Compressed Sensing Using Bernoulli Measurement Matrices

Size: px
Start display at page:

Download "Compressed Sensing Using Bernoulli Measurement Matrices"

Transcription

1 ITSchool 11, Austin Compressed Sensing Using Bernoulli Measurement Matrices Yuhan Zhou Advisor: Wei Yu Department of Electrical and Computer Engineering University of Toronto, Canada

2 Motivation Motivation Sparse signal recovery in wireless sensor networks for the applications such as sensor perception has draw a vast of attention. Processors using in wireless sensor networks have limit power and computation capability. In practice, the matrices used for sampling are generated by a pseudorandom number generator with finite precision.

3 Motivation Configuration of CS in wireless sensor networks What is the information-theoretic limits of lossless sparse recovery using Bernoulli ±1 matrices?

4 Random Sparse Signals Definition X = S U where S is a Bernoulli random variable with success probability ρ (0 < ρ < 1/2) and U is a absolutely continuous random variable. Definition A pair of signals (X, Y ) = (S X U X, S Y U Y ) are said to be jointly sparse if (S X, S Y ) are i.i.d generated from p(s x, s y ) with (s x, s y ) {0, 1} {0, 1}, satisfying: X and Y are sparse with sparsity rate p(s x = 1) and p(s y = 1) respectively, p(s x = 1 s y = 1) < 1/2 and p(s y = 1 s x = 1) < 1/2.

5 Problem Formulation Definition A sparse recovery scheme associated with sparse signal vector X n R n is a pair C n = (f, g), which consists of an encoder map, f : R n R m, and a decoder map, g : R m X n. and encoding map f is matrix multiplication, i.e. f (x n ) = Ax n. Definition A distributed sparse recovery scheme associated with jointly sparse signal vectors X n X n and Y n Y n is a triple C n = (f 1, f 2, g), which consists of two encoder maps, and a decoder map, f 1 : X n F m 1, f 2 : Y n G m 2, g : F m 1 G m 2 X n Y n.

6 Single Sparse Recovery: Upper Bound Theorem Let random signal vector X n be sparse with respect to sparsity rate ρ, then for any small ɛ > 0 and n large enough, there exits a sparse recovery scheme C n = (A, g) satisfies P e (C n ) ɛ, provided sampling rate ( 2 R(C n ) 1 o(1) h 2 (ρ) + 2 log ɛ ) + δ ɛ n where δ ɛ 0 as ɛ 0.

7 Single Sparse Recovery: Lower Bound Theorem Suppose that memoryless signal X is sparse with sparsity rate ρ > 0. For any random sparse recovering scheme C n = (A, g) with sampling rate R X, if the decoding error probability P e (C n ) 0 as n, R X must satisfy R X 2h 2 (ρ) log θ(u) + log e where θ(u) 1 only depends on the distribution of U

8 Distributed Sparse Recovery: Asymptotic Bounds Theorem Suppose that memoryless signals (X, Y ) are jointly sparse. Consider a distributed sparse recovery scheme C n = (A 1, A 2, g) with sampling rates R X and R Y. If the average error probability P e (C n ) 0 as n, the sampling rates satisfy 2H(S X S Y ) log e R X 2H(S X S Y ) 2H(S Y S X ) log e R Y 2H(S Y S X ) 2H(S X,S Y ) log e R X + R Y 2H(S X, S Y )

9 Comparison result with Gaussian Sampling Matrices Figure: Sampling rates comparison Gaussian vs. Bernoulli for ρ = log n n

10 Conclusions and Reference Conclusions: Information theoretic limits on compressed sensing using Bernoulli sign matrices Deep insights gained on designing practical sparse recovery schemes in wireless sensor networks Reference: J. Bourgain, V. H. Vu and P. M. Wood, On the probability that a discrete random matrix is singular, Journal of Functional Analysis, 258(2), , Jan, G. Reeves and M. Gastpar, Compressed Compressed Sensing, 2010 ISIT, June, Austin, Texas, US. D. L. Donoho, Compressed Sensing, Trans. on IT, vol. 52, , April, 2006.

Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk

Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk Model-Based Compressive Sensing for Signal Ensembles Marco F. Duarte Volkan Cevher Richard G. Baraniuk Concise Signal Structure Sparse signal: only K out of N coordinates nonzero model: union of K-dimensional

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee227c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee227c@berkeley.edu

More information

Lecture 16: Compressed Sensing

Lecture 16: Compressed Sensing Lecture 16: Compressed Sensing Introduction to Learning and Analysis of Big Data Kontorovich and Sabato (BGU) Lecture 16 1 / 12 Review of Johnson-Lindenstrauss Unsupervised learning technique key insight:

More information

Solution Recovery via L1 minimization: What are possible and Why?

Solution Recovery via L1 minimization: What are possible and Why? Solution Recovery via L1 minimization: What are possible and Why? Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, U.S.A. Eighth US-Mexico Workshop on Optimization

More information

Sparse Solutions of an Undetermined Linear System

Sparse Solutions of an Undetermined Linear System 1 Sparse Solutions of an Undetermined Linear System Maddullah Almerdasy New York University Tandon School of Engineering arxiv:1702.07096v1 [math.oc] 23 Feb 2017 Abstract This work proposes a research

More information

Information-Theoretic Limits of Group Testing: Phase Transitions, Noisy Tests, and Partial Recovery

Information-Theoretic Limits of Group Testing: Phase Transitions, Noisy Tests, and Partial Recovery Information-Theoretic Limits of Group Testing: Phase Transitions, Noisy Tests, and Partial Recovery Jonathan Scarlett jonathan.scarlett@epfl.ch Laboratory for Information and Inference Systems (LIONS)

More information

Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery

Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery Jorge F. Silva and Eduardo Pavez Department of Electrical Engineering Information and Decision Systems Group Universidad

More information

Estimating Unknown Sparsity in Compressed Sensing

Estimating Unknown Sparsity in Compressed Sensing Estimating Unknown Sparsity in Compressed Sensing Miles Lopes UC Berkeley Department of Statistics CSGF Program Review July 16, 2014 early version published at ICML 2013 Miles Lopes ( UC Berkeley ) estimating

More information

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas M.Vidyasagar@utdallas.edu www.utdallas.edu/ m.vidyasagar

More information

Stochastic geometry and random matrix theory in CS

Stochastic geometry and random matrix theory in CS Stochastic geometry and random matrix theory in CS IPAM: numerical methods for continuous optimization University of Edinburgh Joint with Bah, Blanchard, Cartis, and Donoho Encoder Decoder pair - Encoder/Decoder

More information

Compressed Sensing under Optimal Quantization

Compressed Sensing under Optimal Quantization Compressed Sensing under Optimal Quantization Alon Kipnis, Galen Reeves, Yonina C. Eldar and Andrea J. Goldsmith Department of Electrical Engineering, Stanford University Department of Electrical and Computer

More information

sparse and low-rank tensor recovery Cubic-Sketching

sparse and low-rank tensor recovery Cubic-Sketching Sparse and Low-Ran Tensor Recovery via Cubic-Setching Guang Cheng Department of Statistics Purdue University www.science.purdue.edu/bigdata CCAM@Purdue Math Oct. 27, 2017 Joint wor with Botao Hao and Anru

More information

Strengthened Sobolev inequalities for a random subspace of functions

Strengthened Sobolev inequalities for a random subspace of functions Strengthened Sobolev inequalities for a random subspace of functions Rachel Ward University of Texas at Austin April 2013 2 Discrete Sobolev inequalities Proposition (Sobolev inequality for discrete images)

More information

Elaine T. Hale, Wotao Yin, Yin Zhang

Elaine T. Hale, Wotao Yin, Yin Zhang , Wotao Yin, Yin Zhang Department of Computational and Applied Mathematics Rice University McMaster University, ICCOPT II-MOPTA 2007 August 13, 2007 1 with Noise 2 3 4 1 with Noise 2 3 4 1 with Noise 2

More information

Reconstruction from Anisotropic Random Measurements

Reconstruction from Anisotropic Random Measurements Reconstruction from Anisotropic Random Measurements Mark Rudelson and Shuheng Zhou The University of Michigan, Ann Arbor Coding, Complexity, and Sparsity Workshop, 013 Ann Arbor, Michigan August 7, 013

More information

Compressed Sensing and Linear Codes over Real Numbers

Compressed Sensing and Linear Codes over Real Numbers Compressed Sensing and Linear Codes over Real Numbers Henry D. Pfister (joint with Fan Zhang) Texas A&M University College Station Information Theory and Applications Workshop UC San Diego January 31st,

More information

arxiv: v1 [cs.it] 26 Oct 2018

arxiv: v1 [cs.it] 26 Oct 2018 Outlier Detection using Generative Models with Theoretical Performance Guarantees arxiv:1810.11335v1 [cs.it] 6 Oct 018 Jirong Yi Anh Duc Le Tianming Wang Xiaodong Wu Weiyu Xu October 9, 018 Abstract This

More information

Thresholds for the Recovery of Sparse Solutions via L1 Minimization

Thresholds for the Recovery of Sparse Solutions via L1 Minimization Thresholds for the Recovery of Sparse Solutions via L Minimization David L. Donoho Department of Statistics Stanford University 39 Serra Mall, Sequoia Hall Stanford, CA 9435-465 Email: donoho@stanford.edu

More information

Approximate Message Passing with Built-in Parameter Estimation for Sparse Signal Recovery

Approximate Message Passing with Built-in Parameter Estimation for Sparse Signal Recovery Approimate Message Passing with Built-in Parameter Estimation for Sparse Signal Recovery arxiv:1606.00901v1 [cs.it] Jun 016 Shuai Huang, Trac D. Tran Department of Electrical and Computer Engineering Johns

More information

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit New Coherence and RIP Analysis for Wea 1 Orthogonal Matching Pursuit Mingrui Yang, Member, IEEE, and Fran de Hoog arxiv:1405.3354v1 [cs.it] 14 May 2014 Abstract In this paper we define a new coherence

More information

Single-letter Characterization of Signal Estimation from Linear Measurements

Single-letter Characterization of Signal Estimation from Linear Measurements Single-letter Characterization of Signal Estimation from Linear Measurements Dongning Guo Dror Baron Shlomo Shamai The work has been supported by the European Commission in the framework of the FP7 Network

More information

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, U.S.A. Arizona State University March

More information

Phase Transition Phenomenon in Sparse Approximation

Phase Transition Phenomenon in Sparse Approximation Phase Transition Phenomenon in Sparse Approximation University of Utah/Edinburgh L1 Approximation: May 17 st 2008 Convex polytopes Counting faces Sparse Representations via l 1 Regularization Underdetermined

More information

On Source-Channel Communication in Networks

On Source-Channel Communication in Networks On Source-Channel Communication in Networks Michael Gastpar Department of EECS University of California, Berkeley gastpar@eecs.berkeley.edu DIMACS: March 17, 2003. Outline 1. Source-Channel Communication

More information

Distributed Source Coding Using LDPC Codes

Distributed Source Coding Using LDPC Codes Distributed Source Coding Using LDPC Codes Telecommunications Laboratory Alex Balatsoukas-Stimming Technical University of Crete May 29, 2010 Telecommunications Laboratory (TUC) Distributed Source Coding

More information

Fundamental Limits of Compressed Sensing under Optimal Quantization

Fundamental Limits of Compressed Sensing under Optimal Quantization Fundamental imits of Compressed Sensing under Optimal Quantization Alon Kipnis, Galen Reeves, Yonina C. Eldar and Andrea J. Goldsmith Department of Electrical Engineering, Stanford University Department

More information

Compressive Sensing with Random Matrices

Compressive Sensing with Random Matrices Compressive Sensing with Random Matrices Lucas Connell University of Georgia 9 November 017 Lucas Connell (University of Georgia) Compressive Sensing with Random Matrices 9 November 017 1 / 18 Overview

More information

Reliable Computation over Multiple-Access Channels

Reliable Computation over Multiple-Access Channels Reliable Computation over Multiple-Access Channels Bobak Nazer and Michael Gastpar Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA, 94720-1770 {bobak,

More information

Quantization for Distributed Estimation

Quantization for Distributed Estimation 0 IEEE International Conference on Internet of Things ithings 0), Green Computing and Communications GreenCom 0), and Cyber-Physical-Social Computing CPSCom 0) Quantization for Distributed Estimation uan-yu

More information

MAT 585: Johnson-Lindenstrauss, Group testing, and Compressed Sensing

MAT 585: Johnson-Lindenstrauss, Group testing, and Compressed Sensing MAT 585: Johnson-Lindenstrauss, Group testing, and Compressed Sensing Afonso S. Bandeira April 9, 2015 1 The Johnson-Lindenstrauss Lemma Suppose one has n points, X = {x 1,..., x n }, in R d with d very

More information

Compressed Sensing with Shannon-Kotel nikov Mapping in the Presence of Noise

Compressed Sensing with Shannon-Kotel nikov Mapping in the Presence of Noise 19th European Signal Processing Conference (EUSIPCO 011) Barcelona, Spain, August 9 - September, 011 Compressed Sensing with Shannon-Kotel nikov Mapping in the Presence of Noise Ahmad Abou Saleh, Wai-Yip

More information

Compressed Sensing - Near Optimal Recovery of Signals from Highly Incomplete Measurements

Compressed Sensing - Near Optimal Recovery of Signals from Highly Incomplete Measurements Compressed Sensing - Near Optimal Recovery of Signals from Highly Incomplete Measurements Wolfgang Dahmen Institut für Geometrie und Praktische Mathematik RWTH Aachen and IMI, University of Columbia, SC

More information

Sparse Optimization Lecture: Sparse Recovery Guarantees

Sparse Optimization Lecture: Sparse Recovery Guarantees Those who complete this lecture will know Sparse Optimization Lecture: Sparse Recovery Guarantees Sparse Optimization Lecture: Sparse Recovery Guarantees Instructor: Wotao Yin Department of Mathematics,

More information

Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery

Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery Anna C. Gilbert Department of Mathematics University of Michigan Connection between... Sparse Approximation and Compressed

More information

Constructing Explicit RIP Matrices and the Square-Root Bottleneck

Constructing Explicit RIP Matrices and the Square-Root Bottleneck Constructing Explicit RIP Matrices and the Square-Root Bottleneck Ryan Cinoman July 18, 2018 Ryan Cinoman Constructing Explicit RIP Matrices July 18, 2018 1 / 36 Outline 1 Introduction 2 Restricted Isometry

More information

A Half-Duplex Cooperative Scheme with Partial Decode-Forward Relaying

A Half-Duplex Cooperative Scheme with Partial Decode-Forward Relaying A Half-Duplex Cooperative Scheme with Partial Decode-Forward Relaying Ahmad Abu Al Haija, and Mai Vu, Department of Electrical and Computer Engineering McGill University Montreal, QC H3A A7 Emails: ahmadabualhaija@mailmcgillca,

More information

Lecture 13 October 6, Covering Numbers and Maurey s Empirical Method

Lecture 13 October 6, Covering Numbers and Maurey s Empirical Method CS 395T: Sublinear Algorithms Fall 2016 Prof. Eric Price Lecture 13 October 6, 2016 Scribe: Kiyeon Jeon and Loc Hoang 1 Overview In the last lecture we covered the lower bound for p th moment (p > 2) and

More information

Signal Recovery from Permuted Observations

Signal Recovery from Permuted Observations EE381V Course Project Signal Recovery from Permuted Observations 1 Problem Shanshan Wu (sw33323) May 8th, 2015 We start with the following problem: let s R n be an unknown n-dimensional real-valued signal,

More information

A new method on deterministic construction of the measurement matrix in compressed sensing

A new method on deterministic construction of the measurement matrix in compressed sensing A new method on deterministic construction of the measurement matrix in compressed sensing Qun Mo 1 arxiv:1503.01250v1 [cs.it] 4 Mar 2015 Abstract Construction on the measurement matrix A is a central

More information

(Structured) Coding for Real-Time Streaming Communication

(Structured) Coding for Real-Time Streaming Communication (Structured) Coding for Real-Time Streaming Communication Ashish Khisti Department of Electrical and Computer Engineering University of Toronto Joint work with: Ahmed Badr (Toronto), Farrokh Etezadi (Toronto),

More information

Shannon-Theoretic Limits on Noisy Compressive Sampling Mehmet Akçakaya, Student Member, IEEE, and Vahid Tarokh, Fellow, IEEE

Shannon-Theoretic Limits on Noisy Compressive Sampling Mehmet Akçakaya, Student Member, IEEE, and Vahid Tarokh, Fellow, IEEE 492 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 1, JANUARY 2010 Shannon-Theoretic Limits on Noisy Compressive Sampling Mehmet Akçakaya, Student Member, IEEE, Vahid Tarokh, Fellow, IEEE Abstract

More information

Compressed Sensing Using Reed- Solomon and Q-Ary LDPC Codes

Compressed Sensing Using Reed- Solomon and Q-Ary LDPC Codes Compressed Sensing Using Reed- Solomon and Q-Ary LDPC Codes Item Type text; Proceedings Authors Jagiello, Kristin M. Publisher International Foundation for Telemetering Journal International Telemetering

More information

Optimisation Combinatoire et Convexe.

Optimisation Combinatoire et Convexe. Optimisation Combinatoire et Convexe. Low complexity models, l 1 penalties. A. d Aspremont. M1 ENS. 1/36 Today Sparsity, low complexity models. l 1 -recovery results: three approaches. Extensions: matrix

More information

Performance Analysis for Sparse Support Recovery

Performance Analysis for Sparse Support Recovery Performance Analysis for Sparse Support Recovery Gongguo Tang and Arye Nehorai ESE, Washington University April 21st 2009 Gongguo Tang and Arye Nehorai (Institute) Performance Analysis for Sparse Support

More information

Representation of Correlated Sources into Graphs for Transmission over Broadcast Channels

Representation of Correlated Sources into Graphs for Transmission over Broadcast Channels Representation of Correlated s into Graphs for Transmission over Broadcast s Suhan Choi Department of Electrical Eng. and Computer Science University of Michigan, Ann Arbor, MI 80, USA Email: suhanc@eecs.umich.edu

More information

Lossy Compression of Distributed Sparse Sources: a Practical Scheme

Lossy Compression of Distributed Sparse Sources: a Practical Scheme Lossy Compression of Distributed Sparse Sources: a Practical Scheme Giulio Coluccia, Enrico Magli, Aline Roumy, Velotiaray Toto-Zarasoa To cite this version: Giulio Coluccia, Enrico Magli, Aline Roumy,

More information

The Minimax Noise Sensitivity in Compressed Sensing

The Minimax Noise Sensitivity in Compressed Sensing The Minimax Noise Sensitivity in Compressed Sensing Galen Reeves and avid onoho epartment of Statistics Stanford University Abstract Consider the compressed sensing problem of estimating an unknown k-sparse

More information

Uncertainity, Information, and Entropy

Uncertainity, Information, and Entropy Uncertainity, Information, and Entropy Probabilistic experiment involves the observation of the output emitted by a discrete source during every unit of time. The source output is modeled as a discrete

More information

An Uplink-Downlink Duality for Cloud Radio Access Network

An Uplink-Downlink Duality for Cloud Radio Access Network An Uplin-Downlin Duality for Cloud Radio Access Networ Liang Liu, Prati Patil, and Wei Yu Department of Electrical and Computer Engineering University of Toronto, Toronto, ON, 5S 3G4, Canada Emails: lianguotliu@utorontoca,

More information

Invertibility of random matrices

Invertibility of random matrices University of Michigan February 2011, Princeton University Origins of Random Matrix Theory Statistics (Wishart matrices) PCA of a multivariate Gaussian distribution. [Gaël Varoquaux s blog gael-varoquaux.info]

More information

Compressed Sensing and Related Learning Problems

Compressed Sensing and Related Learning Problems Compressed Sensing and Related Learning Problems Yingzhen Li Dept. of Mathematics, Sun Yat-sen University Advisor: Prof. Haizhang Zhang Advisor: Prof. Haizhang Zhang 1 / Overview Overview Background Compressed

More information

A Structured Construction of Optimal Measurement Matrix for Noiseless Compressed Sensing via Polarization of Analog Transmission

A Structured Construction of Optimal Measurement Matrix for Noiseless Compressed Sensing via Polarization of Analog Transmission Li and Kang: A Structured Construction of Optimal Measurement Matrix for Noiseless Compressed Sensing 1 A Structured Construction of Optimal Measurement Matrix for Noiseless Compressed Sensing via Polarization

More information

Covariance Sketching via Quadratic Sampling

Covariance Sketching via Quadratic Sampling Covariance Sketching via Quadratic Sampling Yuejie Chi Department of ECE and BMI The Ohio State University Tsinghua University June 2015 Page 1 Acknowledgement Thanks to my academic collaborators on some

More information

18.2 Continuous Alphabet (discrete-time, memoryless) Channel

18.2 Continuous Alphabet (discrete-time, memoryless) Channel 0-704: Information Processing and Learning Spring 0 Lecture 8: Gaussian channel, Parallel channels and Rate-distortion theory Lecturer: Aarti Singh Scribe: Danai Koutra Disclaimer: These notes have not

More information

Compressed Sensing and Sparse Recovery

Compressed Sensing and Sparse Recovery ELE 538B: Sparsity, Structure and Inference Compressed Sensing and Sparse Recovery Yuxin Chen Princeton University, Spring 217 Outline Restricted isometry property (RIP) A RIPless theory Compressed sensing

More information

Distributed Lossless Compression. Distributed lossless compression system

Distributed Lossless Compression. Distributed lossless compression system Lecture #3 Distributed Lossless Compression (Reading: NIT 10.1 10.5, 4.4) Distributed lossless source coding Lossless source coding via random binning Time Sharing Achievability proof of the Slepian Wolf

More information

Greedy Signal Recovery and Uniform Uncertainty Principles

Greedy Signal Recovery and Uniform Uncertainty Principles Greedy Signal Recovery and Uniform Uncertainty Principles SPIE - IE 2008 Deanna Needell Joint work with Roman Vershynin UC Davis, January 2008 Greedy Signal Recovery and Uniform Uncertainty Principles

More information

Solving Corrupted Quadratic Equations, Provably

Solving Corrupted Quadratic Equations, Provably Solving Corrupted Quadratic Equations, Provably Yuejie Chi London Workshop on Sparse Signal Processing September 206 Acknowledgement Joint work with Yuanxin Li (OSU), Huishuai Zhuang (Syracuse) and Yingbin

More information

Upper Bound for Intermediate Singular Values of Random Sub-Gaussian Matrices 1

Upper Bound for Intermediate Singular Values of Random Sub-Gaussian Matrices 1 Upper Bound for Intermediate Singular Values of Random Sub-Gaussian Matrices 1 Feng Wei 2 University of Michigan July 29, 2016 1 This presentation is based a project under the supervision of M. Rudelson.

More information

Lecture 20: Quantization and Rate-Distortion

Lecture 20: Quantization and Rate-Distortion Lecture 20: Quantization and Rate-Distortion Quantization Introduction to rate-distortion theorem Dr. Yao Xie, ECE587, Information Theory, Duke University Approimating continuous signals... Dr. Yao Xie,

More information

Efficient Use of Joint Source-Destination Cooperation in the Gaussian Multiple Access Channel

Efficient Use of Joint Source-Destination Cooperation in the Gaussian Multiple Access Channel Efficient Use of Joint Source-Destination Cooperation in the Gaussian Multiple Access Channel Ahmad Abu Al Haija ECE Department, McGill University, Montreal, QC, Canada Email: ahmad.abualhaija@mail.mcgill.ca

More information

Solution-recovery in l 1 -norm for non-square linear systems: deterministic conditions and open questions

Solution-recovery in l 1 -norm for non-square linear systems: deterministic conditions and open questions Solution-recovery in l 1 -norm for non-square linear systems: deterministic conditions and open questions Yin Zhang Technical Report TR05-06 Department of Computational and Applied Mathematics Rice University,

More information

An algebraic perspective on integer sparse recovery

An algebraic perspective on integer sparse recovery An algebraic perspective on integer sparse recovery Lenny Fukshansky Claremont McKenna College (joint work with Deanna Needell and Benny Sudakov) Combinatorics Seminar USC October 31, 2018 From Wikipedia:

More information

A Truncated Prediction Framework for Streaming over Erasure Channels

A Truncated Prediction Framework for Streaming over Erasure Channels A Truncated Prediction Framework for Streaming over Erasure Channels Farrokh Etezadi, Ashish Khisti, Jun Chen Abstract We propose a new coding technique for sequential transmission of a stream of Gauss-Markov

More information

Degrees of Freedom Region of the Gaussian MIMO Broadcast Channel with Common and Private Messages

Degrees of Freedom Region of the Gaussian MIMO Broadcast Channel with Common and Private Messages Degrees of Freedom Region of the Gaussian MIMO Broadcast hannel with ommon and Private Messages Ersen Ekrem Sennur Ulukus Department of Electrical and omputer Engineering University of Maryland, ollege

More information

Introduction to Compressed Sensing

Introduction to Compressed Sensing Introduction to Compressed Sensing Alejandro Parada, Gonzalo Arce University of Delaware August 25, 2016 Motivation: Classical Sampling 1 Motivation: Classical Sampling Issues Some applications Radar Spectral

More information

Recent Developments in Compressed Sensing

Recent Developments in Compressed Sensing Recent Developments in Compressed Sensing M. Vidyasagar Distinguished Professor, IIT Hyderabad m.vidyasagar@iith.ac.in, www.iith.ac.in/ m vidyasagar/ ISL Seminar, Stanford University, 19 April 2018 Outline

More information

COMPRESSED SENSING IN PYTHON

COMPRESSED SENSING IN PYTHON COMPRESSED SENSING IN PYTHON Sercan Yıldız syildiz@samsi.info February 27, 2017 OUTLINE A BRIEF INTRODUCTION TO COMPRESSED SENSING A BRIEF INTRODUCTION TO CVXOPT EXAMPLES A Brief Introduction to Compressed

More information

Robust Bayesian compressed sensing. over finite fields: asymptotic performance analysis

Robust Bayesian compressed sensing. over finite fields: asymptotic performance analysis Robust Bayesian compressed sensing 1 over finite fields: asymptotic performance analysis arxiv:1401.4313v1 [cs.it] 17 Jan 2014 Wenjie Li, Francesca Bassi, and Michel Kieffer Abstract This paper addresses

More information

Compressive Sampling for Energy Efficient Event Detection

Compressive Sampling for Energy Efficient Event Detection Compressive Sampling for Energy Efficient Event Detection Zainul Charbiwala, Younghun Kim, Sadaf Zahedi, Jonathan Friedman, and Mani B. Srivastava Physical Signal Sampling Processing Communication Detection

More information

Truncation Strategy of Tensor Compressive Sensing for Noisy Video Sequences

Truncation Strategy of Tensor Compressive Sensing for Noisy Video Sequences Journal of Information Hiding and Multimedia Signal Processing c 2016 ISSN 207-4212 Ubiquitous International Volume 7, Number 5, September 2016 Truncation Strategy of Tensor Compressive Sensing for Noisy

More information

Multiaccess Channels with State Known to One Encoder: A Case of Degraded Message Sets

Multiaccess Channels with State Known to One Encoder: A Case of Degraded Message Sets Multiaccess Channels with State Known to One Encoder: A Case of Degraded Message Sets Shivaprasad Kotagiri and J. Nicholas Laneman Department of Electrical Engineering University of Notre Dame Notre Dame,

More information

A Comparison of Two Achievable Rate Regions for the Interference Channel

A Comparison of Two Achievable Rate Regions for the Interference Channel A Comparison of Two Achievable Rate Regions for the Interference Channel Hon-Fah Chong, Mehul Motani, and Hari Krishna Garg Electrical & Computer Engineering National University of Singapore Email: {g030596,motani,eleghk}@nus.edu.sg

More information

Combining geometry and combinatorics

Combining geometry and combinatorics Combining geometry and combinatorics A unified approach to sparse signal recovery Anna C. Gilbert University of Michigan joint work with R. Berinde (MIT), P. Indyk (MIT), H. Karloff (AT&T), M. Strauss

More information

SIGNALS with sparse representations can be recovered

SIGNALS with sparse representations can be recovered IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 9, SEPTEMBER 2015 1497 Cramér Rao Bound for Sparse Signals Fitting the Low-Rank Model with Small Number of Parameters Mahdi Shaghaghi, Student Member, IEEE,

More information

Performance Trade-Offs in Multi-Processor Approximate Message Passing

Performance Trade-Offs in Multi-Processor Approximate Message Passing Performance Trade-Offs in Multi-Processor Approximate Message Passing Junan Zhu, Ahmad Beirami, and Dror Baron Department of Electrical and Computer Engineering, North Carolina State University, Email:

More information

Consider the following example of a linear system:

Consider the following example of a linear system: LINEAR SYSTEMS Consider the following example of a linear system: Its unique solution is x + 2x 2 + 3x 3 = 5 x + x 3 = 3 3x + x 2 + 3x 3 = 3 x =, x 2 = 0, x 3 = 2 In general we want to solve n equations

More information

Common Information. Abbas El Gamal. Stanford University. Viterbi Lecture, USC, April 2014

Common Information. Abbas El Gamal. Stanford University. Viterbi Lecture, USC, April 2014 Common Information Abbas El Gamal Stanford University Viterbi Lecture, USC, April 2014 Andrew Viterbi s Fabulous Formula, IEEE Spectrum, 2010 El Gamal (Stanford University) Disclaimer Viterbi Lecture 2

More information

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 6, JUNE

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 6, JUNE IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 6, JUNE 2010 2967 Information-Theoretic Limits on Sparse Signal Recovery: Dense versus Sparse Measurement Matrices Wei Wang, Member, IEEE, Martin J.

More information

Signal Recovery, Uncertainty Relations, and Minkowski Dimension

Signal Recovery, Uncertainty Relations, and Minkowski Dimension Signal Recovery, Uncertainty Relations, and Minkowski Dimension Helmut Bőlcskei ETH Zurich December 2013 Joint work with C. Aubel, P. Kuppinger, G. Pope, E. Riegler, D. Stotz, and C. Studer Aim of this

More information

Gaussian Phase Transitions and Conic Intrinsic Volumes: Steining the Steiner formula

Gaussian Phase Transitions and Conic Intrinsic Volumes: Steining the Steiner formula Gaussian Phase Transitions and Conic Intrinsic Volumes: Steining the Steiner formula Larry Goldstein, University of Southern California Nourdin GIoVAnNi Peccati Luxembourg University University British

More information

Lecture 4 Noisy Channel Coding

Lecture 4 Noisy Channel Coding Lecture 4 Noisy Channel Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 9, 2015 1 / 56 I-Hsiang Wang IT Lecture 4 The Channel Coding Problem

More information

Reconstruction of Block-Sparse Signals by Using an l 2/p -Regularized Least-Squares Algorithm

Reconstruction of Block-Sparse Signals by Using an l 2/p -Regularized Least-Squares Algorithm Reconstruction of Block-Sparse Signals by Using an l 2/p -Regularized Least-Squares Algorithm Jeevan K. Pant, Wu-Sheng Lu, and Andreas Antoniou University of Victoria May 21, 2012 Compressive Sensing 1/23

More information

On The Binary Lossless Many-Help-One Problem with Independently Degraded Helpers

On The Binary Lossless Many-Help-One Problem with Independently Degraded Helpers On The Binary Lossless Many-Help-One Problem with Independently Degraded Helpers Albrecht Wolf, Diana Cristina González, Meik Dörpinghaus, José Cândido Silveira Santos Filho, and Gerhard Fettweis Vodafone

More information

Tractable Upper Bounds on the Restricted Isometry Constant

Tractable Upper Bounds on the Restricted Isometry Constant Tractable Upper Bounds on the Restricted Isometry Constant Alex d Aspremont, Francis Bach, Laurent El Ghaoui Princeton University, École Normale Supérieure, U.C. Berkeley. Support from NSF, DHS and Google.

More information

Optimal Deterministic Compressed Sensing Matrices

Optimal Deterministic Compressed Sensing Matrices Optimal Deterministic Compressed Sensing Matrices Arash Saber Tehrani email: saberteh@usc.edu Alexandros G. Dimakis email: dimakis@usc.edu Giuseppe Caire email: caire@usc.edu Abstract We present the first

More information

The Secrecy of Compressed Sensing Measurements

The Secrecy of Compressed Sensing Measurements The Secrecy of Compressed Sensing Measurements Yaron Rachlin and Dror Baron Abstract Results in compressed sensing describe the feasibility of reconstructing sparse signals using a small number of linear

More information

X 1 : X Table 1: Y = X X 2

X 1 : X Table 1: Y = X X 2 ECE 534: Elements of Information Theory, Fall 200 Homework 3 Solutions (ALL DUE to Kenneth S. Palacio Baus) December, 200. Problem 5.20. Multiple access (a) Find the capacity region for the multiple-access

More information

Lattices for Distributed Source Coding: Jointly Gaussian Sources and Reconstruction of a Linear Function

Lattices for Distributed Source Coding: Jointly Gaussian Sources and Reconstruction of a Linear Function Lattices for Distributed Source Coding: Jointly Gaussian Sources and Reconstruction of a Linear Function Dinesh Krithivasan and S. Sandeep Pradhan Department of Electrical Engineering and Computer Science,

More information

The uniform uncertainty principle and compressed sensing Harmonic analysis and related topics, Seville December 5, 2008

The uniform uncertainty principle and compressed sensing Harmonic analysis and related topics, Seville December 5, 2008 The uniform uncertainty principle and compressed sensing Harmonic analysis and related topics, Seville December 5, 2008 Emmanuel Candés (Caltech), Terence Tao (UCLA) 1 Uncertainty principles A basic principle

More information

Sparse Recovery with Pre-Gaussian Random Matrices

Sparse Recovery with Pre-Gaussian Random Matrices Sparse Recovery with Pre-Gaussian Random Matrices Simon Foucart Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie Paris, 75013, France Ming-Jun Lai Department of Mathematics University of

More information

6 Compressed Sensing and Sparse Recovery

6 Compressed Sensing and Sparse Recovery 6 Compressed Sensing and Sparse Recovery Most of us have noticed how saving an image in JPEG dramatically reduces the space it occupies in our hard drives as oppose to file types that save the pixel value

More information

of Orthogonal Matching Pursuit

of Orthogonal Matching Pursuit A Sharp Restricted Isometry Constant Bound of Orthogonal Matching Pursuit Qun Mo arxiv:50.0708v [cs.it] 8 Jan 205 Abstract We shall show that if the restricted isometry constant (RIC) δ s+ (A) of the measurement

More information

On Gaussian MIMO Broadcast Channels with Common and Private Messages

On Gaussian MIMO Broadcast Channels with Common and Private Messages On Gaussian MIMO Broadcast Channels with Common and Private Messages Ersen Ekrem Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland, College Park, MD 20742 ersen@umd.edu

More information

Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery

Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery Anna C. Gilbert Department of Mathematics University of Michigan Sparse signal recovery measurements:

More information

SPARSE signal processing has recently been exploited in

SPARSE signal processing has recently been exploited in JOURNA OF A TEX CASS FIES, VO. 14, NO. 8, AUGUST 2015 1 Simultaneous Sparse Approximation Using an Iterative Method with Adaptive Thresholding Shahrzad Kiani, Sahar Sadrizadeh, Mahdi Boloursaz, Student

More information

Algorithms for sparse analysis Lecture I: Background on sparse approximation

Algorithms for sparse analysis Lecture I: Background on sparse approximation Algorithms for sparse analysis Lecture I: Background on sparse approximation Anna C. Gilbert Department of Mathematics University of Michigan Tutorial on sparse approximations and algorithms Compress data

More information

Journal of Chemical and Pharmaceutical Research, 2016, 8(4): Research Article

Journal of Chemical and Pharmaceutical Research, 2016, 8(4): Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 26, 8(4):78-722 Research Article ISSN : 97-7384 CODEN(USA) : JCPRC Study on Compressed Sensing Sparse Channel Based on Bayesian

More information

The Sparsest Solution of Underdetermined Linear System by l q minimization for 0 < q 1

The Sparsest Solution of Underdetermined Linear System by l q minimization for 0 < q 1 The Sparsest Solution of Underdetermined Linear System by l q minimization for 0 < q 1 Simon Foucart Department of Mathematics Vanderbilt University Nashville, TN 3784. Ming-Jun Lai Department of Mathematics,

More information

Homework Set #2 Data Compression, Huffman code and AEP

Homework Set #2 Data Compression, Huffman code and AEP Homework Set #2 Data Compression, Huffman code and AEP 1. Huffman coding. Consider the random variable ( x1 x X = 2 x 3 x 4 x 5 x 6 x 7 0.50 0.26 0.11 0.04 0.04 0.03 0.02 (a Find a binary Huffman code

More information