Compressed Sensing - Near Optimal Recovery of Signals from Highly Incomplete Measurements

Size: px
Start display at page:

Download "Compressed Sensing - Near Optimal Recovery of Signals from Highly Incomplete Measurements"

Transcription

1 Compressed Sensing - Near Optimal Recovery of Signals from Highly Incomplete Measurements Wolfgang Dahmen Institut für Geometrie und Praktische Mathematik RWTH Aachen and IMI, University of Columbia, SC Joint work with Albert Cohen and Ron DeVore W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

2 Outline 1 Some Background/Motivation Why CS in TEM, STEM,...? Shannon Paradigm Sparsity - Image Compression 2 A New Paradigm The Objective 3 What does it have to offer? How to Measure Performance? The Maximal Sparsity Range Good Sensing Matrices Dependence on Norms The Role of Randomness Instance Optimality in Probability Instance Optimal Decoders in Probability 4 Questions/Diskussion W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

3 Why CS in TEM, STEM,...? Key Issue: Complex but information sparse signals sample them at possibly low rate while recovering essential information Are those sparse? W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

4 Why CS in TEM, STEM,...? Or are those sparse?... Symyx Technologies Inc. Isolation of M1 using Combinatorial Screening [001] SAED Pattern of Phase M1 a* b* h00; h 2n 0k0; k 2n a-glide b and b- glide a or 2 a 21.2 Å 1 screw b 26.6 Å along both a and b axes DeSanto et al., Topics in Catal. 23 (1-4), 23 (2003); Z. Krist 219, (2004). W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

5 Shannon Paradigm Classical model: bandlimited signals recovery requires sampling at twice the Nyquist rate...too much in many situations... But: what about such signals? how to exploit structure? sparse information content W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

6 Image Compression left: Original Pixel 8 Bit grey depth 384 KB with naiv storage right: compressed version ca. 3.5 % of origonal storage W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

7 Images Are just Functions Image histogram function f (x) = p χ (x) W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

8 The Haar-Wavelet a b = + Feinstruktur = Mittelung + Detail averaging profile φ(x) oscillation profile ψ(x) W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

9 Change of Bases: Fast Wavelet-Transform 2 J 1 X k=0 p J,k φ J,k (x) = 2 J 1 1 X k=0 p J 1,k φ J 1,k (x) 2 J 1 X 1 + d J 1,k ψ J 1,k (x) k=0 p J 1,k = 1 2 (p J,2k + p J,2k+1 ), d J 1,k = 1 2 (p J,2k p J,2k+1 ) T : p J d J p J p J 1 p J 2 p 1 p 0 p = T 1 d d J 1 d J 2 d 1 d 0 d l2 = f L2 W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

10 Back to the Images W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

11 Wavelet-Decomposition W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

12 The Principle Sample at highest level of resolution Transform image Quantize - retain 3%, say Transmit compressed data What if measurements are costly or... cause damage? W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

13 Could it Suffice to Sample at the Rate of Information Content? (Candes/Romberg/Tao) W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

14 A Principal Effect y l = 1 2π 2π 0 f (t)e ilt dt 1 N 1 f (2πj/N) e N }{{}} il2πj/n {{} j=0 =:x j =:φ l,j = (Φx) l Exact reconstruction: f = argmin { g 1 : ĝ(l) = y l, l k} W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

15 Sampling, Sparsity, etc. - The Setting Assumption: signal x R N is (quasi) sparse in some basis x = Mz, #suppz = k N to recover x allow for more general notions of measurements x y i = φ i (x) = φ i x, i = 1,..., n N try to keep n k N for which N, n, k is this possible while retaining the essential information of x? W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

16 The Model x R N, y i = φ i x + e i, i = 1,..., n, y = Φx + e N y e = n Φ T k k = card T x W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

17 Some Guiding Questions How to build efficient decoders? : y x! x What are good sensing matrices Φ? y e = n T N Φ k When x = Mz, z sparse, when is Φ = ΦM good too? k = card T x How to measure performance of CS? What got things started:... x = x for k-sparse x, k < n Candés/Romberg/Tao, Donoho, Gilbert/Strauss/Tropp, Tanner, Rice group, Needell/Vershynin,... W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

18 How to Measure Performance? Exact recovery of k-sparse signals: Σ k := {z R N : #supp (z) k} y = Φx, x Σ k (y) = x But real signals are rarely truly sparse! Compare x (y) lp with σ k (x) lp := inf z Σ k x z lp Instance Optimality: Best k-term approximation as a Benchmark Given l p, N, n, how large can we have k s.t. (Φ, ) with x (Φx) lp C 0 σ k (x) lp, x R N (IO(l p, k)) (1) Note: implies exact recovery of k-sparse signals! W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

19 The Maximal Sparsity Range THEOREM: Consider K := U(l N 1 ) = {x RN : x l1 1} inf (Φ, ) A n,n sup x (Φx) l2 C 0 max σ k(x) l2 x K x K k c 0 n/ log(n/n) Maximal sparsity range k c 0 n/ log(n/n) Gelfand widths: (Kashin, Gluskin/Garnaev) d n (K ) X := inf sup{ x X ; x K Y } Y :codim Y n Y Y K W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

20 Good Sensing Matrices - l 1 -Minimization Restricted Isometry Property - RIP(k, δ) (1 δ) x l2 Φx l2 (1 + δ) x l2, x Σ k THEOREM [CT]: l 1 -minimization RIP(3k, δ) implies (y) := argmin Φz=y z l1 σ = x (Φx) l2 < k (x) l1 k Questions: This is not quite instance optimality in l 2 Given n, N, for how large k can RIP(3k, δ) hold? W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

21 A Geometric Explanation - n = 1, N = 2 {x : Φx = y} W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

22 A Geometric Explanation - n = 1, N = 2 {x : Φx = y} W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

23 Caution: The Choice of the Norm Matters THEOREM: The case X = l N 1 : RIP(3k, δ), δ < δ 0 implies that l 1 -minimization is instance optimal of order k in l 1. THEOREM: The case X = l N 2 : No matter how Φ and are chosen (Φ, ) is IO(l 2, 1) = n an. IO(l 2, k) does not seem to be a viable concept However... W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

24 Which Matrices satisfy RIP for large k? Random Matrices All constructions for the optimal range k < n/ log(n/n) involve random matrices 1 Gaussian matrices: Φ i,j = N (0, 1 n ) are i.i.d. Gaussian variables of variance 1/n 2 Bernoulli matrices: Φ i,j = ±1 n are i.i.d. Bernoulli variables 3 Uniformly distributed vectors on S n 1 relaxed concept: Instance Optimality in Probability (IOP) W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

25 Concentration of Measure Property Φ = Φ(ω): n N matrices on probability space (Ω, ρ) CoMP : For any x R N, δ (0, 1], ρ {ω : Φ(ω)x 2 l2 x 2 } l2 δ x 2 l2 1 be cnδ2 Note: M orthogonal {Φ(ω)M} also satisfy CoMP THEOREM: CoMP implies RIP(k, δ) for any δ (0, 1] with high probability when k c 0 n/ log(n/n) THEOREM: CoMP holds for sub-gaussian distributions as well as uniform vectors on the unit sphere W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

26 Instance Optimal Decoders in Probability The following are instance optimal in l 2 in probability for CoMP families of random matrices: l 1 -minimization (DeVore/Petrova/Wojtaszczyk) Greedy-thresholding algorithms (Cohen/D./DeVore, Needell/Tropp) W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

27 What to do with it? Some questions: CS without denoising seems to be infeasible Does it pay to work in reciprocal space? sparse phase retrieval? Are defects sparse? Are there other data dependent dictionaries for which TEM/STEM images are sparse signals? is random beam placement an option? W. Dahmen (RWTH Aachen) Compressed Sensing Feb. 22, / 38

Compressed Sensing: Lecture I. Ronald DeVore

Compressed Sensing: Lecture I. Ronald DeVore Compressed Sensing: Lecture I Ronald DeVore Motivation Compressed Sensing is a new paradigm for signal/image/function acquisition Motivation Compressed Sensing is a new paradigm for signal/image/function

More information

Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery

Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery Anna C. Gilbert Department of Mathematics University of Michigan Connection between... Sparse Approximation and Compressed

More information

An Introduction to Sparse Approximation

An Introduction to Sparse Approximation An Introduction to Sparse Approximation Anna C. Gilbert Department of Mathematics University of Michigan Basic image/signal/data compression: transform coding Approximate signals sparsely Compress images,

More information

Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery

Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery Jorge F. Silva and Eduardo Pavez Department of Electrical Engineering Information and Decision Systems Group Universidad

More information

Optimisation Combinatoire et Convexe.

Optimisation Combinatoire et Convexe. Optimisation Combinatoire et Convexe. Low complexity models, l 1 penalties. A. d Aspremont. M1 ENS. 1/36 Today Sparsity, low complexity models. l 1 -recovery results: three approaches. Extensions: matrix

More information

AN INTRODUCTION TO COMPRESSIVE SENSING

AN INTRODUCTION TO COMPRESSIVE SENSING AN INTRODUCTION TO COMPRESSIVE SENSING Rodrigo B. Platte School of Mathematical and Statistical Sciences APM/EEE598 Reverse Engineering of Complex Dynamical Networks OUTLINE 1 INTRODUCTION 2 INCOHERENCE

More information

Compressed sensing and best k-term approximation

Compressed sensing and best k-term approximation Compressed sensing and best k-term approximation Albert Cohen, Wolfgang Dahmen, and Ronald DeVore July 19, 2006 Abstract Compressed sensing is a new concept in signal processing where one seeks to minimize

More information

Compressive sensing of low-complexity signals: theory, algorithms and extensions

Compressive sensing of low-complexity signals: theory, algorithms and extensions Compressive sensing of low-complexity signals: theory, algorithms and extensions Laurent Jacques March 7, 9, 1, 14, 16 and 18, 216 9h3-12h3 (incl. 3 ) Graduate School in Systems, Optimization, Control

More information

Strengthened Sobolev inequalities for a random subspace of functions

Strengthened Sobolev inequalities for a random subspace of functions Strengthened Sobolev inequalities for a random subspace of functions Rachel Ward University of Texas at Austin April 2013 2 Discrete Sobolev inequalities Proposition (Sobolev inequality for discrete images)

More information

Compressive Sensing and Beyond

Compressive Sensing and Beyond Compressive Sensing and Beyond Sohail Bahmani Gerorgia Tech. Signal Processing Compressed Sensing Signal Models Classics: bandlimited The Sampling Theorem Any signal with bandwidth B can be recovered

More information

Combining geometry and combinatorics

Combining geometry and combinatorics Combining geometry and combinatorics A unified approach to sparse signal recovery Anna C. Gilbert University of Michigan joint work with R. Berinde (MIT), P. Indyk (MIT), H. Karloff (AT&T), M. Strauss

More information

Introduction How it works Theory behind Compressed Sensing. Compressed Sensing. Huichao Xue. CS3750 Fall 2011

Introduction How it works Theory behind Compressed Sensing. Compressed Sensing. Huichao Xue. CS3750 Fall 2011 Compressed Sensing Huichao Xue CS3750 Fall 2011 Table of Contents Introduction From News Reports Abstract Definition How it works A review of L 1 norm The Algorithm Backgrounds for underdetermined linear

More information

Interpolation via weighted l 1 minimization

Interpolation via weighted l 1 minimization Interpolation via weighted l 1 minimization Rachel Ward University of Texas at Austin December 12, 2014 Joint work with Holger Rauhut (Aachen University) Function interpolation Given a function f : D C

More information

Generalized Orthogonal Matching Pursuit- A Review and Some

Generalized Orthogonal Matching Pursuit- A Review and Some Generalized Orthogonal Matching Pursuit- A Review and Some New Results Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur, INDIA Table of Contents

More information

Lecture 22: More On Compressed Sensing

Lecture 22: More On Compressed Sensing Lecture 22: More On Compressed Sensing Scribed by Eric Lee, Chengrun Yang, and Sebastian Ament Nov. 2, 207 Recap and Introduction Basis pursuit was the method of recovering the sparsest solution to an

More information

INDUSTRIAL MATHEMATICS INSTITUTE. B.S. Kashin and V.N. Temlyakov. IMI Preprint Series. Department of Mathematics University of South Carolina

INDUSTRIAL MATHEMATICS INSTITUTE. B.S. Kashin and V.N. Temlyakov. IMI Preprint Series. Department of Mathematics University of South Carolina INDUSTRIAL MATHEMATICS INSTITUTE 2007:08 A remark on compressed sensing B.S. Kashin and V.N. Temlyakov IMI Preprint Series Department of Mathematics University of South Carolina A remark on compressed

More information

Sparse and Low Rank Recovery via Null Space Properties

Sparse and Low Rank Recovery via Null Space Properties Sparse and Low Rank Recovery via Null Space Properties Holger Rauhut Lehrstuhl C für Mathematik (Analysis), RWTH Aachen Convexity, probability and discrete structures, a geometric viewpoint Marne-la-Vallée,

More information

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, U.S.A. Arizona State University March

More information

Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery

Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery Anna C. Gilbert Department of Mathematics University of Michigan Sparse signal recovery measurements:

More information

Tractable Upper Bounds on the Restricted Isometry Constant

Tractable Upper Bounds on the Restricted Isometry Constant Tractable Upper Bounds on the Restricted Isometry Constant Alex d Aspremont, Francis Bach, Laurent El Ghaoui Princeton University, École Normale Supérieure, U.C. Berkeley. Support from NSF, DHS and Google.

More information

Deterministic constructions of compressed sensing matrices

Deterministic constructions of compressed sensing matrices Journal of Complexity 23 (2007) 918 925 www.elsevier.com/locate/jco Deterministic constructions of compressed sensing matrices Ronald A. DeVore Department of Mathematics, University of South Carolina,

More information

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit New Coherence and RIP Analysis for Wea 1 Orthogonal Matching Pursuit Mingrui Yang, Member, IEEE, and Fran de Hoog arxiv:1405.3354v1 [cs.it] 14 May 2014 Abstract In this paper we define a new coherence

More information

Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk

Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk Model-Based Compressive Sensing for Signal Ensembles Marco F. Duarte Volkan Cevher Richard G. Baraniuk Concise Signal Structure Sparse signal: only K out of N coordinates nonzero model: union of K-dimensional

More information

Sparse Optimization Lecture: Sparse Recovery Guarantees

Sparse Optimization Lecture: Sparse Recovery Guarantees Those who complete this lecture will know Sparse Optimization Lecture: Sparse Recovery Guarantees Sparse Optimization Lecture: Sparse Recovery Guarantees Instructor: Wotao Yin Department of Mathematics,

More information

Recent Developments in Compressed Sensing

Recent Developments in Compressed Sensing Recent Developments in Compressed Sensing M. Vidyasagar Distinguished Professor, IIT Hyderabad m.vidyasagar@iith.ac.in, www.iith.ac.in/ m vidyasagar/ ISL Seminar, Stanford University, 19 April 2018 Outline

More information

Part IV Compressed Sensing

Part IV Compressed Sensing Aisenstadt Chair Course CRM September 2009 Part IV Compressed Sensing Stéphane Mallat Centre de Mathématiques Appliquées Ecole Polytechnique Conclusion to Super-Resolution Sparse super-resolution is sometime

More information

COMPRESSED SENSING IN PYTHON

COMPRESSED SENSING IN PYTHON COMPRESSED SENSING IN PYTHON Sercan Yıldız syildiz@samsi.info February 27, 2017 OUTLINE A BRIEF INTRODUCTION TO COMPRESSED SENSING A BRIEF INTRODUCTION TO CVXOPT EXAMPLES A Brief Introduction to Compressed

More information

MAT 585: Johnson-Lindenstrauss, Group testing, and Compressed Sensing

MAT 585: Johnson-Lindenstrauss, Group testing, and Compressed Sensing MAT 585: Johnson-Lindenstrauss, Group testing, and Compressed Sensing Afonso S. Bandeira April 9, 2015 1 The Johnson-Lindenstrauss Lemma Suppose one has n points, X = {x 1,..., x n }, in R d with d very

More information

Interpolation via weighted l 1 -minimization

Interpolation via weighted l 1 -minimization Interpolation via weighted l 1 -minimization Holger Rauhut RWTH Aachen University Lehrstuhl C für Mathematik (Analysis) Mathematical Analysis and Applications Workshop in honor of Rupert Lasser Helmholtz

More information

Recovering overcomplete sparse representations from structured sensing

Recovering overcomplete sparse representations from structured sensing Recovering overcomplete sparse representations from structured sensing Deanna Needell Claremont McKenna College Feb. 2015 Support: Alfred P. Sloan Foundation and NSF CAREER #1348721. Joint work with Felix

More information

CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles

CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles SIAM Student Research Conference Deanna Needell Joint work with Roman Vershynin and Joel Tropp UC Davis, May 2008 CoSaMP: Greedy Signal

More information

COMPRESSED SENSING AND BEST k-term APPROXIMATION

COMPRESSED SENSING AND BEST k-term APPROXIMATION JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 22, Number 1, January 2009, Pages 211 231 S 0894-0347(08)00610-3 Article electronically published on July 31, 2008 COMPRESSED SENSING AND BEST k-term

More information

Compressed Sensing: Extending CLEAN and NNLS

Compressed Sensing: Extending CLEAN and NNLS Compressed Sensing: Extending CLEAN and NNLS Ludwig Schwardt SKA South Africa (KAT Project) Calibration & Imaging Workshop Socorro, NM, USA 31 March 2009 Outline 1 Compressed Sensing (CS) Introduction

More information

The Pros and Cons of Compressive Sensing

The Pros and Cons of Compressive Sensing The Pros and Cons of Compressive Sensing Mark A. Davenport Stanford University Department of Statistics Compressive Sensing Replace samples with general linear measurements measurements sampled signal

More information

Interpolation via weighted l 1 -minimization

Interpolation via weighted l 1 -minimization Interpolation via weighted l 1 -minimization Holger Rauhut RWTH Aachen University Lehrstuhl C für Mathematik (Analysis) Matheon Workshop Compressive Sensing and Its Applications TU Berlin, December 11,

More information

Sparse Legendre expansions via l 1 minimization

Sparse Legendre expansions via l 1 minimization Sparse Legendre expansions via l 1 minimization Rachel Ward, Courant Institute, NYU Joint work with Holger Rauhut, Hausdorff Center for Mathematics, Bonn, Germany. June 8, 2010 Outline Sparse recovery

More information

Stochastic geometry and random matrix theory in CS

Stochastic geometry and random matrix theory in CS Stochastic geometry and random matrix theory in CS IPAM: numerical methods for continuous optimization University of Edinburgh Joint with Bah, Blanchard, Cartis, and Donoho Encoder Decoder pair - Encoder/Decoder

More information

Sensing systems limited by constraints: physical size, time, cost, energy

Sensing systems limited by constraints: physical size, time, cost, energy Rebecca Willett Sensing systems limited by constraints: physical size, time, cost, energy Reduce the number of measurements needed for reconstruction Higher accuracy data subject to constraints Original

More information

COMPRESSIVE SAMPLING USING EM ALGORITHM. Technical Report No: ASU/2014/4

COMPRESSIVE SAMPLING USING EM ALGORITHM. Technical Report No: ASU/2014/4 COMPRESSIVE SAMPLING USING EM ALGORITHM ATANU KUMAR GHOSH, ARNAB CHAKRABORTY Technical Report No: ASU/2014/4 Date: 29 th April, 2014 Applied Statistics Unit Indian Statistical Institute Kolkata- 700018

More information

Exponential decay of reconstruction error from binary measurements of sparse signals

Exponential decay of reconstruction error from binary measurements of sparse signals Exponential decay of reconstruction error from binary measurements of sparse signals Deanna Needell Joint work with R. Baraniuk, S. Foucart, Y. Plan, and M. Wootters Outline Introduction Mathematical Formulation

More information

2D X-Ray Tomographic Reconstruction From Few Projections

2D X-Ray Tomographic Reconstruction From Few Projections 2D X-Ray Tomographic Reconstruction From Few Projections Application of Compressed Sensing Theory CEA-LID, Thalès, UJF 6 octobre 2009 Introduction Plan 1 Introduction 2 Overview of Compressed Sensing Theory

More information

Thresholds for the Recovery of Sparse Solutions via L1 Minimization

Thresholds for the Recovery of Sparse Solutions via L1 Minimization Thresholds for the Recovery of Sparse Solutions via L Minimization David L. Donoho Department of Statistics Stanford University 39 Serra Mall, Sequoia Hall Stanford, CA 9435-465 Email: donoho@stanford.edu

More information

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas M.Vidyasagar@utdallas.edu www.utdallas.edu/ m.vidyasagar

More information

Sparse solutions of underdetermined systems

Sparse solutions of underdetermined systems Sparse solutions of underdetermined systems I-Liang Chern September 22, 2016 1 / 16 Outline Sparsity and Compressibility: the concept for measuring sparsity and compressibility of data Minimum measurements

More information

Lecture 16: Compressed Sensing

Lecture 16: Compressed Sensing Lecture 16: Compressed Sensing Introduction to Learning and Analysis of Big Data Kontorovich and Sabato (BGU) Lecture 16 1 / 12 Review of Johnson-Lindenstrauss Unsupervised learning technique key insight:

More information

Inverse problems and sparse models (6/6) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France.

Inverse problems and sparse models (6/6) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France. Inverse problems and sparse models (6/6) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France remi.gribonval@inria.fr Overview of the course Introduction sparsity & data compression inverse problems

More information

Compressed sensing techniques for hyperspectral image recovery

Compressed sensing techniques for hyperspectral image recovery Compressed sensing techniques for hyperspectral image recovery A. Abrardo, M. Barni, C. M. Carretti, E. Magli, S. Kuiteing Kamdem, R. Vitulli ABSTRACT Compressed Sensing (CS) theory is progressively gaining

More information

Greedy Signal Recovery and Uniform Uncertainty Principles

Greedy Signal Recovery and Uniform Uncertainty Principles Greedy Signal Recovery and Uniform Uncertainty Principles SPIE - IE 2008 Deanna Needell Joint work with Roman Vershynin UC Davis, January 2008 Greedy Signal Recovery and Uniform Uncertainty Principles

More information

Introduction to Compressed Sensing

Introduction to Compressed Sensing Introduction to Compressed Sensing Alejandro Parada, Gonzalo Arce University of Delaware August 25, 2016 Motivation: Classical Sampling 1 Motivation: Classical Sampling Issues Some applications Radar Spectral

More information

Solution Recovery via L1 minimization: What are possible and Why?

Solution Recovery via L1 minimization: What are possible and Why? Solution Recovery via L1 minimization: What are possible and Why? Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, U.S.A. Eighth US-Mexico Workshop on Optimization

More information

CoSaMP. Iterative signal recovery from incomplete and inaccurate samples. Joel A. Tropp

CoSaMP. Iterative signal recovery from incomplete and inaccurate samples. Joel A. Tropp CoSaMP Iterative signal recovery from incomplete and inaccurate samples Joel A. Tropp Applied & Computational Mathematics California Institute of Technology jtropp@acm.caltech.edu Joint with D. Needell

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee227c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee227c@berkeley.edu

More information

Compressive Sensing (CS)

Compressive Sensing (CS) Compressive Sensing (CS) Luminita Vese & Ming Yan lvese@math.ucla.edu yanm@math.ucla.edu Department of Mathematics University of California, Los Angeles The UCLA Advanced Neuroimaging Summer Program (2014)

More information

CS 229r: Algorithms for Big Data Fall Lecture 19 Nov 5

CS 229r: Algorithms for Big Data Fall Lecture 19 Nov 5 CS 229r: Algorithms for Big Data Fall 215 Prof. Jelani Nelson Lecture 19 Nov 5 Scribe: Abdul Wasay 1 Overview In the last lecture, we started discussing the problem of compressed sensing where we are given

More information

Random projections. 1 Introduction. 2 Dimensionality reduction. Lecture notes 5 February 29, 2016

Random projections. 1 Introduction. 2 Dimensionality reduction. Lecture notes 5 February 29, 2016 Lecture notes 5 February 9, 016 1 Introduction Random projections Random projections are a useful tool in the analysis and processing of high-dimensional data. We will analyze two applications that use

More information

Noisy Signal Recovery via Iterative Reweighted L1-Minimization

Noisy Signal Recovery via Iterative Reweighted L1-Minimization Noisy Signal Recovery via Iterative Reweighted L1-Minimization Deanna Needell UC Davis / Stanford University Asilomar SSC, November 2009 Problem Background Setup 1 Suppose x is an unknown signal in R d.

More information

Compressive Sensing. Collection Editors: Mark A. Davenport Richard Baraniuk Ronald DeVore

Compressive Sensing. Collection Editors: Mark A. Davenport Richard Baraniuk Ronald DeVore Compressive Sensing Collection Editors: Mark A. Davenport Richard Baraniuk Ronald DeVore Compressive Sensing Collection Editors: Mark A. Davenport Richard Baraniuk Ronald DeVore Authors: Wai Lam Chan

More information

Tensor Sparsity and Near-Minimal Rank Approximation for High-Dimensional PDEs

Tensor Sparsity and Near-Minimal Rank Approximation for High-Dimensional PDEs Tensor Sparsity and Near-Minimal Rank Approximation for High-Dimensional PDEs Wolfgang Dahmen, RWTH Aachen Collaborators: Markus Bachmayr, Ron DeVore, Lars Grasedyck, Endre Süli Paris, Oct.11, 2013 W.

More information

Reconstruction from Anisotropic Random Measurements

Reconstruction from Anisotropic Random Measurements Reconstruction from Anisotropic Random Measurements Mark Rudelson and Shuheng Zhou The University of Michigan, Ann Arbor Coding, Complexity, and Sparsity Workshop, 013 Ann Arbor, Michigan August 7, 013

More information

Machine Learning for Signal Processing Sparse and Overcomplete Representations. Bhiksha Raj (slides from Sourish Chaudhuri) Oct 22, 2013

Machine Learning for Signal Processing Sparse and Overcomplete Representations. Bhiksha Raj (slides from Sourish Chaudhuri) Oct 22, 2013 Machine Learning for Signal Processing Sparse and Overcomplete Representations Bhiksha Raj (slides from Sourish Chaudhuri) Oct 22, 2013 1 Key Topics in this Lecture Basics Component-based representations

More information

MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications. Class 08: Sparsity Based Regularization. Lorenzo Rosasco

MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications. Class 08: Sparsity Based Regularization. Lorenzo Rosasco MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications Class 08: Sparsity Based Regularization Lorenzo Rosasco Learning algorithms so far ERM + explicit l 2 penalty 1 min w R d n n l(y

More information

Compressive Sensing Theory and L1-Related Optimization Algorithms

Compressive Sensing Theory and L1-Related Optimization Algorithms Compressive Sensing Theory and L1-Related Optimization Algorithms Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, USA CAAM Colloquium January 26, 2009 Outline:

More information

A Simple Proof of the Restricted Isometry Property for Random Matrices

A Simple Proof of the Restricted Isometry Property for Random Matrices DOI 10.1007/s00365-007-9003-x A Simple Proof of the Restricted Isometry Property for Random Matrices Richard Baraniuk Mark Davenport Ronald DeVore Michael Wakin Received: 17 May 006 / Revised: 18 January

More information

Primal Dual Pursuit A Homotopy based Algorithm for the Dantzig Selector

Primal Dual Pursuit A Homotopy based Algorithm for the Dantzig Selector Primal Dual Pursuit A Homotopy based Algorithm for the Dantzig Selector Muhammad Salman Asif Thesis Committee: Justin Romberg (Advisor), James McClellan, Russell Mersereau School of Electrical and Computer

More information

Mathematics Subject Classification (2000). Primary 41-02, 46-02; Secondary 62C20, 65N30, 68Q25, 74S05.

Mathematics Subject Classification (2000). Primary 41-02, 46-02; Secondary 62C20, 65N30, 68Q25, 74S05. Optimal computation Ronald A. DeVore Abstract. A large portion of computation is concerned with approximating a function u. Typically, there are many ways to proceed with such an approximation leading

More information

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28 Sparsity Models Tong Zhang Rutgers University T. Zhang (Rutgers) Sparsity Models 1 / 28 Topics Standard sparse regression model algorithms: convex relaxation and greedy algorithm sparse recovery analysis:

More information

Phase Transition Phenomenon in Sparse Approximation

Phase Transition Phenomenon in Sparse Approximation Phase Transition Phenomenon in Sparse Approximation University of Utah/Edinburgh L1 Approximation: May 17 st 2008 Convex polytopes Counting faces Sparse Representations via l 1 Regularization Underdetermined

More information

Near Optimal Signal Recovery from Random Projections

Near Optimal Signal Recovery from Random Projections 1 Near Optimal Signal Recovery from Random Projections Emmanuel Candès, California Institute of Technology Multiscale Geometric Analysis in High Dimensions: Workshop # 2 IPAM, UCLA, October 2004 Collaborators:

More information

Compressed Sensing Using Bernoulli Measurement Matrices

Compressed Sensing Using Bernoulli Measurement Matrices ITSchool 11, Austin Compressed Sensing Using Bernoulli Measurement Matrices Yuhan Zhou Advisor: Wei Yu Department of Electrical and Computer Engineering University of Toronto, Canada Motivation Motivation

More information

Multiplicative and Additive Perturbation Effects on the Recovery of Sparse Signals on the Sphere using Compressed Sensing

Multiplicative and Additive Perturbation Effects on the Recovery of Sparse Signals on the Sphere using Compressed Sensing Multiplicative and Additive Perturbation Effects on the Recovery of Sparse Signals on the Sphere using Compressed Sensing ibeltal F. Alem, Daniel H. Chae, and Rodney A. Kennedy The Australian National

More information

Enhanced Compressive Sensing and More

Enhanced Compressive Sensing and More Enhanced Compressive Sensing and More Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, U.S.A. Nonlinear Approximation Techniques Using L1 Texas A & M University

More information

Oslo Class 6 Sparsity based regularization

Oslo Class 6 Sparsity based regularization RegML2017@SIMULA Oslo Class 6 Sparsity based regularization Lorenzo Rosasco UNIGE-MIT-IIT May 4, 2017 Learning from data Possible only under assumptions regularization min Ê(w) + λr(w) w Smoothness Sparsity

More information

An Overview of Sparsity with Applications to Compression, Restoration, and Inverse Problems

An Overview of Sparsity with Applications to Compression, Restoration, and Inverse Problems An Overview of Sparsity with Applications to Compression, Restoration, and Inverse Problems Justin Romberg Georgia Tech, School of ECE ENS Winter School January 9, 2012 Lyon, France Applied and Computational

More information

Signal Recovery from Permuted Observations

Signal Recovery from Permuted Observations EE381V Course Project Signal Recovery from Permuted Observations 1 Problem Shanshan Wu (sw33323) May 8th, 2015 We start with the following problem: let s R n be an unknown n-dimensional real-valued signal,

More information

Instance Optimal Decoding by Thresholding in Compressed Sensing

Instance Optimal Decoding by Thresholding in Compressed Sensing Instance Optimal Decoding by Thresholding in Compressed Sensing Albert Cohen, Wolfgang Dahmen, and Ronald DeVore November 1, 2008 Abstract Compressed Sensing sees to capture a discrete signal x IR N with

More information

Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees

Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html Acknowledgement: this slides is based on Prof. Emmanuel Candes and Prof. Wotao Yin

More information

Sparse Approximation of PDEs based on Compressed Sensing

Sparse Approximation of PDEs based on Compressed Sensing Sparse Approximation of PDEs based on Compressed Sensing Simone Brugiapaglia Department of Mathematics Simon Fraser University Retreat for Young Researchers in Stochastics September 24, 26 2 Introduction

More information

Constructing Explicit RIP Matrices and the Square-Root Bottleneck

Constructing Explicit RIP Matrices and the Square-Root Bottleneck Constructing Explicit RIP Matrices and the Square-Root Bottleneck Ryan Cinoman July 18, 2018 Ryan Cinoman Constructing Explicit RIP Matrices July 18, 2018 1 / 36 Outline 1 Introduction 2 Restricted Isometry

More information

sparse and low-rank tensor recovery Cubic-Sketching

sparse and low-rank tensor recovery Cubic-Sketching Sparse and Low-Ran Tensor Recovery via Cubic-Setching Guang Cheng Department of Statistics Purdue University www.science.purdue.edu/bigdata CCAM@Purdue Math Oct. 27, 2017 Joint wor with Botao Hao and Anru

More information

Sparse Solutions of an Undetermined Linear System

Sparse Solutions of an Undetermined Linear System 1 Sparse Solutions of an Undetermined Linear System Maddullah Almerdasy New York University Tandon School of Engineering arxiv:1702.07096v1 [math.oc] 23 Feb 2017 Abstract This work proposes a research

More information

Multilevel Preconditioning and Adaptive Sparse Solution of Inverse Problems

Multilevel Preconditioning and Adaptive Sparse Solution of Inverse Problems Multilevel and Adaptive Sparse of Inverse Problems Fachbereich Mathematik und Informatik Philipps Universität Marburg Workshop Sparsity and Computation, Bonn, 7. 11.6.2010 (joint work with M. Fornasier

More information

Methods for sparse analysis of high-dimensional data, II

Methods for sparse analysis of high-dimensional data, II Methods for sparse analysis of high-dimensional data, II Rachel Ward May 23, 2011 High dimensional data with low-dimensional structure 300 by 300 pixel images = 90, 000 dimensions 2 / 47 High dimensional

More information

Mathematical introduction to Compressed Sensing

Mathematical introduction to Compressed Sensing Mathematical introduction to Compressed Sensing Lesson 1 : measurements and sparsity Guillaume Lecué ENSAE Mardi 31 janvier 2016 Guillaume Lecué (ENSAE) Compressed Sensing Mardi 31 janvier 2016 1 / 31

More information

GREEDY SIGNAL RECOVERY REVIEW

GREEDY SIGNAL RECOVERY REVIEW GREEDY SIGNAL RECOVERY REVIEW DEANNA NEEDELL, JOEL A. TROPP, ROMAN VERSHYNIN Abstract. The two major approaches to sparse recovery are L 1-minimization and greedy methods. Recently, Needell and Vershynin

More information

Tractable performance bounds for compressed sensing.

Tractable performance bounds for compressed sensing. Tractable performance bounds for compressed sensing. Alex d Aspremont, Francis Bach, Laurent El Ghaoui Princeton University, École Normale Supérieure/INRIA, U.C. Berkeley. Support from NSF, DHS and Google.

More information

THEORY OF COMPRESSIVE SENSING VIA l 1 -MINIMIZATION: A NON-RIP ANALYSIS AND EXTENSIONS

THEORY OF COMPRESSIVE SENSING VIA l 1 -MINIMIZATION: A NON-RIP ANALYSIS AND EXTENSIONS THEORY OF COMPRESSIVE SENSING VIA l 1 -MINIMIZATION: A NON-RIP ANALYSIS AND EXTENSIONS YIN ZHANG Abstract. Compressive sensing (CS) is an emerging methodology in computational signal processing that has

More information

Generalized greedy algorithms.

Generalized greedy algorithms. Generalized greedy algorithms. François-Xavier Dupé & Sandrine Anthoine LIF & I2M Aix-Marseille Université - CNRS - Ecole Centrale Marseille, Marseille ANR Greta Séminaire Parisien des Mathématiques Appliquées

More information

ANALOG-TO-DIGITAL converters (ADCs) are an essential. Democracy in Action: Quantization, Saturation, and Compressive Sensing

ANALOG-TO-DIGITAL converters (ADCs) are an essential. Democracy in Action: Quantization, Saturation, and Compressive Sensing Democracy in Action: Quantization, Saturation, and Compressive Sensing Jason N. Laska, Petros T. Boufounos, Mark A. Davenport, and Richard G. Baraniuk Abstract Recent theoretical developments in the area

More information

The Sparsest Solution of Underdetermined Linear System by l q minimization for 0 < q 1

The Sparsest Solution of Underdetermined Linear System by l q minimization for 0 < q 1 The Sparsest Solution of Underdetermined Linear System by l q minimization for 0 < q 1 Simon Foucart Department of Mathematics Vanderbilt University Nashville, TN 3784. Ming-Jun Lai Department of Mathematics,

More information

of Orthogonal Matching Pursuit

of Orthogonal Matching Pursuit A Sharp Restricted Isometry Constant Bound of Orthogonal Matching Pursuit Qun Mo arxiv:50.0708v [cs.it] 8 Jan 205 Abstract We shall show that if the restricted isometry constant (RIC) δ s+ (A) of the measurement

More information

Random hyperplane tessellations and dimension reduction

Random hyperplane tessellations and dimension reduction Random hyperplane tessellations and dimension reduction Roman Vershynin University of Michigan, Department of Mathematics Phenomena in high dimensions in geometric analysis, random matrices and computational

More information

Compressed Sensing and Related Learning Problems

Compressed Sensing and Related Learning Problems Compressed Sensing and Related Learning Problems Yingzhen Li Dept. of Mathematics, Sun Yat-sen University Advisor: Prof. Haizhang Zhang Advisor: Prof. Haizhang Zhang 1 / Overview Overview Background Compressed

More information

Exact Signal Recovery from Sparsely Corrupted Measurements through the Pursuit of Justice

Exact Signal Recovery from Sparsely Corrupted Measurements through the Pursuit of Justice Exact Signal Recovery from Sparsely Corrupted Measurements through the Pursuit of Justice Jason N. Laska, Mark A. Davenport, Richard G. Baraniuk Department of Electrical and Computer Engineering Rice University

More information

Gauge optimization and duality

Gauge optimization and duality 1 / 54 Gauge optimization and duality Junfeng Yang Department of Mathematics Nanjing University Joint with Shiqian Ma, CUHK September, 2015 2 / 54 Outline Introduction Duality Lagrange duality Fenchel

More information

On the coherence barrier and analogue problems in compressed sensing

On the coherence barrier and analogue problems in compressed sensing On the coherence barrier and analogue problems in compressed sensing Clarice Poon University of Cambridge June 1, 2017 Joint work with: Ben Adcock Anders Hansen Bogdan Roman (Simon Fraser) (Cambridge)

More information

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit Claremont Colleges Scholarship @ Claremont CMC Faculty Publications and Research CMC Faculty Scholarship 6-5-2008 Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini May 30, 2018 1 / 57 Table of Contents 1 Sparse linear models Basis Pursuit and restricted null space property Sufficient conditions for RNS 2 / 57

More information

MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications. Class 19: Data Representation by Design

MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications. Class 19: Data Representation by Design MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications Class 19: Data Representation by Design What is data representation? Let X be a data-space X M (M) F (M) X A data representation

More information

Algorithms for sparse analysis Lecture I: Background on sparse approximation

Algorithms for sparse analysis Lecture I: Background on sparse approximation Algorithms for sparse analysis Lecture I: Background on sparse approximation Anna C. Gilbert Department of Mathematics University of Michigan Tutorial on sparse approximations and algorithms Compress data

More information

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles Or: the equation Ax = b, revisited University of California, Los Angeles Mahler Lecture Series Acquiring signals Many types of real-world signals (e.g. sound, images, video) can be viewed as an n-dimensional

More information