Fourier Reconstruction. Polar Version of Inverse FT. Filtered Backprojection [ ] Bioengineering 280A Principles of Biomedical Imaging

Size: px
Start display at page:

Download "Fourier Reconstruction. Polar Version of Inverse FT. Filtered Backprojection [ ] Bioengineering 280A Principles of Biomedical Imaging"

Transcription

1 Fourier Reconstruction Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2014 CT/Fourier Lecture 5 F Interpolate onto Cartesian grid with appropriate density correction then take inverse transform Polar Version of Inverse FT µ(, y) = 2π G(k,k y )e j 2π (k +k y y ) dk dk y = G(k,θ)e j 2π (k cosθ +yk sinθ ) kdkdθ 0 π 0 = G(k,θ)e j 2πk( cosθ +y sinθ ) k dkdθ 0 Note : g(l,θ + π) = g( l,θ) So G(k,θ + π) = G( k,θ) µ(, y) = Filtered Backprojection π 0 π G(k,θ)e j 2π (k cosθ +yk sinθ ) k dkdθ = k G(k,θ)e j 2πkl dkdθ 0 π = g (l,θ)dθ 0 where l = cosθ + y sinθ g (l,θ) = k G(k,θ)e j 2πkl dk = g(l,θ) F 1 k = g(l,θ) q(l) [ ] Backproject a filtered projection 1

2 Fourier Interpretation Ram-Lak Filter Density N circumference N 2π k Low frequencies are oversampled. So to compensate for this, multiply the k-space data by k before inverse transforming. Typically will pick k ma =1/Δs where Δs is the beamwidth Kak and Slaney; Reconstruction Path Reconstruction Path * Filtered F F F -1 Back- Project F -1 Filtered Back- Project F -1 Filtered 2

3 Eample Eample Prince and Links 2005 Kak and Slaney Eample Filters Filtered s Prince and Links

4 CT Sampling Requirements View Aliasing What should the size of the detectors be? How many detectors (or lines) do we need? How many views do we need? Kak and Slaney 4

5 Aliasing Artifacts Object Effect of Noise Aliasing due to insufficient number of detectors Aliasing due to insufficient number of views Kak and Slaney Analog vs. Digital The Analog World: Continuous time/space, continuous valued signals or images, e.g. vinyl records, photographs, -ray films. The Digital World: Discrete time/space, discrete-valued signals or images, e.g. CD-Roms, DVDs, digital photos, digital -rays, CT, MRI, ultrasound. The Process of Sampling g() Δ sample g[n]=g(n Δ) 5

6 Questions Sampling in the Time Domain How finely do we need to sample? What happens if we don t sample finely enough? Can we reconstruct the original signal or image from its samples? Comb Function comb() = δ( n) n= Scaled Comb Function comb # & % ( = δ( $ Δ ' Δ n) n= = δ( nδ ) Δ n= = Δ δ( nδ) n= Other names: Impulse train, bed of nails, shah function. Δ 6

7 1D spatial sampling g S () = g() 1 Δ comb # & % ( $ Δ ' Recall the sifting property = g() δ( nδ) n= = g(nδ)δ( nδ) n= g()δ( a) = g(a) But we can also write g(a)δ( a) = g(a) δ( a) = g(a) So, g()δ( a) = g(a)δ( a) 1D spatial sampling g() Δ comb(/δ)/ Δ g S () Fourier Transform of comb() F[ comb() ] = comb(k ) = δ(k n) n= Fourier Transform of comb(/ Δ) comb(/ Δ)/ Δ # F 1 Δ comb( $ % Δ ) & ' ( = 1 Δ Δcomb(k Δ) = δ(k Δ n) n= = 1 Δ n= δ(k n Δ ) 1/Δ Δ 1/Δ F comb(k Δ) k 7

8 Fourier Transform of g S () [ ] = F g() 1 Δ comb % F g S () ) + * # &, (. $ Δ '- ) = G(k ) F 1 Δ comb # &, + % (. * $ Δ '- = G(k ) 1 Δ = 1 Δ = 1 Δ n= n= n= # δ k n & % ( $ Δ ' # G(k ) δ k n & % ( $ Δ ' # G k n & % ( $ Δ ' 1/Δ Fourier Transform of g S () G(k ) k G S (k ) 1/Δ k Nyquist Condition Eample -B B G(k ) k G S (k ) Assume that the highest spatial frequency in an object is B = 2 cm -1. Thus, smallest spatial period is 0.5 cm.. Nyquist theorem says we need to sample with Δ < 1/2B = 0.25 cm =1/Δ k This corresponds to 2 samples per spatial period. To avoid overlap, we require that 1/Δ>2B or > 2B where =1/ Δ is the sampling frequency 8

9 Reconstruction from Samples G S (k ) Eample Cosine Reconstruction cos(2πk 0 ) -k 0 k 0 >2k 0 =1/Δ Multiply by (1/ )rect(k / ) -k 0 k 0 (1/ ) G S (k )rect(k / ) =2k 0 =G(k ) -k 0 k 0 Reconstruction from Samples If the Nyquist condition G ˆ S (k ) = 1 is met, then G S (k )rect(k / ) = G(k ) And the signal can be reconstructed by convolving the sample with a sinc function g() Reconstruction from Samples Sample at Δ g S () g ˆ S () = g S () sinc(k s ) ( + = * g(nδx)δ( nδx) - sinc(k s ) ), n= = g(nδx) sinc(k s ( nδ)) n= ˆ g S () sinc(k s ) = sinc( / Δ) 9

10 Cosine Eample with =2k 0 Eample with K s =4k 0 Eample with K s =8k 0 Aliasing -B B G(k ) k Aliasing occurs when the Nyquist condition is not satisfied. This occurs for 2B 10

11 Aliasing Eample Aliasing Eample cos(2πk 0 ) -k 0 k 0 =k 0 -k 0 k 0 Aliasing Eample cos(2πk 0 ) -k 0 k 0 2k 0 > >k 0 -k 0 k 0 11

12 Eample Eample 1. Consider the function g() = cos 2 ( 2πk 0 ). Sketch this function. You sample this signal in the spatial domain with a sampling rate =1/Δ (e.g. samples spaced at intervals of Δ ). What is the minimum sampling rate that you can use without aliasing? Give an intuitive eplanation for your answer. Assume that the Nyquist sampling periods of f () and g() are Δf and Δg, respectively. Determine the Nyquist sampling periods for a) f ( 0 ) b) f ()+ g() c) f ()* f () PollEv.com/be280a PollEv.com/be280a from Prince and Links 2006 Detector Sampling Requirements Smoothing of Beam Width 2/(Δs) Sampling interval Δr Beamwidth Δs Smoothed 12

13 Smoothing of g s (l,θ) = rect(l /Δs) g( l,θ) G s (k,θ) = Δssinc(k Δs)G(k,θ) Smoothed Sampling Requirements Detectors Δr Δs/2 Sampled Smooth View Aliasing View Sampling Requirements View Sampling -- how many views? Basic idea is that to make the maimum angular sampling the same as the projection sampling. πfov N views = Δr N views,360 = πfov Δr = πn proj (for 360 degrees) N views,180 = πn proj 2 (for 180 degrees) Kak and Slaney 13

14 beamwidth Δs = 1 mm Eample Field of View (FOV) = 50 cm Δr = Δs/2 = 0.5 mm 500 mm/ 0.5 mm = N = 1000 detector samples π * N = 3146 views per 360 degrees 1500 views per 180 degrees CT "Rule of Thumb" N view = N det ectors = N piels Eample Consider a rectangular object of width 20mm and height 40mm centered at (-10mm, -10mm). The attenuation coefficient of the object is 1 mm -1. The object is imaged with a 1 st generation CT scanner with a beamwidth of 1mm. The desired FOV is 100 mm. Determine the appropriate detector size Δr and the number of radial samples needed to span the FOV. Assume that the middle two samples are acquired at coordinates of -Δr/2 and Δr/2. Determine the number of angular samples required. PollEv.com/be280a 14

Topics. View Aliasing. CT Sampling Requirements. Sampling Requirements in CT Sampling Theory Aliasing

Topics. View Aliasing. CT Sampling Requirements. Sampling Requirements in CT Sampling Theory Aliasing Topics Bioengineering 280A Principles of Biomedical Imaging Sampling Requirements in CT Sampling Theory Aliasing Fall Quarter 2007 CT/Fourier Lecture 4 CT Sampling Requirements View Aliasing What should

More information

Representation of 1D Function

Representation of 1D Function Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2005 Linear Systems Lecture 2 Representation of 1D Function From the sifting property, we can write a 1D function as g( = g(ξδ( ξdξ. To

More information

Representation of 1D Function

Representation of 1D Function Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2005 Linear Systems Lecture 2 Representation of 1D Function From the sifting property, we can write a 1D function as g(x) = g(ξ)δ(x ξ)dξ.

More information

Convolution Theorem Modulation Transfer Function y(t)=g(t)*h(t)

Convolution Theorem Modulation Transfer Function y(t)=g(t)*h(t) MTF = Fourier Transform of PSF Bioengineering 28A Principles of Biomedical Imaging Fall Quarter 214 CT/Fourier Lecture 4 Bushberg et al 21 Convolution Theorem Modulation Transfer Function y(t=g(t*h(t g(t

More information

Convolution/Modulation Theorem. 2D Convolution/Multiplication. Application of Convolution Thm. Bioengineering 280A Principles of Biomedical Imaging

Convolution/Modulation Theorem. 2D Convolution/Multiplication. Application of Convolution Thm. Bioengineering 280A Principles of Biomedical Imaging Bioengineering 8A Principles of Biomedical Imaging Fall Quarter 15 CT/Fourier Lecture 4 Convolution/Modulation Theorem [ ] e j πx F{ g(x h(x } = g(u h(x udu = g(u h(x u e j πx = g(uh( e j πu du = H( dxdu

More information

Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2005 X-Rays/CT Lecture 1. Topics

Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2005 X-Rays/CT Lecture 1. Topics Bioengineering 28A Principles of Biomedical Imaging Fall Quarter 25 X-Rays/CT Lecture Topics X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection

More information

Topics. EM spectrum. X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection

Topics. EM spectrum. X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection Bioengineering 28A Principles of Biomedical Imaging Fall Quarter 25 X-Rays/CT Lecture Topics X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection

More information

Topics. Example. Modulation. [ ] = G(k x. ] = 1 2 G ( k % k x 0) G ( k + k x 0) ] = 1 2 j G ( k x

Topics. Example. Modulation. [ ] = G(k x. ] = 1 2 G ( k % k x 0) G ( k + k x 0) ] = 1 2 j G ( k x Topics Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2008 CT/Fourier Lecture 3 Modulation Modulation Transfer Function Convolution/Multiplication Revisit Projection-Slice Theorem Filtered

More information

Topics. EM spectrum. X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection

Topics. EM spectrum. X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection Bioengineering 28A Principles of Biomedical Imaging Fall Quarter 24 X-Rays/CT Lecture Topics X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection

More information

Topics. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2006 CT/Fourier Lecture 2

Topics. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2006 CT/Fourier Lecture 2 Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2006 CT/Fourier Lecture 2 Topics Modulation Modulation Transfer Function Convolution/Multiplication Revisit Projection-Slice Theorem Filtered

More information

Backprojection. Projections. Projections " $ & cosθ & Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2014 CT/Fourier Lecture 2

Backprojection. Projections. Projections  $ & cosθ & Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2014 CT/Fourier Lecture 2 Backprojection Bioengineering 280A Principles of Biomedical Imaging 3 0 0 0 0 3 0 0 0 0 0 3 0 0 3 0 3 Fall Quarter 2014 CT/Fourier Lecture 2 0 0 0 1 1 1 0 0 0 1 0 0 1 2 1 0 0 1 1 1 0 1 3 1 0 1 1 1 1 1

More information

1D Convolution. Convolution g[m] = g[0]δ[m] + g[1]δ[m 1] + g[2]δ[m 2] h[m',k] = L[δ[m k]] = h[ m $ k]

1D Convolution. Convolution g[m] = g[0]δ[m] + g[1]δ[m 1] + g[2]δ[m 2] h[m',k] = L[δ[m k]] = h[ m $ k] cm 5 cm Bioengineering 28A Principles of Biomeical Imaging Assume =/2 Fall Quarter 24 X-Rays Lecture 2 cm 5 cm cm cm Assume =/2 Assume =/2 Convolution g[m] = g[]δ[m] + g[]δ[m ] + g[2]δ[m 2] h[m,k] = L[δ[m

More information

Fourier Sampling. Fourier Sampling. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2005 Linear Systems Lecture 3.

Fourier Sampling. Fourier Sampling. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2005 Linear Systems Lecture 3. Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2005 Linear Sstems Lecture 3 Fourier Sampling F Instead of sampling the signal, we sample its Fourier Transform Sample??? F -1 Fourier

More information

Spin-Warp Pulse Sequence

Spin-Warp Pulse Sequence Bioengineering 28A Principles of Biomedical Imaging Fall Quarter 25 Linear Systems Lecture Spin-Warp Pulse Sequence RF G x (t G y (t k y k x K-space trajectories EPI Spiral k y k y k x k x Credit: Larry

More information

Sampling in k-space. Aliasing. Aliasing. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2010 MRI Lecture 3. Slower B z (x)=g x x

Sampling in k-space. Aliasing. Aliasing. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2010 MRI Lecture 3. Slower B z (x)=g x x Sampling in k-space Bioengineering 80A Principles of Biomedical Imaging Fall Quarer 00 MRI Lecure 3 Thomas Liu, BE80A, UCSD, Fall 008 Aliasing Aliasing Slower B z (G Faser Inuiive view of Aliasing FOV

More information

IB Paper 6: Signal and Data Analysis

IB Paper 6: Signal and Data Analysis IB Paper 6: Signal and Data Analysis Handout 5: Sampling Theory S Godsill Signal Processing and Communications Group, Engineering Department, Cambridge, UK Lent 2015 1 / 85 Sampling and Aliasing All of

More information

Review: Continuous Fourier Transform

Review: Continuous Fourier Transform Review: Continuous Fourier Transform Review: convolution x t h t = x τ h(t τ)dτ Convolution in time domain Derivation Convolution Property Interchange the order of integrals Let Convolution Property By

More information

Fourier transform. Stefano Ferrari. Università degli Studi di Milano Methods for Image Processing. academic year

Fourier transform. Stefano Ferrari. Università degli Studi di Milano Methods for Image Processing. academic year Fourier transform Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for Image Processing academic year 27 28 Function transforms Sometimes, operating on a class of functions

More information

Lecture 8: Signal Reconstruction, DT vs CT Processing. 8.1 Reconstruction of a Band-limited Signal from its Samples

Lecture 8: Signal Reconstruction, DT vs CT Processing. 8.1 Reconstruction of a Band-limited Signal from its Samples EE518 Digital Signal Processing University of Washington Autumn 2001 Dept. of Electrical Engineering Lecture 8: Signal Reconstruction, D vs C Processing Oct 24, 2001 Prof: J. Bilmes

More information

Chap 4. Sampling of Continuous-Time Signals

Chap 4. Sampling of Continuous-Time Signals Digital Signal Processing Chap 4. Sampling of Continuous-Time Signals Chang-Su Kim Digital Processing of Continuous-Time Signals Digital processing of a CT signal involves three basic steps 1. Conversion

More information

EE16B - Spring 17 - Lecture 11B Notes 1

EE16B - Spring 17 - Lecture 11B Notes 1 EE6B - Spring 7 - Lecture B Notes Murat Arcak 6 April 207 Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Interpolation with Basis Functions Recall that

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 9: February 13th, 2018 Downsampling/Upsampling and Practical Interpolation Lecture Outline! CT processing of DT signals! Downsampling! Upsampling 2 Continuous-Time

More information

Module 3 : Sampling and Reconstruction Lecture 22 : Sampling and Reconstruction of Band-Limited Signals

Module 3 : Sampling and Reconstruction Lecture 22 : Sampling and Reconstruction of Band-Limited Signals Module 3 : Sampling and Reconstruction Lecture 22 : Sampling and Reconstruction of Band-Limited Signals Objectives Scope of this lecture: If a Continuous Time (C.T.) signal is to be uniquely represented

More information

Introduction to the Mathematics of Medical Imaging

Introduction to the Mathematics of Medical Imaging Introduction to the Mathematics of Medical Imaging Second Edition Charles L. Epstein University of Pennsylvania Philadelphia, Pennsylvania EiaJTL Society for Industrial and Applied Mathematics Philadelphia

More information

Quality Improves with More Rays

Quality Improves with More Rays Recap Quality Improves with More Rays Area Area 1 shadow ray 16 shadow rays CS348b Lecture 8 Pat Hanrahan / Matt Pharr, Spring 2018 pixelsamples = 1 jaggies pixelsamples = 16 anti-aliased Sampling and

More information

Index. p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96

Index. p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96 p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96 B 1,94-96 M,94-96 B oro!' 94-96 BIro!' 94-96 I/r, 79 2D linear system, 56 2D FFT, 119 2D Fourier transform, 1, 12, 18,91 2D sinc, 107, 112

More information

Assignment 2 Solutions

Assignment 2 Solutions EE225E/BIOE265 Spring 2012 Principles of MRI Miki Lustig Assignment 2 Solutions 1. Read Nishimura Ch. 3 2. Non-Uniform Sampling. A student has an assignment to monitor the level of Hetch-Hetchi reservoir

More information

Signals & Systems. Chapter 7: Sampling. Adapted from: Lecture notes from MIT, Binghamton University, and Purdue. Dr. Hamid R.

Signals & Systems. Chapter 7: Sampling. Adapted from: Lecture notes from MIT, Binghamton University, and Purdue. Dr. Hamid R. Signals & Systems Chapter 7: Sampling Adapted from: Lecture notes from MIT, Binghamton University, and Purdue Dr. Hamid R. Rabiee Fall 2013 Outline 1. The Concept and Representation of Periodic Sampling

More information

6.003: Signals and Systems. Sampling and Quantization

6.003: Signals and Systems. Sampling and Quantization 6.003: Signals and Systems Sampling and Quantization December 1, 2009 Last Time: Sampling and Reconstruction Uniform sampling (sampling interval T ): x[n] = x(nt ) t n Impulse reconstruction: x p (t) =

More information

Lecture 3: Linear Filters

Lecture 3: Linear Filters Lecture 3: Linear Filters Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Images as functions Linear systems (filters) Convolution and correlation Discrete Fourier Transform (DFT)

More information

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2015 MRI Lecture 4 k (t) = γ 2π k y (t) = γ 2π K-space At each point in time, the received signal is the Fourier transform of the object

More information

Biomedical Engineering Image Formation II

Biomedical Engineering Image Formation II Biomedical Engineering Image Formation II PD Dr. Frank G. Zöllner Computer Assisted Clinical Medicine Medical Faculty Mannheim Fourier Series - A Fourier series decomposes periodic functions or periodic

More information

Lecture 3: Linear Filters

Lecture 3: Linear Filters Lecture 3: Linear Filters Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Images as functions Linear systems (filters) Convolution and correlation Discrete Fourier Transform (DFT)

More information

The Fourier Transform

The Fourier Transform The Fourier Transorm Fourier Series Fourier Transorm The Basic Theorems and Applications Sampling Bracewell, R. The Fourier Transorm and Its Applications, 3rd ed. New York: McGraw-Hill, 2. Eric W. Weisstein.

More information

Discrete Fourier Transform

Discrete Fourier Transform Last lecture I introduced the idea that any function defined on x 0,..., N 1 could be written a sum of sines and cosines. There are two different reasons why this is useful. The first is a general one,

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Part 3: Fourier Transform and Filtering in the Frequency Domain AASS Learning Systems Lab, Dep. Teknik Room T109 (Fr, 11-1 o'clock) achim.lilienthal@oru.se Course Book Chapter

More information

Tomography and Reconstruction

Tomography and Reconstruction Tomography and Reconstruction Lecture Overview Applications Background/history of tomography Radon Transform Fourier Slice Theorem Filtered Back Projection Algebraic techniques Measurement of Projection

More information

BME 50500: Image and Signal Processing in Biomedicine. Lecture 5: Correlation and Power-Spectrum CCNY

BME 50500: Image and Signal Processing in Biomedicine. Lecture 5: Correlation and Power-Spectrum CCNY 1 BME 50500: Image and Signal Processing in Biomedicine Lecture 5: Correlation and Power-Spectrum Lucas C. Parra Biomedical Engineering Department CCNY http://bme.ccny.cuny.edu/faculty/parra/teaching/signal-and-image/

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

ECE 301 Fall 2011 Division 1 Homework 10 Solutions. { 1, for 0.5 t 0.5 x(t) = 0, for 0.5 < t 1

ECE 301 Fall 2011 Division 1 Homework 10 Solutions. { 1, for 0.5 t 0.5 x(t) = 0, for 0.5 < t 1 ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Let x be a periodic continuous-time signal with period, such that {, for.5 t.5 x(t) =, for.5

More information

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Homework 4 May 2017 1. An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Determine the impulse response of the system. Rewriting as y(t) = t e (t

More information

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x )

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x ) Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2013 MRI Lecture 5 GE Medical Systems 2003 Gibbs Artifact Apodization rect(k ) Hanning Window h(k )=1/2(1+cos(2πk ) 256256 image 256128

More information

Multidimensional digital signal processing

Multidimensional digital signal processing PSfrag replacements Two-dimensional discrete signals N 1 A 2-D discrete signal (also N called a sequence or array) is a function 2 defined over thex(n set 1 of, n 2 ordered ) pairs of integers: y(nx 1,

More information

3. Lecture. Fourier Transformation Sampling

3. Lecture. Fourier Transformation Sampling 3. Lecture Fourier Transformation Sampling Some slides taken from Digital Image Processing: An Algorithmic Introduction using Java, Wilhelm Burger and Mark James Burge Separability ² The 2D DFT can be

More information

X. Chen More on Sampling

X. Chen More on Sampling X. Chen More on Sampling 9 More on Sampling 9.1 Notations denotes the sampling time in second. Ω s = 2π/ and Ω s /2 are, respectively, the sampling frequency and Nyquist frequency in rad/sec. Ω and ω denote,

More information

Computed Tomography Notes, Part 1. The equation that governs the image intensity in projection imaging is:

Computed Tomography Notes, Part 1. The equation that governs the image intensity in projection imaging is: Noll 6 CT Notes : Page Compute Tomograph Notes Part Challenges with Projection X-ra Sstems The equation that governs the image intensit in projection imaging is: z I I ep μ z Projection -ra sstems are

More information

Signal Processing COS 323

Signal Processing COS 323 Signal Processing COS 323 Digital Signals D: functions of space or time e.g., sound 2D: often functions of 2 spatial dimensions e.g. images 3D: functions of 3 spatial dimensions CAT, MRI scans or 2 space,

More information

Images have structure at various scales

Images have structure at various scales Images have structure at various scales Frequency Frequency of a signal is how fast it changes Reflects scale of structure A combination of frequencies 0.1 X + 0.3 X + 0.5 X = Fourier transform Can we

More information

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n.

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n. ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Consider the following periodic signal, depicted below: {, if n t < n +, for any integer n,

More information

NMR and MRI : an introduction

NMR and MRI : an introduction Intensive Programme 2011 Design, Synthesis and Validation of Imaging Probes NMR and MRI : an introduction Walter Dastrù Università di Torino walter.dastru@unito.it \ Introduction Magnetic Resonance Imaging

More information

ECE 425. Image Science and Engineering

ECE 425. Image Science and Engineering ECE 425 Image Science and Engineering Spring Semester 2000 Course Notes Robert A. Schowengerdt schowengerdt@ece.arizona.edu (520) 62-2706 (voice), (520) 62-8076 (fa) ECE402 DEFINITIONS 2 Image science

More information

G52IVG, School of Computer Science, University of Nottingham

G52IVG, School of Computer Science, University of Nottingham Image Transforms Fourier Transform Basic idea 1 Image Transforms Fourier transform theory Let f(x) be a continuous function of a real variable x. The Fourier transform of f(x) is F ( u) f ( x)exp[ j2πux]

More information

Midterm Review. Yao Wang Polytechnic University, Brooklyn, NY 11201

Midterm Review. Yao Wang Polytechnic University, Brooklyn, NY 11201 Midterm Review Yao Wang Polytechnic University, Brooklyn, NY 11201 Based on J. L. Prince and J. M. Links, Medical maging Signals and Systems, and lecture notes by Prince. Figures are from the textbook.

More information

MB-JASS D Reconstruction. Hannes Hofmann March 2006

MB-JASS D Reconstruction. Hannes Hofmann March 2006 MB-JASS 2006 2-D Reconstruction Hannes Hofmann 19 29 March 2006 Outline Projections Radon Transform Fourier-Slice-Theorem Filtered Backprojection Ramp Filter 19 29 Mar 2006 Hannes Hofmann 2 Parallel Projections

More information

Fourier Analysis and Imaging Ronald Bracewell L.M. Terman Professor of Electrical Engineering Emeritus Stanford University Stanford, California

Fourier Analysis and Imaging Ronald Bracewell L.M. Terman Professor of Electrical Engineering Emeritus Stanford University Stanford, California Fourier Analysis and Imaging Ronald Bracewell L.M. Terman Professor of Electrical Engineering Emeritus Stanford University Stanford, California 4u Springer Contents fa 1 PREFACE INTRODUCTION xiii 1 11

More information

Numerical Approximation Methods for Non-Uniform Fourier Data

Numerical Approximation Methods for Non-Uniform Fourier Data Numerical Approximation Methods for Non-Uniform Fourier Data Aditya Viswanathan aditya@math.msu.edu 2014 Joint Mathematics Meetings January 18 2014 0 / 16 Joint work with Anne Gelb (Arizona State) Guohui

More information

Filtering in the Frequency Domain

Filtering in the Frequency Domain Filtering in the Frequency Domain Dr. Praveen Sankaran Department of ECE NIT Calicut January 11, 2013 Outline 1 Preliminary Concepts 2 Signal A measurable phenomenon that changes over time or throughout

More information

Topics. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2004 Lecture 4 2D Fourier Transforms

Topics. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2004 Lecture 4 2D Fourier Transforms Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2004 Lecture 4 2D Fourier Transforms Topics 1. 2D Signal Representations 2. 2D Fourier Transform 3. Transform Pairs 4. FT Properties 1

More information

Fourier Transforms 1D

Fourier Transforms 1D Fourier Transforms 1D 3D Image Processing Alireza Ghane 1 Overview Recap Intuitions Function representations shift-invariant spaces linear, time-invariant (LTI) systems complex numbers Fourier Transforms

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Lecture 19 Practical ADC/DAC Ideal Anti-Aliasing ADC A/D x c (t) Analog Anti-Aliasing Filter HLP(jΩ) sampler t = nt x[n] =x c (nt ) Quantizer 1 X c (j ) and s < 2 1 T X

More information

Frequency2: Sampling and Aliasing

Frequency2: Sampling and Aliasing CS 4495 Computer Vision Frequency2: Sampling and Aliasing Aaron Bobick School of Interactive Computing Administrivia Project 1 is due tonight. Submit what you have at the deadline. Next problem set stereo

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 8: February 7th, 2017 Sampling and Reconstruction Lecture Outline! Review " Ideal sampling " Frequency response of sampled signal " Reconstruction " Anti-aliasing

More information

Sinc Functions. Continuous-Time Rectangular Pulse

Sinc Functions. Continuous-Time Rectangular Pulse Sinc Functions The Cooper Union Department of Electrical Engineering ECE114 Digital Signal Processing Lecture Notes: Sinc Functions and Sampling Theory October 7, 2011 A rectangular pulse in time/frequency

More information

EE 261 The Fourier Transform and its Applications Fall 2006 Midterm Exam Solutions

EE 261 The Fourier Transform and its Applications Fall 2006 Midterm Exam Solutions EE 6 The Fourier Transform and its Applications Fall 006 Midterm Exam Solutions There are six questions for a total of 00 points. Please write your answers in the exam booklet provided, and make sure that

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 8: February 12th, 2019 Sampling and Reconstruction Lecture Outline! Review " Ideal sampling " Frequency response of sampled signal " Reconstruction " Anti-aliasing

More information

Fourier Reconstruction from Non-Uniform Spectral Data

Fourier Reconstruction from Non-Uniform Spectral Data School of Electrical, Computer and Energy Engineering, Arizona State University aditya.v@asu.edu With Profs. Anne Gelb, Doug Cochran and Rosemary Renaut Research supported in part by National Science Foundation

More information

Lecture 13: Forces in the Lagrangian Approach

Lecture 13: Forces in the Lagrangian Approach Lecture 3: Forces in the Lagrangian Approach In regular Cartesian coordinates, the Lagrangian for a single particle is: 3 L = T U = m x ( ) l U xi l= Given this, we can readily interpret the physical significance

More information

-Digital Signal Processing- FIR Filter Design. Lecture May-16

-Digital Signal Processing- FIR Filter Design. Lecture May-16 -Digital Signal Processing- FIR Filter Design Lecture-17 24-May-16 FIR Filter Design! FIR filters can also be designed from a frequency response specification.! The equivalent sampled impulse response

More information

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1 Module 2 : Signals in Frequency Domain Problem Set 2 Problem 1 Let be a periodic signal with fundamental period T and Fourier series coefficients. Derive the Fourier series coefficients of each of the

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Filtering in the Frequency Domain http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Background

More information

Biomedical Engineering Image Formation

Biomedical Engineering Image Formation Biomedical Engineering Image Formation PD Dr. Frank G. Zöllner Computer Assisted Clinical Medicine Medical Faculty Mannheim Learning objectives! Understanding the process of image formation! Point spread

More information

Poles and Zeros in z-plane

Poles and Zeros in z-plane M58 Mixed Signal Processors page of 6 Poles and Zeros in z-plane z-plane Response of discrete-time system (i.e. digital filter at a particular frequency ω is determined by the distance between its poles

More information

2A1H Time-Frequency Analysis II

2A1H Time-Frequency Analysis II 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 209 For any corrections see the course page DW Murray at www.robots.ox.ac.uk/ dwm/courses/2tf. (a) A signal g(t) with period

More information

Bridge between continuous time and discrete time signals

Bridge between continuous time and discrete time signals 6 Sampling Bridge between continuous time and discrete time signals Sampling theorem complete representation of a continuous time signal by its samples Samplingandreconstruction implementcontinuous timesystems

More information

Lecture 3 - Design of Digital Filters

Lecture 3 - Design of Digital Filters Lecture 3 - Design of Digital Filters 3.1 Simple filters In the previous lecture we considered the polynomial fit as a case example of designing a smoothing filter. The approximation to an ideal LPF can

More information

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit dwm/courses/2tf

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit   dwm/courses/2tf Time-Frequency Analysis II (HT 20) 2AH 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 20 For hints and answers visit www.robots.ox.ac.uk/ dwm/courses/2tf David Murray. A periodic

More information

Sound & Vibration Magazine March, Fundamentals of the Discrete Fourier Transform

Sound & Vibration Magazine March, Fundamentals of the Discrete Fourier Transform Fundamentals of the Discrete Fourier Transform Mark H. Richardson Hewlett Packard Corporation Santa Clara, California The Fourier transform is a mathematical procedure that was discovered by a French mathematician

More information

Up/down-sampling & interpolation Centre for Doctoral Training in Healthcare Innovation

Up/down-sampling & interpolation Centre for Doctoral Training in Healthcare Innovation Up/down-sampling & interpolation Centre for Doctoral Training in Healthcare Innovation Dr. Gari D. Clifford, University Lecturer & Director, Centre for Doctoral Training in Healthcare Innovation, Institute

More information

Today s lecture. The Fourier transform. Sampling, aliasing, interpolation The Fast Fourier Transform (FFT) algorithm

Today s lecture. The Fourier transform. Sampling, aliasing, interpolation The Fast Fourier Transform (FFT) algorithm Today s lecture The Fourier transform What is it? What is it useful for? What are its properties? Sampling, aliasing, interpolation The Fast Fourier Transform (FFT) algorithm Jean Baptiste Joseph Fourier

More information

9.4 Enhancing the SNR of Digitized Signals

9.4 Enhancing the SNR of Digitized Signals 9.4 Enhancing the SNR of Digitized Signals stepping and averaging compared to ensemble averaging creating and using Fourier transform digital filters removal of Johnson noise and signal distortion using

More information

Beam Diagnostics Lecture 3. Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI

Beam Diagnostics Lecture 3. Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI Beam Diagnostics Lecture 3 Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI Contents of lecture 3 Some examples of measurements done with the instruments explained during the last 2 lectures

More information

NIH Public Access Author Manuscript Proc Soc Photo Opt Instrum Eng. Author manuscript; available in PMC 2013 December 17.

NIH Public Access Author Manuscript Proc Soc Photo Opt Instrum Eng. Author manuscript; available in PMC 2013 December 17. NIH Public Access Author Manuscript Published in final edited form as: Proc Soc Photo Opt Instrum Eng. 2008 March 18; 6913:. doi:10.1117/12.769604. Tomographic Reconstruction of Band-limited Hermite Expansions

More information

CS 4495 Computer Vision. Frequency and Fourier Transforms. Aaron Bobick School of Interactive Computing. Frequency and Fourier Transform

CS 4495 Computer Vision. Frequency and Fourier Transforms. Aaron Bobick School of Interactive Computing. Frequency and Fourier Transform CS 4495 Computer Vision Frequency and Fourier Transforms Aaron Bobick School of Interactive Computing Administrivia Project 1 is (still) on line get started now! Readings for this week: FP Chapter 4 (which

More information

Fourier Series Example

Fourier Series Example Fourier Series Example Let us compute the Fourier series for the function on the interval [ π,π]. f(x) = x f is an odd function, so the a n are zero, and thus the Fourier series will be of the form f(x)

More information

Signals, Instruments, and Systems W5. Introduction to Signal Processing Sampling, Reconstruction, and Filters

Signals, Instruments, and Systems W5. Introduction to Signal Processing Sampling, Reconstruction, and Filters Signals, Instruments, and Systems W5 Introduction to Signal Processing Sampling, Reconstruction, and Filters Acknowledgments Recapitulation of Key Concepts from the Last Lecture Dirac delta function (

More information

Fourier Transform Chapter 10 Sampling and Series

Fourier Transform Chapter 10 Sampling and Series Fourier Transform Chapter 0 Sampling and Series Sampling Theorem Sampling Theorem states that, under a certain condition, it is in fact possible to recover with full accuracy the values intervening between

More information

2 The Fourier Transform

2 The Fourier Transform 2 The Fourier Transform The Fourier transform decomposes a signal defined on an infinite time interval into a λ-frequency component, where λ can be any real(or even complex) number. 2.1 Informal Development

More information

Digital Signal Processing. Midterm 1 Solution

Digital Signal Processing. Midterm 1 Solution EE 123 University of California, Berkeley Anant Sahai February 15, 27 Digital Signal Processing Instructions Midterm 1 Solution Total time allowed for the exam is 8 minutes Some useful formulas: Discrete

More information

RF Pulse Design. Multi-dimensional Excitation I. M229 Advanced Topics in MRI Kyung Sung, Ph.D Class Business

RF Pulse Design. Multi-dimensional Excitation I. M229 Advanced Topics in MRI Kyung Sung, Ph.D Class Business RF Pulse Design Multi-dimensional Excitation I M229 Advanced Topics in MRI Kyung Sung, Ph.D. 2018.04.10 Class Business Office hours - Instructors: Fri 10-12pm TAs: Xinran Zhong and Zhaohuan Zhang (time:

More information

Maximal Entropy for Reconstruction of Back Projection Images

Maximal Entropy for Reconstruction of Back Projection Images Maximal Entropy for Reconstruction of Back Projection Images Tryphon Georgiou Department of Electrical and Computer Engineering University of Minnesota Minneapolis, MN 5545 Peter J Olver Department of

More information

8.1 Circuit Parameters

8.1 Circuit Parameters 8.1 Circuit Parameters definition of decibels using decibels transfer functions impulse response rise time analysis Gaussian amplifier transfer function RC circuit transfer function analog-to-digital conversion

More information

Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012)

Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012) Fourier Transform in Image Processing CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012) Basis Decomposition Write a function as a weighted sum of basis functions f ( x) wibi(

More information

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes

More information

Nyquist sampling a bandlimited function. Sampling: The connection from CT to DT. Impulse Train sampling. Interpolation: Signal Reconstruction

Nyquist sampling a bandlimited function. Sampling: The connection from CT to DT. Impulse Train sampling. Interpolation: Signal Reconstruction Sampling: he connection rom C to D Nyquist sampling a bandlimited unction ( Consider as an example sampling the bandlimited signal sinc 2 (5t F 1 5 Λ 5 An ininite number o waveorms could exactly pass through

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE23 Digital Signal Processing Lecture 7B Sampling What is this Phenomena? https://www.youtube.com/watch?v=cxddi8m_mzk Sampling of Continuous ime Signals (Ch.4) Sampling: Conversion from C. (not quantized)

More information

6.869 Advances in Computer Vision. Bill Freeman, Antonio Torralba and Phillip Isola MIT Oct. 3, 2018

6.869 Advances in Computer Vision. Bill Freeman, Antonio Torralba and Phillip Isola MIT Oct. 3, 2018 6.869 Advances in Computer Vision Bill Freeman, Antonio Torralba and Phillip Isola MIT Oct. 3, 2018 1 Sampling Sampling Pixels Continuous world 3 Sampling 4 Sampling 5 Continuous image f (x, y) Sampling

More information

Additional Pointers. Introduction to Computer Vision. Convolution. Area operations: Linear filtering

Additional Pointers. Introduction to Computer Vision. Convolution. Area operations: Linear filtering Additional Pointers Introduction to Computer Vision CS / ECE 181B andout #4 : Available this afternoon Midterm: May 6, 2004 W #2 due tomorrow Ack: Prof. Matthew Turk for the lecture slides. See my ECE

More information

Finite difference modelling, Fourier analysis, and stability

Finite difference modelling, Fourier analysis, and stability Finite difference modelling, Fourier analysis, and stability Peter M. Manning and Gary F. Margrave ABSTRACT This paper uses Fourier analysis to present conclusions about stability and dispersion in finite

More information

MEDE2500 Tutorial Nov-7

MEDE2500 Tutorial Nov-7 (updated 2016-Nov-4,7:40pm) MEDE2500 (2016-2017) Tutorial 3 MEDE2500 Tutorial 3 2016-Nov-7 Content 1. The Dirac Delta Function, singularity functions, even and odd functions 2. The sampling process and

More information