SPH 302 THERMODYNAMICS

Size: px
Start display at page:

Download "SPH 302 THERMODYNAMICS"

Transcription

1 THERMODYNAMICS Nyongesa F. W., PhD. 1 Course Outline Lecture 1: Thermodynamic concepts & Zeroth Law Lecture 2: 1 ST Law Lecture 3: 2 ND Law Lecture 4: Entropy and 2 ND Law Lecture 5: Thermodynamic potentials Lecture 6: Phase Changes & Equlibria Nyongesa F. W., Ph.D 2 1

2 Prerequisites SPH 203 Calculus ODE Nyongesa F. W., Ph.D 3 Introduction & Overview Before industrial revolution, machinery were powered by animals 2

3 James watt Steam Engine 1 ST Engine (invented1790) to convert steam to mechanical work - lead to industrial revolution 3

4 Steam Engines of Industrial Revolution Steam powered cars 4

5 Steam powered Industries 5

6 By 19 th cent, a new science was born THERMODYNAMICS GOAL: Asses efficiency of devices that convert heat work e.g., heat engines Steam (Heat) Work output Nyongesa F. W., Ph.D 11 Nyongesa F. W., Ph.D 12 6

7 1 ST Diesel Engines -1930s Hybrids & gas turbines 7

8 15 What is Thermodynamics? Thermo Energy transfer in form of heat Dynamics Energy transfer in form of mechanical work Thermodynamics = science that govern energy conversions processes (heat work) Nyongesa F. W., Ph.D 16 8

9 Why Thermodynamics? It gives Laws that govern energy conversion processes Solar Chemical ENERGY Mechanical Thermal Energy 1 (heat) Relationship? Laws of Thermodynamics Energy 2 (work) Nyongesa F. W., Ph.D 17 Food (Energy) input Work out Waste Nyongesa F. W., Ph.D 18 9

10 waste W Nyongesa F. W., Ph.D 19 Heat pumps Work in Heat out Nyongesa F. W., Ph.D 20 10

11 Laws of Thermodynamics Energy conversions processes are governed by 4 Laws Zeroth Law: Gives condition for thermal equilibrium between 2 bodies Nyongesa F. W., Ph.D 21 First Law : Defines relationship between heat input (dq), work (dw) and internal energy (du) in a system dq = du + dw dw dq du Nyongesa F. W., Ph.D 22 11

12 No animal works continously without eating or wearing out 23 Second Law: (i) Defines efficiency of processes that convert heat work. i.e., No heat engine with 100% efficiency. If you eat, you must shit. No exhaust Engine Fuel Tank 24 12

13 Food input) Work out Impossible 25 (ii) Gives direction of natural occurring processes - Arrow of time Naturally processes proceed in a direction such as to increase Total Entropy (disorder) of system Disorder 26 13

14 Disorder 27 Third Law: Explains behaviour of systems as T absolute zero As T 0, Entropy change (ds) 0 system becomes orderly E.g., water ice Nyongesa F. W., Ph.D 28 14

15 Lecture 1 Thermodynamic Concepts & Zeroth Law Thermodynamic concepts Ideal Gas Laws Zeroth Law Nyongesa F. W., Ph.D 29 Objectives Define thermodynamics concepts Explain ideal gas Laws Explain Zeroth Law and its significance Nyongesa F. W., Ph.D 30 15

16 Thermodynamic concepts Energy conversion processes are studied using concept of thermodynamic system System Part of material universe that can be isolated completely from the rest for investigation SYSTEM + SURROUNDING = UNIVERSE sorrounding system boundary Nyongesa F. W., Ph.D 31 Types of systems 3 main types (a) Open systems:- Allows exchange of both heat and matter through the boundary. E.g. human digestive system. Nyongesa F. W., Ph.D 32 16

17 (b) Closed systems:- Allows only exchange of heat with surrounding E.g. refrigerator or Engine Nyongesa F. W., Ph.D 33 (c) Isolated System:- No heat or matter exchange occurs with surrounding. The walls are Adiabatic (Adiathermal) E.g. Vacuum flask. Nyongesa F. W., Ph.D 34 17

18 Thermodynamic Variables:- parameters that describe behavior or state of system i.e., P, T, V & composition ( ) Extensive variable:- Dependent on mass/size of the substance present in the system e.g., U, S, V etc. Intensive variable:- opposite of Extensive Nyongesa F. W., Ph.D 35 Heat:- Transfer of thermal energy between systems as result of temp difference Work:-Transfer of mechanical energy Both Heat & Work = ways of transferring energy Nyongesa F. W., Ph.D 36 18

19 Thermodynamic equilibrium:- When system experiences thermal, mechanical and chemical equilibrium S.T. state variables (P, V, T & ) are const. Nyongesa F. W., Ph.D 37 Working substance:- Fluid enclosed in the system that either receives or transfers energy to the surrounding in the form of heat or work. In Thermodynamics, we use ideal gas as the working substance. WHY? Nyongesa F. W., Ph.D 38 19

20 Activity Name the working substance in these systems Nyongesa F. W., Ph.D 39 Lecture Evaluation Explain the difference between Open & Closed system Adiabatic & Diathermal Wall Extensive & Intensive variables State function and state variable Heat and work Nyongesa F. W., Ph.D 40 20

21 1.2 Behavior of Ideal gases An ideal gas is an abstraction whose properties represent the limiting behavior of real gases at very low densities/high P. Assumptions in ideal gas (i) no intermolecular attractions S.T internal energy is entirely K.E Temp (ii) Molecules occupy negligible volume Nyongesa F. W., Ph.D 42 21

22 Behavior of ideal gas depends on T, P and V and obey gas laws: (a) Boyle s law: Compressing a gas increases P 1 P V PV C P PV = c V Nyongesa F. W., Ph.D 43 (b) Pressure law: Heating a gas increases P P T P T C (c) Charles Law: Heating a gas increases V -273 K P V T V T V T C -273 K Nyongesa F. W., Ph.D 44 T 22

23 (d) V No. of moles (n) of the gas i.e. V n Combining (a) to (d) gives PV = nrt Equation of state..(1.1) State of a system is given by Eqn of State Nyongesa F. W., Ph.D 45 P-V Diagram From PV = nrt Behaviour/processes of ideal gas is represented on PV diagrams P PV = c V Nyongesa F. W., Ph.D 46 23

24 Non Ideal (Real) Gas Characterized by Gas cannot be compressed to zero volume since gas molecules occupy finite volume and liquefy at low P Intermolecular attractions Nyongesa F. W., Ph.D 47 Eqn of state of real gas is given by P v a 2 V nb nrt Where a & b molecular attractions & v = molecular volume Nyongesa F. W., Ph.D 48 24

25 Activity State difference between Ideal & Nonideal gas Nyongesa F. W., Ph.D 49 Zeroth law of Thermodynamics A hot object looses heat to attain thermal equilibrium with surrounding Nyongesa F. W., Ph.D 50 25

26 Statement of Zeroth Law "If objects A and B are separately in thermal equilibrium with third object C, then A and B are in thermal equilibrium with each other. A C B 51 Significance of Zeroth Law Gives condition for thermal equilibrium between 2 bodies Introduces concept of temperature and how it is determined. Temperature = measure of degree of hotness Nyongesa F. W., Ph.D 52 26

27 Lecture -Evaluation 1. Explain an ideal gas and ideal gas laws 2. State Equation of State 3. State Zeroth Law and its significance Nyongesa F. W., Ph.D 53 27

SPH 302 THERMODYNAMICS

SPH 302 THERMODYNAMICS THERMODYNAMICS Nyongesa F. W., PhD. e-mail: fnyongesa@uonbi.ac.ke 1 Objectives Explain the Laws of thermodynamics & their significance Apply laws of thermodynamics to solve problems relating to energy

More information

Lecture Outline Chapter 18. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 18. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 18 Physics, 4 th Edition James S. Walker Chapter 18 The Laws of Thermodynamics Units of Chapter 18 The Zeroth Law of Thermodynamics The First Law of Thermodynamics Thermal Processes

More information

School of Chemical & Biological Engineering, Konkuk University

School of Chemical & Biological Engineering, Konkuk University School of Chemical & Biological Engineering, Konkuk University Chemistry is the science concerned with the composition, structure, and properties of matter, as well as the changes it undergoes during chemical

More information

Thermodynamic system is classified into the following three systems. (ii) Closed System It exchanges only energy (not matter) with surroundings.

Thermodynamic system is classified into the following three systems. (ii) Closed System It exchanges only energy (not matter) with surroundings. 1 P a g e The branch of physics which deals with the study of transformation of heat energy into other forms of energy and vice-versa. A thermodynamical system is said to be in thermal equilibrium when

More information

Chapter 1. The Properties of Gases Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 1. The Properties of Gases Fall Semester Physical Chemistry 1 (CHM2201) Chapter 1. The Properties of Gases 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The Perfect Gas 1.1 The states of gases 1.2 The gas laws Real Gases 1.3 Molecular interactions 1.4 The van

More information

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1 CHAPTER 7 ENTROPY S. I. Abdel-Khalik (2014) 1 ENTROPY The Clausius Inequality The Clausius inequality states that for for all cycles, reversible or irreversible, engines or refrigerators: For internally-reversible

More information

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian Chapter 20 Heat Engines, Entropy and the Second Law of Thermodynamics Dr. Armen Kocharian First Law of Thermodynamics Review Review: The first law states that a change in internal energy in a system can

More information

NOTE: Only CHANGE in internal energy matters

NOTE: Only CHANGE in internal energy matters The First Law of Thermodynamics The First Law of Thermodynamics is a special case of the Law of Conservation of Energy It takes into account changes in internal energy and energy transfers by heat and

More information

Physics 101: Lecture 28 Thermodynamics II

Physics 101: Lecture 28 Thermodynamics II Physics 101: Lecture 28 Thermodynamics II Final Today s lecture will cover Textbook Chapter 15.6-15.9 Check Final Exam Room Assignment! Bring ID! Be sure to check your gradebook! Physics 101: Lecture 28,

More information

Classification following properties of the system in Intensive and Extensive

Classification following properties of the system in Intensive and Extensive Unit I Classification following properties of the system in Intensive and Extensive Extensive : mass, weight, volume, potential energy, Kinetic energy, Internal energy, entropy, exergy, energy, magnetization

More information

The First Law of Thermodynamics

The First Law of Thermodynamics Chapter 19 The First Law of Thermodynamics PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 19 To represent

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 621 213. Department: Mechanical Subject Code: ME2202 Semester: III Subject Name: ENGG. THERMODYNAMICS UNIT-I Basic Concept and First Law 1. What do you understand

More information

THERMODYNAMICS b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium.

THERMODYNAMICS b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium. THERMODYNAMICS Important Points:. Zeroth Law of Thermodynamics: a) This law gives the concept of temperature. b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium.

More information

The need for something else: Entropy

The need for something else: Entropy Lecture 27 Goals: Ch. 18 ualitatively understand 2 nd Law of Thermodynamics Ch. 19 Understand the relationship between work and heat in a cycling process Follow the physics of basic heat engines and refrigerators.

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

CHEM1100 Summary Notes Module 2

CHEM1100 Summary Notes Module 2 CHEM1100 Summary Notes Module 2 Lecture 14 Introduction to Kinetic Theory & Ideal Gases What are Boyle s and Charles Laws? Boyle s Law the pressure of a given mass of an ideal gas is inversely proportional

More information

Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2)

Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2) 1. This question is about thermodynamic processes. (a) Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas.......... An ideal gas is held in a container by a moveable

More information

More Thermodynamics. Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes

More Thermodynamics. Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes More Thermodynamics Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes Carnot Cycle Efficiency of Engines Entropy More Thermodynamics 1 Specific Heat of Gases

More information

Section A Q1 Which of the following least resembles an ideal gas? A ammonia B helium C hydrogen D trichloromethane

Section A Q1 Which of the following least resembles an ideal gas? A ammonia B helium C hydrogen D trichloromethane Section A Q1 Which of the following least resembles an ideal gas? A ammonia B helium C hydrogen D trichloromethane Q2 The density of ice is 1.00 g cm 3. What is the volume of steam produced when 1.00 cm3

More information

Laws of Thermodynamics

Laws of Thermodynamics Laws of Thermodynamics The Three Laws of Thermodynamics - The first lawof thermodynamics, also called conservation of energy. We can use this knowledge to determine the amount of energy in a system, the

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

Chapter 1: INTRODUCTION AND BASIC CONCEPTS. Thermodynamics = Greek words : therme(heat) + dynamis(force or power)

Chapter 1: INTRODUCTION AND BASIC CONCEPTS. Thermodynamics = Greek words : therme(heat) + dynamis(force or power) Chapter 1: INTRODUCTION AND BASIC CONCEPTS 1.1 Basic concepts and definitions Thermodynamics = Greek words : therme(heat) + dynamis(force or power) Note that, force x displacement = work; power = work/time

More information

Common Terms, Definitions and Conversion Factors

Common Terms, Definitions and Conversion Factors 1 Common Terms, Definitions and Conversion Factors 1. Force: A force is a push or pull upon an object resulting from the object s interaction with another object. It is defined as Where F = m a F = Force

More information

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A 1. What is meant by thermodynamics system? (A/M 2006) Thermodynamics system is defined as any space or matter or group of matter

More information

MATTER AND HEAT. Chapter 4 OUTLINE GOALS

MATTER AND HEAT. Chapter 4 OUTLINE GOALS Chapter 4 MATTER AND HEAT OUTLINE Temperature and Heat 4.1 Temperature 4.2 Heat 4.3 Metabolic Energy Fluids 4.4 Density 4.5 Pressure 4.6 Buoyancy 4.7 The Gas Laws Kinetic Theory of Matter 4.8 Kinetic Theory

More information

CHAPTER 15 The Laws of Thermodynamics. Units

CHAPTER 15 The Laws of Thermodynamics. Units CHAPTER 15 The Laws of Thermodynamics Units The First Law of Thermodynamics Thermodynamic Processes and the First Law Human Metabolism and the First Law The Second Law of Thermodynamics Introduction Heat

More information

T s change via collisions at boundary (not mechanical interaction)

T s change via collisions at boundary (not mechanical interaction) Lecture 14 Interaction of 2 systems at different temperatures Irreversible processes: 2nd Law of Thermodynamics Chapter 19: Heat Engines and Refrigerators Thermal interactions T s change via collisions

More information

ER100/200, Pub Pol 184/284 Energy Toolkit III:

ER100/200, Pub Pol 184/284 Energy Toolkit III: ER100/200, Pub Pol 184/284 Energy Toolkit III: Energy Thermodynamics Lectures 6 & 7 9-15 & 17-2015 Outline What can the energy analyst do with Thermodynamics? 1 st Law of Thermodynamics 2 nd Law of Thermodynamics

More information

Chapter 20 The Second Law of Thermodynamics

Chapter 20 The Second Law of Thermodynamics Chapter 20 The Second Law of Thermodynamics When we previously studied the first law of thermodynamics, we observed how conservation of energy provided us with a relationship between U, Q, and W, namely

More information

T H E R M O D Y N A M I C S M E

T H E R M O D Y N A M I C S M E T H E R M O D Y N A M I C S M E THERMODYNAMICS CONTENTS 1 BASIC CONCEPTS IN THERMODYNAMICS 2 TEMPERATURE 3 WORK AND HEAT TRANSFER Thermodynamic system, surroundings, universe, system boundary Types of

More information

Thermodynamics is the Science of Energy and Entropy

Thermodynamics is the Science of Energy and Entropy Definition of Thermodynamics: Thermodynamics is the Science of Energy and Entropy - Some definitions. - The zeroth law. - Properties of pure substances. - Ideal gas law. - Entropy and the second law. Some

More information

Class 22 - Second Law of Thermodynamics and Entropy

Class 22 - Second Law of Thermodynamics and Entropy Class 22 - Second Law of Thermodynamics and Entropy The second law of thermodynamics The first law relates heat energy, work and the internal thermal energy of a system, and is essentially a statement

More information

Atkins / Paula Physical Chemistry, 8th Edition. Chapter 3. The Second Law

Atkins / Paula Physical Chemistry, 8th Edition. Chapter 3. The Second Law Atkins / Paula Physical Chemistry, 8th Edition Chapter 3. The Second Law The direction of spontaneous change 3.1 The dispersal of energy 3.2 Entropy 3.3 Entropy changes accompanying specific processes

More information

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter Chapter 6 The States of Matter Examples of Physical Properties of Three States of Matter 1 Three States of Matter Solids: Fixed shape, fixed volume, particles are held rigidly in place. Liquids: Variable

More information

S6. (a) State what is meant by an ideal gas...

S6. (a) State what is meant by an ideal gas... IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS TSOKOS CHAPTER 3 TEST REVIEW S1. Thermal energy is transferred through the glass windows of a house mainly by A. conduction. B. radiation.

More information

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Thermodynamics is that branch of science which deals with energy transfer A system may be closed, open or isolated system

More information

Boundary. Surroundings

Boundary. Surroundings Thermodynamics Thermodynamics describes the physics of matter using the concept of the thermodynamic system, a region of the universe that is under study. All quantities, such as pressure or mechanical

More information

Physics 101: Lecture 28 Thermodynamics II

Physics 101: Lecture 28 Thermodynamics II Physics 101: Lecture 28 Thermodynamics II Final Today s lecture will cover Textbook Chapter 15.6-15.9 Check Final Exam Room Assignment! Bring ID! Be sure to check your gradebook! (send me your net ID if

More information

General Physics I (aka PHYS 2013)

General Physics I (aka PHYS 2013) General Physics I (aka PHYS 2013) PROF. VANCHURIN (AKA VITALY) University of Minnesota, Duluth (aka UMD) OUTLINE CHAPTER 12 CHAPTER 19 REVIEW CHAPTER 12: FLUID MECHANICS Section 12.1: Density Section 12.2:

More information

Chapter 16 Thermodynamics

Chapter 16 Thermodynamics Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 16 Thermodynamics Thermodynamics Introduction Another area of physics is thermodynamics Continues with the principle of conservation of energy

More information

Chapter 19. Heat Engines

Chapter 19. Heat Engines Chapter 19 Heat Engines Thermo Processes Eint = Q+ W Adiabatic No heat exchanged Q = 0 and E int = W Isobaric Constant pressure W = P (V f V i ) and E int = Q + W Isochoric Constant Volume W = 0 and E

More information

Thermodynamic Third class Dr. Arkan J. Hadi

Thermodynamic Third class Dr. Arkan J. Hadi 5.5 ENTROPY CHANGES OF AN IDEAL GAS For one mole or a unit mass of fluid undergoing a mechanically reversible process in a closed system, the first law, Eq. (2.8), becomes: Differentiation of the defining

More information

Physics 111. Lecture 42 (Walker: 18.9) Entropy & Disorder Final Review. May 15, 2009

Physics 111. Lecture 42 (Walker: 18.9) Entropy & Disorder Final Review. May 15, 2009 Physics 111 Lecture 42 (Walker: 18.9) Entropy & Disorder Final Review May 15, 2009 Review Session: Today, 3:10-4:00, TH230. Final exam, Monday May 18, 10:45-1:15. Lecture 42 1/32 The Physics 111 Final

More information

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition MME 2010 METALLURGICAL THERMODYNAMICS II Fundamentals of Thermodynamics for Systems of Constant Composition Thermodynamics addresses two types of problems: 1- Computation of energy difference between two

More information

askiitians Class: 11 Subject: Chemistry Topic: Kinetic theory of gases No. of Questions: The unit of universal gas constant in S.I.

askiitians Class: 11 Subject: Chemistry Topic: Kinetic theory of gases No. of Questions: The unit of universal gas constant in S.I. Class: 11 Subject: Chemistry Topic: Kinetic theory of gases No. of Questions: 33 1. The unit of universal gas constant in S.I.unit is A. calorie per degree Celsius B. joule per mole C. joule/k mole C 2.

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

THE SECOND LAW OF THERMODYNAMICS. Professor Benjamin G. Levine CEM 182H Lecture 5

THE SECOND LAW OF THERMODYNAMICS. Professor Benjamin G. Levine CEM 182H Lecture 5 THE SECOND LAW OF THERMODYNAMICS Professor Benjamin G. Levine CEM 182H Lecture 5 Chemical Equilibrium N 2 + 3 H 2 2 NH 3 Chemical reactions go in both directions Systems started from any initial state

More information

Physics 101: Lecture 28 Thermodynamics II

Physics 101: Lecture 28 Thermodynamics II Physics 101: Lecture 28 Thermodynamics II Final Today s lecture will cover Textbook Chapter 15.6-15.9 Check Final Exam Room Assignment! Bring ID! Be sure to check your gradebook! Physics 101: Lecture 28,

More information

Concepts of Thermodynamics

Concepts of Thermodynamics Thermodynamics Industrial Revolution 1700-1800 Science of Thermodynamics Concepts of Thermodynamics Heavy Duty Work Horses Heat Engine Chapter 1 Relationship of Heat and Temperature to Energy and Work

More information

Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, Chapter 7 ENTROPY

Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, Chapter 7 ENTROPY Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 7 ENTROPY Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

THERMODYNAMICS. Zeroth law of thermodynamics. Isotherm

THERMODYNAMICS. Zeroth law of thermodynamics. Isotherm 12 THERMODYNAMICS Zeroth law of thermodynamics Two systems separately in thermal equilibrium with a third system are in thermal equilibrium with each other. Isotherm It is the graph connecting pressure

More information

Thermodynamics of Materials

Thermodynamics of Materials Thermodynamics of Materials 2nd Lecture 2008. 3. 5 (Wed.) Temperature Scale After thermometers were invented, different thermometers used different temperature scales. Standardization was necessary. Invent

More information

Spring_#8. Thermodynamics. Youngsuk Nam

Spring_#8. Thermodynamics. Youngsuk Nam Spring_#8 Thermodynamics Youngsuk Nam ysnam1@khu.ac.krac kr Ch.7: Entropy Apply the second law of thermodynamics to processes. Define a new property called entropy to quantify the secondlaw effects. Establish

More information

11/29/2017 IRREVERSIBLE PROCESSES. UNIT 2 Thermodynamics: Laws of thermodynamics, ideal gases, and kinetic theory

11/29/2017 IRREVERSIBLE PROCESSES. UNIT 2 Thermodynamics: Laws of thermodynamics, ideal gases, and kinetic theory 11/9/017 AP PHYSICS UNIT Thermodynamics: Laws of thermodynamics, ideal gases, and kinetic theory CHAPTER 13 SECOND LAW OF THERMODYNAMICS IRREVERSIBLE PROCESSES The U G of the water-earth system at the

More information

How to please the rulers of NPL-213 the geese

How to please the rulers of NPL-213 the geese http://www.walkingmountains. org/2015/03/reintroduction-ofthe-canada-goose/ How to please the rulers of NPL-213 the geese (Entropy and the 2 nd Law of Thermodynamics) Physics 116 2017 Tues. 3/21, Thurs

More information

5.60 Thermodynamics & Kinetics Spring 2008

5.60 Thermodynamics & Kinetics Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 5.60 Thermodynamics & Kinetics Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.60 Spring 2008 Lecture

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics he Second Law of hermodynamics So far We have studied the second law by looking at its results We don t have a thermodynamic property that can describe it In this chapter we will develop a mathematical

More information

10. Heat devices: heat engines and refrigerators (Hiroshi Matsuoka)

10. Heat devices: heat engines and refrigerators (Hiroshi Matsuoka) 10 Heat devices: heat engines and refrigerators (Hiroshi Matsuoka) 1 In this chapter we will discuss how heat devices work Heat devices convert heat into work or work into heat and include heat engines

More information

ENTROPY. Chapter 7. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Boles.

ENTROPY. Chapter 7. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Boles. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 7 ENTROPY Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required

More information

Basic Thermodynamics Module 1

Basic Thermodynamics Module 1 Basic Thermodynamics Module 1 Lecture 9: Thermodynamic Properties of Fluids Thermodynamic Properties of fluids Most useful properties: Properties like pressure, volume and temperature which can be measured

More information

Chapter 11 Heat Engines and The Second Law of Thermodynamics

Chapter 11 Heat Engines and The Second Law of Thermodynamics Chapter 11 Heat Engines and The Second Law of Thermodynamics Heat Engines Heat engines use a temperature difference involving a high temperature (T H ) and a low temperature (T C ) to do mechanical work.

More information

Chapter 20 Second Law of Thermodynamics. Copyright 2009 Pearson Education, Inc.

Chapter 20 Second Law of Thermodynamics. Copyright 2009 Pearson Education, Inc. Chapter 20 Second Law of Thermodynamics It is easy to produce thermal energy using work, but how does one produce work using thermal energy? This is a heat engine; mechanical energy can be obtained from

More information

S15--AP Phys Q4--Heat-Thermo Ch13_14_15 PRACTICE

S15--AP Phys Q4--Heat-Thermo Ch13_14_15 PRACTICE Name: Class: Date: S5--AP Phys Q4--Heat-Thermo Ch3_4_5 PRACTICE Multiple Choice Identify the choice that best completes the statement or answers the question.. Which of the following is a thermodynamic

More information

Chapter 19. First Law of Thermodynamics. Dr. Armen Kocharian, 04/04/05

Chapter 19. First Law of Thermodynamics. Dr. Armen Kocharian, 04/04/05 Chapter 19 First Law of Thermodynamics Dr. Armen Kocharian, 04/04/05 Heat and Work Work during volume change Work in Thermodynamics Work can be done on a deformable system, such as a gas Consider a cylinder

More information

Heat Engines and Refrigerators

Heat Engines and Refrigerators Lecture 26, Dec. 1 Goals: Chapter 19 Understand the relationship between work and heat in a cycling process Follow the physics of basic heat engines and refrigerators. Recognize some practical applications

More information

Heat What is heat? Work = 2. PdV 1

Heat What is heat? Work = 2. PdV 1 eat What is heat? eat (Q) is the flow or transfer of energy from one system to another Often referred to as heat flow or heat transfer Requires that one system must be at a higher temperature than the

More information

I.D The Second Law Q C

I.D The Second Law Q C I.D he Second Law he historical development of thermodynamics follows the industrial revolution in the 19 th century, and the advent of heat engines. It is interesting to see how such practical considerations

More information

Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011.

Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011. Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 7 ENTROPY Mehmet Kanoglu University of Gaziantep Copyright The McGraw-Hill

More information

FUNDAMENTALS OF THERMODYNAMICS AND HEAT TRANSFER

FUNDAMENTALS OF THERMODYNAMICS AND HEAT TRANSFER FUNDAMENTALS OF THERMODYNAMICS AND HEAT TRANSFER Lecture 2: Evaluating properties Pierwsza strona STATES OF THE MATTER Phase is a quantity is of matter that is homogeneous throughout in both chemical composition

More information

Part1B(Advanced Physics) Statistical Physics

Part1B(Advanced Physics) Statistical Physics PartB(Advanced Physics) Statistical Physics Course Overview: 6 Lectures: uesday, hursday only 2 problem sheets, Lecture overheads + handouts. Lent erm (mainly): Brief review of Classical hermodynamics:

More information

Chapter 10. Thermal Physics

Chapter 10. Thermal Physics Chapter 10 Thermal Physics Thermal Physics Thermal physics is the study of Temperature Heat How these affect matter Thermal Physics, cont Descriptions require definitions of temperature, heat and internal

More information

ME 300 Thermodynamics II

ME 300 Thermodynamics II ME 300 Thermodynamics II Prof. S. H. Frankel Fall 2006 ME 300 Thermodynamics II 1 Week 1 Introduction/Motivation Review Unsteady analysis NEW! ME 300 Thermodynamics II 2 Today s Outline Introductions/motivations

More information

Physics 5D PRACTICE FINAL EXAM Fall 2013

Physics 5D PRACTICE FINAL EXAM Fall 2013 Print your name: Physics 5D PRACTICE FINAL EXAM Fall 2013 Real Exam is Wednesday December 11 Thimann Lecture 3 4:00-7:00 pm Closed book exam two 8.5x11 sheets of notes ok Note: Avogadro s number N A =

More information

Chapter 12. The Laws of Thermodynamics

Chapter 12. The Laws of Thermodynamics Chapter 12 The Laws of Thermodynamics First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy of a system can be increased by Adding energy to the system Doing work

More information

Niraj Sir THERMODYNAMICS

Niraj Sir THERMODYNAMICS THERMODYNAMICS Thermal Equilibrium:- Two systems are said to be in thermal equilibrium with each other if they have the same temperature. Thermo dynamical system:- An assembly of large numbers of particles

More information

Existing Resources: Supplemental/reference for students with thermodynamics background and interests:

Existing Resources: Supplemental/reference for students with thermodynamics background and interests: Existing Resources: Masters, G. (1991) Introduction to Environmental Engineering and Science (Prentice Hall: NJ), pages 15 29. [ Masters_1991_Energy.pdf] Supplemental/reference for students with thermodynamics

More information

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law Units of Chapter 17 & 19 Temperature and the Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion Heat and Mechanical Work

More information

Outline Chapter 5 Matter and Energy Temperature. Measuring Temperature Temperature Temperature. Measuring Temperature

Outline Chapter 5 Matter and Energy Temperature. Measuring Temperature Temperature Temperature. Measuring Temperature Outline Chapter 5 Matter and Energy 5-1. Temperature 5-2. Heat 5-3. Metabolic Energy 5-4. Density 5-5. Pressure 5-6. Buoyancy 5-7. Gas Laws 5-8. Kinetic Theory of Gases 5-9. Molecular Motion and Temperature

More information

CH 15. Zeroth and First Law of Thermodynamics

CH 15. Zeroth and First Law of Thermodynamics CH 15 Zeroth and First Law of Thermodynamics THERMODYNAMICS Thermodynamics Branch of Physics that is built upon the fundamental laws that heat and work obey. Central Heating Objectives: After finishing

More information

Heat Machines (Chapters 18.6, 19)

Heat Machines (Chapters 18.6, 19) eat Machines (hapters 8.6, 9) eat machines eat engines eat pumps The Second Law of thermodynamics Entropy Ideal heat engines arnot cycle Other cycles: Brayton, Otto, Diesel eat Machines Description The

More information

Lecture Notes 2014March 13 on Thermodynamics A. First Law: based upon conservation of energy

Lecture Notes 2014March 13 on Thermodynamics A. First Law: based upon conservation of energy Dr. W. Pezzaglia Physics 8C, Spring 2014 Page 1 Lecture Notes 2014March 13 on Thermodynamics A. First Law: based upon conservation of energy 1. Work 1 Dr. W. Pezzaglia Physics 8C, Spring 2014 Page 2 (c)

More information

Some Fundamental Definitions:

Some Fundamental Definitions: Lecture 2. The GAS LAWS Some Fundamental Definitions: SYSTEM: the part of the universe being the subject of study 1 Some Fundamental Definitions: State of the System: condition of a system at any given

More information

Basic Concepts of Thermodynamics The science of Energy

Basic Concepts of Thermodynamics The science of Energy Thermodynamics Lecture Series Capturing the Lingo Assoc. Prof. Dr. Jaafar Jantan aka DR. JJ Applied Science Education Research Applied Science, UiTM, Shah Alam Deep Impact Mission: Flyby camera capturing

More information

is more suitable for a quantitative description of the deviation from ideal gas behaviour.

is more suitable for a quantitative description of the deviation from ideal gas behaviour. Real and ideal gases (1) Gases which obey gas laws or ideal gas equation ( PV nrt ) at all temperatures and pressures are called ideal or perfect gases. Almost all gases deviate from the ideal behaviour

More information

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name:

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name: Lesson 23 1. (10 pt) Write the equation for the thermal efficiency of a Carnot heat engine below: 1 L H 2. (10 pt) Can the thermal efficiency of an actual engine ever exceed that of an equivalent Carnot

More information

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Thermodynamics is that branch of science which deals with energy transfer A system may be closed, open or isolated system

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of Thermodynamics Reading Problems 7-1 7-3 7-88, 7-131, 7-135 7-6 7-10 8-24, 8-44, 8-46, 8-60, 8-73, 8-99, 8-128, 8-132, 8-1 8-10, 8-13 8-135, 8-148, 8-152, 8-166, 8-168, 8-189

More information

12 The Laws of Thermodynamics

12 The Laws of Thermodynamics June 14, 1998 12 The Laws of Thermodynamics Using Thermal Energy to do Work Understanding the laws of thermodynamics allows us to use thermal energy in a practical way. The first law of thermodynamics

More information

wb Thermodynamics 2 Lecture 9 Energy Conversion Systems

wb Thermodynamics 2 Lecture 9 Energy Conversion Systems wb1224 - Thermodynamics 2 Lecture 9 Energy Conversion Systems Piero Colonna, Lecturer Prepared with the help of Teus van der Stelt 8-12-2010 Delft University of Technology Challenge the future Content

More information

Chapter 13: Temperature, Kinetic Theory and Gas Laws

Chapter 13: Temperature, Kinetic Theory and Gas Laws Chapter 1: Temperature, Kinetic Theory and Gas Laws Zeroth Law of Thermodynamics (law of equilibrium): If objects A and B are separately in thermal equilibrium with a third object C, then A and B are in

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of hermodynamics Reading Problems 6-, 6-2, 6-7, 6-8, 6-6-8, 6-87, 7-7-0, 7-2, 7-3 7-39, 7-46, 7-6, 7-89, 7-, 7-22, 7-24, 7-30, 7-55, 7-58 Why do we need another law in thermodynamics?

More information

Ch10.4 Attractive Forces

Ch10.4 Attractive Forces Ch10.4 Attractive Forces Intermolecular Forces are the forces holding molecules to each other. Solids have strong forces Gases (vapor) have weak forces Intermolecular forces determine the phase of matter.

More information

CLAUSIUS INEQUALITY. PROOF: In Classroom

CLAUSIUS INEQUALITY. PROOF: In Classroom Chapter 7 ENTROPY CLAUSIUS INEQUALITY PROOF: In Classroom 2 RESULTS OF CLAUSIUS INEQUALITY For internally reversible cycles δq = 0 T int rev For irreversible cycles δq < 0 T irr A quantity whose cyclic

More information

Engineering Thermodynamics. Chapter 1. Introductory Concepts and Definition

Engineering Thermodynamics. Chapter 1. Introductory Concepts and Definition 1.1 Introduction Chapter 1 Introductory Concepts and Definition Thermodynamics may be defined as follows : Thermodynamics is an axiomatic science which deals with the relations among heat, work and properties

More information

Preview of Period 7: Applications of the Laws of Thermodynamics

Preview of Period 7: Applications of the Laws of Thermodynamics Preview of Period 7: Applications of the Laws of Thermodynamics 7.1 Conservation of Energy and the 1 st Law of Thermodynamics ow does conservation of energy relate to molecular motion? What is the 1 st

More information

Thermodynamics. 1.1 Introduction. Thermodynamics is a phenomenological description of properties of macroscopic systems in thermal equilibrium.

Thermodynamics. 1.1 Introduction. Thermodynamics is a phenomenological description of properties of macroscopic systems in thermal equilibrium. 1 hermodynamics 1.1 Introduction hermodynamics is a phenomenological description of properties of macroscopic systems in thermal equilibrium. Imagine yourself as a post-newtonian physicist intent on understanding

More information

Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW SVCET

Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW SVCET Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW 1. What do you understand by pure substance? A pure substance is defined as one that is homogeneous and invariable in chemical composition

More information

Chapter 2 Carnot Principle

Chapter 2 Carnot Principle Chapter 2 Carnot Principle 2.1 Temperature 2.1.1 Isothermal Process When two bodies are placed in thermal contact, the hotter body gives off heat to the colder body. As long as the temperatures are different,

More information

Tuesday April 18 Topics for this Lecture: Thermodynamics Kinetic Theory Ideal Gas Law Laws of Thermodynamics PV diagrams & state transitions

Tuesday April 18 Topics for this Lecture: Thermodynamics Kinetic Theory Ideal Gas Law Laws of Thermodynamics PV diagrams & state transitions Tuesday April 18 Topics for this Lecture: Thermodynamics Kinetic Theory Ideal Gas Law Laws of Thermodynamics PV diagrams & state transitions Assignment 14 due Friday Pre-class due 15min before class The

More information

Downloaded from

Downloaded from Chapter 12 (Thermodynamics) Multiple Choice Questions Single Correct Answer Type Q1. An ideal gas undergoes four different processes from the same initial state (figure). Four processes are adiabatic,

More information