Spin-Warp Pulse Sequence

Size: px
Start display at page:

Download "Spin-Warp Pulse Sequence"

Transcription

1 Bioengineering 28A Principles of Biomedical Imaging Fall Quarter 25 Linear Systems Lecture Spin-Warp Pulse Sequence RF G x (t G y (t k y k x K-space trajectories EPI Spiral k y k y k x k x Credit: Larry Frank

2 K-space At each point in time, the received signal is the Fourier transform of the object s(t = M( k x (t (t = F[ m(x, y ] kx (t (t evaluated at the spatial frequencies: k x (t = γ 2π k y (t = γ 2π t t G x (τdτ G y (τdτ Thus, the gradients control our position in k-space. The design of an MRI pulse sequence requires us to efficiently cover enough of k-space to form our image. Rectangle Function Π(x = x >/2 x /2 -/2 /2 x Also called rect(x Π(x, y = Π(xΠ(y y /2 -/2 /2 -/2 x Kronecker Delta Function δ[n] = for n = otherwise δ[n] δ[n-2] n n 2

3 Kronecker Delta Function for m =,n = δ[m,n] = otherwise δ[m,n] δ[m-2,n] δ[m,n-2] δ[m-2,n-2] Discrete Signal Expansion g[n] = g[k]δ[n k] g[m,n] = k= k= l= g[k,l]δ[m k,n l] δ[n] g[n] n -δ[n-] n n.5δ[n-2] n n Dirac Delta Function Notation : δ(x - D Dirac Delta Function δ(x, y or 2 δ(x, y - 2D Dirac Delta Function δ(x, y,z or 3 δ(x, y,z - 3D Dirac Delta Function δ( r - N Dimensional Dirac Delta Function 3

4 D Dirac Delta Function δ(x = when x and δ(xdx = Can interpret the integral as a limit of the integral of an ordinary function that is shrinking in width and growing in height, while maintaining a constant area. For example, we can use a shrinking rectangle function such that δ(xdx = lim τ Π(x /τdx. τ τ -/2 /2 x 2D Dirac Delta Function δ(x, y = when x 2 + y 2 and δ(x, ydxdy = where we can consider the limit of the integral of an ordinary 2D function that is shrinking in width but increasing in height while maintaining constant area. δ(x,ydxdy = lim τ 2 Π x /τ, y /τ τ ( dxdy. Useful fact : δ(x,y = δ(xδ(y τ Generalized Functions Dirac delta functions are not ordinary functions that are defined by their value at each point. Instead, they are generalized functions that are defined by what they do underneath an integral. The most important property of the Dirac delta is the sifting property δ(x x g(xdx = g(x where g(x is a smooth function. This sifting property can be understood by considering the limiting case lim τ Π x /τ τ ( g(xdx = g(x x g(x Area = (height(width= (g(x / τ τ = g(x 4

5 Working with Dirac Delta Functions What is δ(ax - b? What is dδ(x/dx? How do we define generalized functions? There are two main approaches : Look at the limit of an integral with sequences. 2 Consider the behavior of the function when integrated with a nice test function. Two generalized functions δ (t and δ 2 (t are equivalent in the distributional sense when δ (tφ(tdt = δ 2 (tφ(tdt - - Example : δ(ax =?? Representation of D Function From the sifting property, we can write a D function as g(x = g(ξδ(x ξdξ. To gain intuition, consider the approximation g(x n= g(nδx Δx Π x nδx Δx. Δx g(x Representation of 2D Function Similarly, we can write a 2D function as g(x,y = g(ξ,ηδ(x ξ,y ηdξdη. To gain intuition, consider the approximation g(x, y g(nδx,mδy Δx Π x nδx n= Δx Δy Π y mδy ΔxΔy. m= Δy 5

6 Impulse Response Intuition: the impulse response is the response of a system to an input of infinitesimal width and unit area. Original Image Blurred Image Since any input can be thought of as the weighted sum of impulses, a linear system is characterized by its impulse response(s. The Fourier Transform The Fourier Transform (FT is simply given by the basis coefficients G( f = e j 2πft,g(t = g(te j 2πft dt = F{ g(t } The Inverse Fourier Transform is the continuous- time integral expansion for g(t : g(t = G( f b f (t df = G( f e j 2πft df = F { G( f } This can also be written as an inner product in Fourier Space g(t = e j 2πft,G( f Units Temporal Coordinates, e.g. t in seconds, f in cycles/second G( f = e j 2πft,g(t = g(te j 2πft dt Fourier Transform g(t = e j 2πft,G( f = G( f e j 2πft df Inverse Fourier Transform Spatial Coordinates, e.g. x in cm, k x is spatial frequency in cycles/cm = e j 2πkxx,g(x = g(xe j 2πk xx dx Fourier Transform g(x = e j 2πk x x, = e j 2πk x x dk x Inverse Fourier Transform 6

7 2D Fourier Transform Fourier Transform = F[ g( x, y ] = e j 2π ( k x x +k y y,g = g(x,y Inverse Fourier Transform g(x, y = ( dkx dk y e j 2π k xx +k yy ( dxdy e j 2π k x x +k y y D Fourier Transform KPBS KIFM Fourier Transform KIOZ Plane Waves e j 2π (k xx +k y y = cos( 2π(k x x + k y y + j sin( 2π(k x x + k y y k x 2 + k y 2 /k y /k x cos(2πk x x cos(2πk y y cos(2πk x x +2πk y y 7

8 Figure 2.5 from Prince and Link Plane Waves ΔABC ~ ΔBDC AC AB = BC BD A /ky θ D C θ B BC BD = AB = AC k x ky + k x2 k y2 = k x2 + k y2 k θ = arctan y kx /kx Linearity Basic Properties F [ ag(x, y + bh(x, y] = a + bh(kx Scaling F [ g(ax,by] = kx kx G, ab a b Shift F [ g(x a, y b] = e j 2 π (kx a +ky b Modulation F [ g(x, ye j 2 π (xa +yb ] = G(kx a b 8

9 Computing Transforms F(δ(x = δ(xe j 2πk xx dx = F(δ(x x = δ(x x e j 2πk x x dx = e j 2πk x x / 2 F( Π( x = e j 2πk xx / 2 dx = e jπk x e jπk x j2πk x = sin(πk x πk x = sinc(k x Scaling Theorem F{ g(ax } = a G k x a Separable Functions g( x, y is said to be a separable function if it can be written as g( x, y = g X ( xg Y ( y The Fourier Transform is then separable as well. = g(x, y e j 2π ( k x x +k y y dxdy = g X ( xe j 2πk x x dx g Y ( y e j 2πkyy dy = G X (k x G Y (k y Example g(x, y = Π(xΠ(y = sinc(k x sinc(k y 9

10 Example g(x, y = Π(xΠ(y = sinc(k x sinc(k y Example (sinc/rect y /2 -/2 /2 x -/2 Example (sinc/rect F( = e j 2πk x x dx =??? Computing Transforms Define h( k x = e j 2πk x x dx and see what it does under an integral. G( k x h( k x dk x = G( k x e j 2πk xx dxdk x = G( k x e j 2πk x x dk x dx = g( xdx = G( Therefore, F( = e j 2πk xx dx = δ(k x

11 Linearity The Fourier Transform is linear. F{ ag(x + bh(x } = a + bh(k x F[ ag(x,y + bh(x,y ] = a + bh(k x Similarly, Computing Transforms F e j 2πk x { } = δ(k x k F{ cos2πk x} = ( 2 δ(k x k + δ(k x + k F{ sin2πk x} = ( 2 j δ(k x k δ(k x + k Examples g(x, y = δ(x, y = δ(xδ(y = g(x, y = δ(x = δ(k y!!!

12 Examples g(x, y =+ e j 2πax = δ k x ( + δ(k x + aδ(k y g(x, y =+ e j 2πay = δ(k x + δ(k x δ(k y a Examples g(x, y = cos(2π(ax + by = 2 δ(k x aδ(k y b + 2 δ(k x + aδ(k y + b Examples = δ(k x + g(x, y =??? δ(k x + cδ(k y + δ(k x δ(k y d + 2 δ(k x aδ(k y b + 2 δ(k x + aδ(k y + b 2

13 Duality Note the similarity between these two transforms { } = δ(k x a F e j 2πax F{ δ(x a } = e j 2πk x a These are specific cases of duality F{ G(x } = g( k x Application of Duality F{ sinc(x } = sinπx πx e j 2πk xx dx =?? Recall that F{ Π(x } = sinc( k x. Therefore from duality, F{ sinc( x } = Π( k x = Π(k x Shift Theorem F{ g(x a } = G( k x e j 2πak x Shifting the function doesn't change its spectral content, so the magnitude of the transform is unchanged. Each frequency component is shifted by a. This corresponds to a relative phase shift of - 2πa /(spatial period = - 2πak x For example, consider exp( j2πk x x. Shifting this by a yields exp( j2πk x (x a = exp( j2πk x xexp( j2πak x 3

14 Modulation F g(xe j 2πk [ x ] = δ(k x k = G( k x k F[ g(xcos( 2πk x ] = 2 G ( k k x + 2 G ( k + k x F[ g(xsin( 2πk x ] = 2 j G ( k k x 2 j G ( k + k x Example Amplitude Modulation (e.g. AM Radio g(t 2g(t cos(2πf t 2cos(2πf t G(f -f f G(f-f + G(f+f Modulation Example x = * = 4

Topics. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2004 Lecture 4 2D Fourier Transforms

Topics. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2004 Lecture 4 2D Fourier Transforms Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2004 Lecture 4 2D Fourier Transforms Topics 1. 2D Signal Representations 2. 2D Fourier Transform 3. Transform Pairs 4. FT Properties 1

More information

Backprojection. Projections. Projections " $ & cosθ & Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2014 CT/Fourier Lecture 2

Backprojection. Projections. Projections  $ & cosθ & Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2014 CT/Fourier Lecture 2 Backprojection Bioengineering 280A Principles of Biomedical Imaging 3 0 0 0 0 3 0 0 0 0 0 3 0 0 3 0 3 Fall Quarter 2014 CT/Fourier Lecture 2 0 0 0 1 1 1 0 0 0 1 0 0 1 2 1 0 0 1 1 1 0 1 3 1 0 1 1 1 1 1

More information

Representation of 1D Function

Representation of 1D Function Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2005 Linear Systems Lecture 2 Representation of 1D Function From the sifting property, we can write a 1D function as g(x) = g(ξ)δ(x ξ)dξ.

More information

Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2006 X-Rays Lecture 3. Topics

Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2006 X-Rays Lecture 3. Topics Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2006 X-Rays Lecture 3 Topics Address questions from last lecture Review image equation Linearity Delta Functions Superposition Convolution

More information

Convolution/Modulation Theorem. 2D Convolution/Multiplication. Application of Convolution Thm. Bioengineering 280A Principles of Biomedical Imaging

Convolution/Modulation Theorem. 2D Convolution/Multiplication. Application of Convolution Thm. Bioengineering 280A Principles of Biomedical Imaging Bioengineering 8A Principles of Biomedical Imaging Fall Quarter 15 CT/Fourier Lecture 4 Convolution/Modulation Theorem [ ] e j πx F{ g(x h(x } = g(u h(x udu = g(u h(x u e j πx = g(uh( e j πu du = H( dxdu

More information

Convolution Theorem Modulation Transfer Function y(t)=g(t)*h(t)

Convolution Theorem Modulation Transfer Function y(t)=g(t)*h(t) MTF = Fourier Transform of PSF Bioengineering 28A Principles of Biomedical Imaging Fall Quarter 214 CT/Fourier Lecture 4 Bushberg et al 21 Convolution Theorem Modulation Transfer Function y(t=g(t*h(t g(t

More information

Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2004 Lecture 2 Linear Systems. Topics

Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2004 Lecture 2 Linear Systems. Topics Bioegieerig 280A Priciples of Biomedical Imagig Fall Quarter 2004 Lecture 2 Liear Systems Topics 1. Liearity 2. Impulse Respose ad Delta fuctios 3. Superpositio Itegral 4. Shift Ivariace 5. 1D ad 2D covolutio

More information

Kronecker Delta Function # 1 for m = 0,n = 0. Kronecker Delta Function

Kronecker Delta Function # 1 for m = 0,n = 0. Kronecker Delta Function Bioegieerig 280A Priciples of Biomedical Imagig Fall Quarter 202 Sigals ad Fourier Trasforms Sigals ad Images Discrete-time/space sigałimage: cotiuous valued fuctio with a discrete time/space ide, deoted

More information

Representation of 1D Function

Representation of 1D Function Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2005 Linear Systems Lecture 2 Representation of 1D Function From the sifting property, we can write a 1D function as g( = g(ξδ( ξdξ. To

More information

Topics. Example. Modulation. [ ] = G(k x. ] = 1 2 G ( k % k x 0) G ( k + k x 0) ] = 1 2 j G ( k x

Topics. Example. Modulation. [ ] = G(k x. ] = 1 2 G ( k % k x 0) G ( k + k x 0) ] = 1 2 j G ( k x Topics Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2008 CT/Fourier Lecture 3 Modulation Modulation Transfer Function Convolution/Multiplication Revisit Projection-Slice Theorem Filtered

More information

Topics. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2006 CT/Fourier Lecture 2

Topics. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2006 CT/Fourier Lecture 2 Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2006 CT/Fourier Lecture 2 Topics Modulation Modulation Transfer Function Convolution/Multiplication Revisit Projection-Slice Theorem Filtered

More information

The Fourier transform, indicated by the operator F, constructs a spectrum A(k x,k y ) = F {E(x,y)} from a spatial distribution E(x,y):

The Fourier transform, indicated by the operator F, constructs a spectrum A(k x,k y ) = F {E(x,y)} from a spatial distribution E(x,y): 1 4. FOURIER TRANSFORMS (vs. 3.0) DEFINITIONS GENERAL PROPERTIES linearity conjugate functions multiplication and convolution multiplication and correlation Parseval's relation time shifting frequency

More information

EE 438 Essential Definitions and Relations

EE 438 Essential Definitions and Relations May 2004 EE 438 Essential Definitions and Relations CT Metrics. Energy E x = x(t) 2 dt 2. Power P x = lim T 2T T / 2 T / 2 x(t) 2 dt 3. root mean squared value x rms = P x 4. Area A x = x(t) dt 5. Average

More information

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 2: Fourier Representations Jie Liang School of Engineering Science Simon Fraser University 1 Outline Chap 2.1 2.5: Signal Classifications Fourier Transform Dirac Delta Function

More information

Spin. Nuclear Spin Rules

Spin. Nuclear Spin Rules Spin Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 203 MRI Lecture Intrinsic angular momentum of elementary particles -- electrons, protons, neutrons. Spin is quantized. Key concept

More information

Fourier Reconstruction. Polar Version of Inverse FT. Filtered Backprojection [ ] Bioengineering 280A Principles of Biomedical Imaging

Fourier Reconstruction. Polar Version of Inverse FT. Filtered Backprojection [ ] Bioengineering 280A Principles of Biomedical Imaging Fourier Reconstruction Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2014 CT/Fourier Lecture 5 F Interpolate onto Cartesian grid with appropriate density correction then take inverse

More information

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis. 26 October - 20 November, 2009

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis. 26 October - 20 November, 2009 2065-33 Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis 26 October - 20 November, 2009 Introduction to two-dimensional digital signal processing Fabio Mammano University

More information

Fourier Series and Transform KEEE343 Communication Theory Lecture #7, March 24, Prof. Young-Chai Ko

Fourier Series and Transform KEEE343 Communication Theory Lecture #7, March 24, Prof. Young-Chai Ko Fourier Series and Transform KEEE343 Communication Theory Lecture #7, March 24, 20 Prof. Young-Chai Ko koyc@korea.ac.kr Summary Fourier transform Properties Fourier transform of special function Fourier

More information

MIT 2.71/2.710 Optics 10/31/05 wk9-a-1. The spatial frequency domain

MIT 2.71/2.710 Optics 10/31/05 wk9-a-1. The spatial frequency domain 10/31/05 wk9-a-1 The spatial frequency domain Recall: plane wave propagation x path delay increases linearly with x λ z=0 θ E 0 x exp i2π sinθ + λ z i2π cosθ λ z plane of observation 10/31/05 wk9-a-2 Spatial

More information

CS-9645 Introduction to Computer Vision Techniques Winter 2018

CS-9645 Introduction to Computer Vision Techniques Winter 2018 Table of Contents Spectral Analysis...1 Special Functions... 1 Properties of Dirac-delta Functions...1 Derivatives of the Dirac-delta Function... 2 General Dirac-delta Functions...2 Harmonic Analysis...

More information

cse547, math547 DISCRETE MATHEMATICS Professor Anita Wasilewska

cse547, math547 DISCRETE MATHEMATICS Professor Anita Wasilewska cse547, math547 DISCRETE MATHEMATICS Professor Anita Wasilewska LECTURE 9a CHAPTER 2 SUMS Part 1: Introduction - Lecture 5 Part 2: Sums and Recurrences (1) - Lecture 5 Part 2: Sums and Recurrences (2)

More information

Sec. 14.3: Partial Derivatives. All of the following are ways of representing the derivative. y dx

Sec. 14.3: Partial Derivatives. All of the following are ways of representing the derivative. y dx Math 2204 Multivariable Calc Chapter 14: Partial Derivatives I. Review from math 1225 A. First Derivative Sec. 14.3: Partial Derivatives 1. Def n : The derivative of the function f with respect to the

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Announcements Topics: - sections 7.1 (differential equations), 7.2 (antiderivatives), and 7.3 (the definite integral +area) * Read these sections and study solved examples in your textbook! Homework: -

More information

Summary of Fourier Transform Properties

Summary of Fourier Transform Properties Summary of Fourier ransform Properties Frank R. Kschischang he Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of oronto January 7, 207 Definition and Some echnicalities

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenourseWare http://ocw.mit.edu 8.02 Multivariable alculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.02 Lecture 8. hange of variables.

More information

Assignment for next week

Assignment for next week Assignment for next week Due: 6:30 PM Monday April 11 th (2016) -> PDF by email only 5 points: Pose two questions based on this lecture 5 points: what (and why) is sinc(0)? 5 points: ketch (by hand okay)

More information

Spin. Nuclear Spin Rules

Spin. Nuclear Spin Rules Spin Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2012 MRI Lecture 1 Intrinsic angular momentum of elementary particles -- electrons, protons, neutrons. Spin is quantized. Key concept

More information

Part II: Magnetic Resonance Imaging (MRI)

Part II: Magnetic Resonance Imaging (MRI) Part II: Magnetic Resonance Imaging (MRI) Contents Magnetic Field Gradients Selective Excitation Spatially Resolved Reception k-space Gradient Echo Sequence Spin Echo Sequence Magnetic Resonance Imaging

More information

Fourier Sampling. Fourier Sampling. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2005 Linear Systems Lecture 3.

Fourier Sampling. Fourier Sampling. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2005 Linear Systems Lecture 3. Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2005 Linear Sstems Lecture 3 Fourier Sampling F Instead of sampling the signal, we sample its Fourier Transform Sample??? F -1 Fourier

More information

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2015 MRI Lecture 4 k (t) = γ 2π k y (t) = γ 2π K-space At each point in time, the received signal is the Fourier transform of the object

More information

1 otherwise. Note that the area of the pulse is one. The Dirac delta function (a.k.a. the impulse) can be defined using the pulse as follows:

1 otherwise. Note that the area of the pulse is one. The Dirac delta function (a.k.a. the impulse) can be defined using the pulse as follows: The Dirac delta function There is a function called the pulse: { if t > Π(t) = 2 otherwise. Note that the area of the pulse is one. The Dirac delta function (a.k.a. the impulse) can be defined using the

More information

Nov : Lecture 18: The Fourier Transform and its Interpretations

Nov : Lecture 18: The Fourier Transform and its Interpretations 3 Nov. 04 2005: Lecture 8: The Fourier Transform and its Interpretations Reading: Kreyszig Sections: 0.5 (pp:547 49), 0.8 (pp:557 63), 0.9 (pp:564 68), 0.0 (pp:569 75) Fourier Transforms Expansion of a

More information

University of Connecticut Lecture Notes for ME5507 Fall 2014 Engineering Analysis I Part III: Fourier Analysis

University of Connecticut Lecture Notes for ME5507 Fall 2014 Engineering Analysis I Part III: Fourier Analysis University of Connecticut Lecture Notes for ME557 Fall 24 Engineering Analysis I Part III: Fourier Analysis Xu Chen Assistant Professor United Technologies Engineering Build, Rm. 382 Department of Mechanical

More information

RF Pulse Design. Multi-dimensional Excitation I. M229 Advanced Topics in MRI Kyung Sung, Ph.D Class Business

RF Pulse Design. Multi-dimensional Excitation I. M229 Advanced Topics in MRI Kyung Sung, Ph.D Class Business RF Pulse Design Multi-dimensional Excitation I M229 Advanced Topics in MRI Kyung Sung, Ph.D. 2018.04.10 Class Business Office hours - Instructors: Fri 10-12pm TAs: Xinran Zhong and Zhaohuan Zhang (time:

More information

6 Div, grad curl and all that

6 Div, grad curl and all that 6 Div, grad curl and all that 6.1 Fundamental theorems for gradient, divergence, and curl Figure 1: Fundamental theorem of calculus relates df/dx over[a, b] and f(a), f(b). You will recall the fundamental

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables Joint Probability Density Let X and Y be two random variables. Their joint distribution function is F ( XY x, y) P X x Y y. F XY ( ) 1, < x

More information

Lecture 10. (2) Functions of two variables. Partial derivatives. Dan Nichols February 27, 2018

Lecture 10. (2) Functions of two variables. Partial derivatives. Dan Nichols February 27, 2018 Lecture 10 Partial derivatives Dan Nichols nichols@math.umass.edu MATH 233, Spring 2018 University of Massachusetts February 27, 2018 Last time: functions of two variables f(x, y) x and y are the independent

More information

Fundamentals of the Discrete Fourier Transform

Fundamentals of the Discrete Fourier Transform Seminar presentation at the Politecnico di Milano, Como, November 12, 2012 Fundamentals of the Discrete Fourier Transform Michael G. Sideris sideris@ucalgary.ca Department of Geomatics Engineering University

More information

Review of Analog Signal Analysis

Review of Analog Signal Analysis Review of Analog Signal Analysis Chapter Intended Learning Outcomes: (i) Review of Fourier series which is used to analyze continuous-time periodic signals (ii) Review of Fourier transform which is used

More information

Topics. View Aliasing. CT Sampling Requirements. Sampling Requirements in CT Sampling Theory Aliasing

Topics. View Aliasing. CT Sampling Requirements. Sampling Requirements in CT Sampling Theory Aliasing Topics Bioengineering 280A Principles of Biomedical Imaging Sampling Requirements in CT Sampling Theory Aliasing Fall Quarter 2007 CT/Fourier Lecture 4 CT Sampling Requirements View Aliasing What should

More information

Math Review Night: Work and the Dot Product

Math Review Night: Work and the Dot Product Math Review Night: Work and the Dot Product Dot Product A scalar quantity Magnitude: A B = A B cosθ The dot product can be positive, zero, or negative Two types of projections: the dot product is the parallel

More information

EE591 Project Report December 2 nd, 2005

EE591 Project Report December 2 nd, 2005 EE591 Project Report December 2 nd, 2005 Amrita Rajagopalan Department of Biomedical Engineering. arajagop@usc.edu Two Dimensional Spatially Selective RF Pulse Design Using Spiral Trajectory Abstract In

More information

1 Signals and systems

1 Signals and systems 978--52-5688-4 - Introduction to Orthogonal Transforms: With Applications in Data Processing and Analysis Signals and systems In the first two chapters we will consider some basic concepts and ideas as

More information

The Dirac δ-function

The Dirac δ-function The Dirac δ-function Elias Kiritsis Contents 1 Definition 2 2 δ as a limit of functions 3 3 Relation to plane waves 5 4 Fourier integrals 8 5 Fourier series on the half-line 9 6 Gaussian integrals 11 Bibliography

More information

Continuum Normalization. good for cooking or inspecting wiggly functions and for crudely evaluating integrals of wiggly integrands.

Continuum Normalization. good for cooking or inspecting wiggly functions and for crudely evaluating integrals of wiggly integrands. 5.73 Lecture #5 5-1 Last time: Gaussian Wavepackets How to encode x in gk ( )e ikx dk = ψ(x) Continuum Normalization or k in g( x) e ikx = ψ(k) stationary phase: good for cooking or inspecting wiggly functions

More information

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University ENSC37 Communications Systems : Fourier Representations School o Engineering Science Simon Fraser University Outline Chap..5: Signal Classiications Fourier Transorm Dirac Delta Function Unit Impulse Fourier

More information

28. Fourier transforms in optics, part 3

28. Fourier transforms in optics, part 3 28. Fourier transforms in optics, part 3 Magnitude and phase some examples amplitude and phase of light waves what is the spectral phase, anyway? The Scale Theorem Defining the duration of a pulse the

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 1 ECE6604 PERSONAL & MOBILE COMMUNICATIONS Week 3 Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 2 Multipath-Fading Mechanism local scatterers mobile subscriber base station

More information

2.20 Fall 2018 Math Review

2.20 Fall 2018 Math Review 2.20 Fall 2018 Math Review September 10, 2018 These notes are to help you through the math used in this class. This is just a refresher, so if you never learned one of these topics you should look more

More information

Mathematical Methods and its Applications (Solution of assignment-12) Solution 1 From the definition of Fourier transforms, we have.

Mathematical Methods and its Applications (Solution of assignment-12) Solution 1 From the definition of Fourier transforms, we have. For 2 weeks course only Mathematical Methods and its Applications (Solution of assignment-2 Solution From the definition of Fourier transforms, we have F e at2 e at2 e it dt e at2 +(it/a dt ( setting (

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging 1 BME I5000: Biomedical Imaging Lecture FT Fourier Transform Review Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/ Fourier Transform (1D) The Fourier Transform (FT) is

More information

RAD229: Final Exam 2014/ SOLUTIONS You will have 3 hours to complete this Exam

RAD229: Final Exam 2014/ SOLUTIONS You will have 3 hours to complete this Exam RAD229: Final Exam 2014/2015 - SOLUTIONS You will have 3 hours to complete this Exam Solutions are given in Blue. In some cases, different interpretations may have led to different, but reasonable answers,

More information

Lecture 9 Metric spaces. The contraction fixed point theorem. The implicit function theorem. The existence of solutions to differenti. equations.

Lecture 9 Metric spaces. The contraction fixed point theorem. The implicit function theorem. The existence of solutions to differenti. equations. Lecture 9 Metric spaces. The contraction fixed point theorem. The implicit function theorem. The existence of solutions to differential equations. 1 Metric spaces 2 Completeness and completion. 3 The contraction

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spring 2014 TTh 14:30-15:45 CBC C313 Lecture 05 Image Processing Basics 13/02/04 http://www.ee.unlv.edu/~b1morris/ecg782/

More information

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems 2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems Mathematics 3 Lecture 14 Dartmouth College February 03, 2010 Derivatives of the Exponential and Logarithmic Functions

More information

Review of Fourier Transform

Review of Fourier Transform Review of Fourier Transform Fourier series works for periodic signals only. What s about aperiodic signals? This is very large & important class of signals Aperiodic signal can be considered as periodic

More information

Discrete Fourier Transform

Discrete Fourier Transform Last lecture I introduced the idea that any function defined on x 0,..., N 1 could be written a sum of sines and cosines. There are two different reasons why this is useful. The first is a general one,

More information

1. Partial differential equations. Chapter 12: Partial Differential Equations. Examples. 2. The one-dimensional wave equation

1. Partial differential equations. Chapter 12: Partial Differential Equations. Examples. 2. The one-dimensional wave equation 1. Partial differential equations Definitions Examples A partial differential equation PDE is an equation giving a relation between a function of two or more variables u and its partial derivatives. The

More information

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I Communication Signals (Haykin Sec..4 and iemer Sec...4-Sec..4) KECE3 Communication Systems I Lecture #3, March, 0 Prof. Young-Chai Ko 년 3 월 일일요일 Review Signal classification Phasor signal and spectra Representation

More information

MATH115. Indeterminate Forms and Improper Integrals. Paolo Lorenzo Bautista. June 24, De La Salle University

MATH115. Indeterminate Forms and Improper Integrals. Paolo Lorenzo Bautista. June 24, De La Salle University MATH115 Indeterminate Forms and Improper Integrals Paolo Lorenzo Bautista De La Salle University June 24, 2014 PLBautista (DLSU) MATH115 June 24, 2014 1 / 25 Theorem (Mean-Value Theorem) Let f be a function

More information

Sturm-Liouville operators have form (given p(x) > 0, q(x)) + q(x), (notation means Lf = (pf ) + qf ) dx

Sturm-Liouville operators have form (given p(x) > 0, q(x)) + q(x), (notation means Lf = (pf ) + qf ) dx Sturm-Liouville operators Sturm-Liouville operators have form (given p(x) > 0, q(x)) L = d dx ( p(x) d ) + q(x), (notation means Lf = (pf ) + qf ) dx Sturm-Liouville operators Sturm-Liouville operators

More information

EPI Bildgebung. German Chapter of ISMRM. Doktorantentraining. Freiburg 30 Mai - 1 Juni 2001

EPI Bildgebung. German Chapter of ISMRM. Doktorantentraining. Freiburg 30 Mai - 1 Juni 2001 EPI Bildgebung German Chapter of ISMRM Doktorantentraining Freiburg 30 Mai - 1 Juni 2001 Review of k-space and FT The EPI sequence Technical requirements Choice of the readout waveform ramp sampling regridding

More information

ISE I Brief Lecture Notes

ISE I Brief Lecture Notes ISE I Brief Lecture Notes 1 Partial Differentiation 1.1 Definitions Let f(x, y) be a function of two variables. The partial derivative f/ x is the function obtained by differentiating f with respect to

More information

Laplace Transforms Chapter 3

Laplace Transforms Chapter 3 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important

More information

GBS765 Electron microscopy

GBS765 Electron microscopy GBS765 Electron microscopy Lecture 1 Waves and Fourier transforms 10/14/14 9:05 AM Some fundamental concepts: Periodicity! If there is some a, for a function f(x), such that f(x) = f(x + na) then function

More information

Signal Processing and Linear Systems1 Lecture 4: Characterizing Systems

Signal Processing and Linear Systems1 Lecture 4: Characterizing Systems Signal Processing and Linear Systems Lecture : Characterizing Systems Nicholas Dwork www.stanford.edu/~ndwork Our goal will be to develop a way to learn how the system behaves. In general, this is a very

More information

Lecture 19: Solving linear ODEs + separable techniques for nonlinear ODE s

Lecture 19: Solving linear ODEs + separable techniques for nonlinear ODE s Lecture 19: Solving linear ODEs + separable techniques for nonlinear ODE s Geoffrey Cowles Department of Fisheries Oceanography School for Marine Science and Technology University of Massachusetts-Dartmouth

More information

Chapter 4. Several-variable calculus. 4.1 Derivatives of Functions of Several Variables Functions of Several Variables

Chapter 4. Several-variable calculus. 4.1 Derivatives of Functions of Several Variables Functions of Several Variables Chapter 4 Several-variable calculus 4.1 Derivatives of Functions of Several Variables 4.1.1 Functions of Several Variables ² A function f of n variables (x 1,x 2,...,x n ) in R n is an entity that operates

More information

Partial differential equations (ACM30220)

Partial differential equations (ACM30220) (ACM3. A pot on a stove has a handle of length that can be modelled as a rod with diffusion constant D. The equation for the temperature in the rod is u t Du xx < x

More information

Integration by Substitution

Integration by Substitution November 22, 2013 Introduction 7x 2 cos(3x 3 )dx =? 2xe x2 +5 dx =? Chain rule The chain rule: d dx (f (g(x))) = f (g(x)) g (x). Use the chain rule to find f (x) and then write the corresponding anti-differentiation

More information

Topics. 2D Image. a b. c d. 1. Representing Images 2. 2D Fourier Transform 3. MRI Basics 4. MRI Applications 5. fmri

Topics. 2D Image. a b. c d. 1. Representing Images 2. 2D Fourier Transform 3. MRI Basics 4. MRI Applications 5. fmri Topics Neuroscience 200C Spring Quarter 2005 Imaging/MRI Lecture 1. Representing Images 2. 2D Fourier Transform 3. MRI Basics 4. MRI Applications 5. fmri Signals and Images Discrete-time/space signal/image:

More information

Jim Lambers ENERGY 281 Spring Quarter Lecture 3 Notes

Jim Lambers ENERGY 281 Spring Quarter Lecture 3 Notes Jim Lambers ENERGY 8 Spring Quarter 7-8 Lecture 3 Notes These notes are based on Rosalind Archer s PE8 lecture notes, with some revisions by Jim Lambers. Introduction The Fourier transform is an integral

More information

Physical Mathematics 2010: Problems 1 (week 2)

Physical Mathematics 2010: Problems 1 (week 2) Physical Mathematics 2: Problems (week 2). Hellenic Calligraphy. ike it or not, Greek letters are very popular in physics. It will be easier to follow what is going on in the course if you know how they

More information

STAT 801: Mathematical Statistics. Distribution Theory

STAT 801: Mathematical Statistics. Distribution Theory STAT 81: Mathematical Statistics Distribution Theory Basic Problem: Start with assumptions about f or CDF of random vector X (X 1,..., X p ). Define Y g(x 1,..., X p ) to be some function of X (usually

More information

Continuous Time Signal Analysis: the Fourier Transform. Lathi Chapter 4

Continuous Time Signal Analysis: the Fourier Transform. Lathi Chapter 4 Continuous Time Signal Analysis: the Fourier Transform Lathi Chapter 4 Topics Aperiodic signal representation by the Fourier integral (CTFT) Continuous-time Fourier transform Transforms of some useful

More information

Maxima and Minima. (a, b) of R if

Maxima and Minima. (a, b) of R if Maxima and Minima Definition Let R be any region on the xy-plane, a function f (x, y) attains its absolute or global, maximum value M on R at the point (a, b) of R if (i) f (x, y) M for all points (x,

More information

EE 438 Supplementary Notes on Fourier Series and Linear Algebra.

EE 438 Supplementary Notes on Fourier Series and Linear Algebra. EE 38 Supplementary Notes on Fourier Series and Linear Algebra. Discrete-Time Fourier Series. How to write a vector s as a sum where {g,...,g m } are pairwise orthogonal? s m a k g k, k Answer: project

More information

Continuous-Time Fourier Transform

Continuous-Time Fourier Transform Signals and Systems Continuous-Time Fourier Transform Chang-Su Kim continuous time discrete time periodic (series) CTFS DTFS aperiodic (transform) CTFT DTFT Lowpass Filtering Blurring or Smoothing Original

More information

Periodic functions: simple harmonic oscillator

Periodic functions: simple harmonic oscillator Periodic functions: simple harmonic oscillator Recall the simple harmonic oscillator (e.g. mass-spring system) d 2 y dt 2 + ω2 0y = 0 Solution can be written in various ways: y(t) = Ae iω 0t y(t) = A cos

More information

Fourier Approach to Wave Propagation

Fourier Approach to Wave Propagation Phys 531 Lecture 15 13 October 005 Fourier Approach to Wave Propagation Last time, reviewed Fourier transform Write any function of space/time = sum of harmonic functions e i(k r ωt) Actual waves: harmonic

More information

Fourier Series. Fourier Transform

Fourier Series. Fourier Transform Math Methods I Lia Vas Fourier Series. Fourier ransform Fourier Series. Recall that a function differentiable any number of times at x = a can be represented as a power series n= a n (x a) n where the

More information

Fourier and Partial Differential Equations

Fourier and Partial Differential Equations Chapter 5 Fourier and Partial Differential Equations 5.1 Fourier MATH 294 SPRING 1982 FINAL # 5 5.1.1 Consider the function 2x, 0 x 1. a) Sketch the odd extension of this function on 1 x 1. b) Expand the

More information

multiply both sides of eq. by a and projection overlap

multiply both sides of eq. by a and projection overlap Fourier Series n x n x f xa ancos bncos n n periodic with period x consider n, sin x x x March. 3, 7 Any function with period can be represented with a Fourier series Examples (sawtooth) (square wave)

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging BME I5000: Biomedical Imaging Lecture 9 Magnetic Resonance Imaging (imaging) Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/ 1 Schedule 1. Introduction, Spatial Resolution,

More information

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) A.J.Hobson JUST THE MATHS UNIT NUMBER 13.13 INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) by A.J.Hobson 13.13.1 Introduction 13.13. The second moment of a volume of revolution about the y-axis 13.13.3

More information

2 Frequency-Domain Analysis

2 Frequency-Domain Analysis 2 requency-domain Analysis Electrical engineers live in the two worlds, so to speak, of time and frequency. requency-domain analysis is an extremely valuable tool to the communications engineer, more so

More information

Lecture 7 ELE 301: Signals and Systems

Lecture 7 ELE 301: Signals and Systems Lecture 7 ELE 30: Signals and Systems Prof. Paul Cuff Princeton University Fall 20-2 Cuff (Lecture 7) ELE 30: Signals and Systems Fall 20-2 / 22 Introduction to Fourier Transforms Fourier transform as

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3. The Product and Quotient Rules In this section, we will learn about: Formulas that enable us to differentiate new functions formed from old functions by

More information

TEST CODE: MMA (Objective type) 2015 SYLLABUS

TEST CODE: MMA (Objective type) 2015 SYLLABUS TEST CODE: MMA (Objective type) 2015 SYLLABUS Analytical Reasoning Algebra Arithmetic, geometric and harmonic progression. Continued fractions. Elementary combinatorics: Permutations and combinations,

More information

conditional cdf, conditional pdf, total probability theorem?

conditional cdf, conditional pdf, total probability theorem? 6 Multiple Random Variables 6.0 INTRODUCTION scalar vs. random variable cdf, pdf transformation of a random variable conditional cdf, conditional pdf, total probability theorem expectation of a random

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chapter 1 Fundamental Concepts 1 Signals A signal is a pattern of variation of a physical quantity, often as a function of time (but also space, distance, position, etc). These quantities are usually the

More information

Some elements of vector and tensor analysis and the Dirac δ-function

Some elements of vector and tensor analysis and the Dirac δ-function Chapter 1 Some elements of vector and tensor analysis and the Dirac δ-function The vector analysis is useful in physics formulate the laws of physics independently of any preferred direction in space experimentally

More information

1 Review of di erential calculus

1 Review of di erential calculus Review of di erential calculus This chapter presents the main elements of di erential calculus needed in probability theory. Often, students taking a course on probability theory have problems with concepts

More information

Turbulent spectra generated by singularities

Turbulent spectra generated by singularities Turbulent spectra generated by singularities p. Turbulent spectra generated by singularities E.A. Kuznetsov Landau Institute for Theoretical Physics, Moscow Russia In collaboration with: V. Naulin A.H.

More information

Math 121A: Homework 6 solutions

Math 121A: Homework 6 solutions Math A: Homework 6 solutions. (a) The coefficients of the Fourier sine series are given by b n = π f (x) sin nx dx = x(π x) sin nx dx π = (π x) cos nx dx nπ nπ [x(π x) cos nx]π = n ( )(sin nx) dx + π n

More information

Differential equations, comprehensive exam topics and sample questions

Differential equations, comprehensive exam topics and sample questions Differential equations, comprehensive exam topics and sample questions Topics covered ODE s: Chapters -5, 7, from Elementary Differential Equations by Edwards and Penney, 6th edition.. Exact solutions

More information

Mathematics (Course B) Lent Term 2005 Examples Sheet 2

Mathematics (Course B) Lent Term 2005 Examples Sheet 2 N12d Natural Sciences, Part IA Dr M. G. Worster Mathematics (Course B) Lent Term 2005 Examples Sheet 2 Please communicate any errors in this sheet to Dr Worster at M.G.Worster@damtp.cam.ac.uk. Note that

More information

Wave Phenomena Physics 15c. Lecture 11 Dispersion

Wave Phenomena Physics 15c. Lecture 11 Dispersion Wave Phenomena Physics 15c Lecture 11 Dispersion What We Did Last Time Defined Fourier transform f (t) = F(ω)e iωt dω F(ω) = 1 2π f(t) and F(w) represent a function in time and frequency domains Analyzed

More information

Math Refresher Course

Math Refresher Course Math Refresher Course Columbia University Department of Political Science Fall 2007 Day 2 Prepared by Jessamyn Blau 6 Calculus CONT D 6.9 Antiderivatives and Integration Integration is the reverse of differentiation.

More information

Fourier transform representation of CT aperiodic signals Section 4.1

Fourier transform representation of CT aperiodic signals Section 4.1 Fourier transform representation of CT aperiodic signals Section 4. A large class of aperiodic CT signals can be represented by the CT Fourier transform (CTFT). The (CT) Fourier transform (or spectrum)

More information