post-doctoral researcher. TIES445 Data mining (guest lecture)

On prediction. Jussi Hakanen Post-doctoral researcher. TIES445 Data mining (guest lecture) On prediction Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Learning outcomes To understand the basic principles of prediction To understand linear regression in prediction To be aware of

More information

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan Linear Regression CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis Regularization

More information

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan Linear Regression CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis

More information

MSG500/MVE190 Linear Models - Lecture 15

MSG500/MVE190 Linear Models - Lecture 15 MSG500/MVE190 Linear Models - Lecture 15 Rebecka Jörnsten Mathematical Statistics University of Gothenburg/Chalmers University of Technology December 13, 2012 1 Regularized regression In ordinary least

More information

Regression Shrinkage and Selection via the Lasso

Regression Shrinkage and Selection via the Lasso Regression Shrinkage and Selection via the Lasso ROBERT TIBSHIRANI, 1996 Presenter: Guiyun Feng April 27 () 1 / 20 Motivation Estimation in Linear Models: y = β T x + ɛ. data (x i, y i ), i = 1, 2,...,

More information

STAT 535 Lecture 5 November, 2018 Brief overview of Model Selection and Regularization c Marina Meilă

STAT 535 Lecture 5 November, 2018 Brief overview of Model Selection and Regularization c Marina Meilă STAT 535 Lecture 5 November, 2018 Brief overview of Model Selection and Regularization c Marina Meilă mmp@stat.washington.edu Reading: Murphy: BIC, AIC 8.4.2 (pp 255), SRM 6.5 (pp 204) Hastie, Tibshirani

More information

Learning with Sparsity Constraints

Learning with Sparsity Constraints Stanford 2010 Trevor Hastie, Stanford Statistics 1 Learning with Sparsity Constraints Trevor Hastie Stanford University recent joint work with Rahul Mazumder, Jerome Friedman and Rob Tibshirani earlier

More information

ECE521 lecture 4: 19 January Optimization, MLE, regularization

ECE521 lecture 4: 19 January Optimization, MLE, regularization ECE521 lecture 4: 19 January 2017 Optimization, MLE, regularization First four lectures Lectures 1 and 2: Intro to ML Probability review Types of loss functions and algorithms Lecture 3: KNN Convexity

More information

Bayesian performance

Bayesian performance Bayesian performance Frequentist properties of estimators refer to the performance of an estimator (say the posterior mean) over repeated experiments under the same conditions. The posterior distribution

More information

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson Bayesian variable selection via penalized credible regions Brian Reich, NC State Joint work with Howard Bondell and Ander Wilson Brian Reich, NCSU Penalized credible regions 1 Motivation big p, small n

More information

Machine Learning for Biomedical Engineering. Enrico Grisan

Machine Learning for Biomedical Engineering. Enrico Grisan Machine Learning for Biomedical Engineering Enrico Grisan enrico.grisan@dei.unipd.it Curse of dimensionality Why are more features bad? Redundant features (useless or confounding) Hard to interpret and

More information

Reduction of Model Complexity and the Treatment of Discrete Inputs in Computer Model Emulation

Reduction of Model Complexity and the Treatment of Discrete Inputs in Computer Model Emulation Reduction of Model Complexity and the Treatment of Discrete Inputs in Computer Model Emulation Curtis B. Storlie a a Los Alamos National Laboratory E-mail:storlie@lanl.gov Outline Reduction of Emulator

More information