Physics 451/551 Theoretical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 18

Size: px
Start display at page:

Download "Physics 451/551 Theoretical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 18"

Transcription

1 Physics 451/551 Theoretical Mechanics G. A. Krafft Old Dominion University Jefferson Lab Lecture 18 Theoretical Mechanics Fall 18

2 Properties of Sound Sound Waves Requires medium for propagation Mainly longitudinal (displacement along propagation direction) Wavelength much longer than interatomic spacing so can treat medium as continuous Fundamental functions Mass density Velocity field x, y, z, t v x, y, z, t Two fundamental equations Continuity equation (Conservation of mass) Velocity equation (Conservation of momentum) Newton s Law in disguise Theoretical Mechanics Fall 18

3 Fundamental Functions Density ρ(x,y,z), mass per unit volume M x, y, z, t lim V V dm x, y, z, t dxdydz Velocity field v x, y, z, t o x, y, z v x, y, z, t Theoretical Mechanics Fall 18

4 Continuity Equation Consider mass entering differential volume element dy x, y, z dx dz Mass entering box in a short time Δt v x x, y, z, t vxx dx, y, z, tdydz t Take limit Δt,,,,,, vy x y z t vy x y dy z t dzdxt,,,,,, v z x y z t vz x y z dz t dxdy t x, y, z, t t x, y, z, tdxdydz t v dv Theoretical Mechanics Fall 18

5 dv dxdydz v dxdydz t t dv By Stoke s Theorem. Because true for all dv Mass current density (flux) (kg/(sec m )) Jm v Sometimes rendered in terms of the total time derivative (moving along with the flow) Incompressible flow v and ρ constant dv t v d v v v t dt Theoretical Mechanics Fall 18

6 Pressure Scalar Displace material from a small volume dv with sides given by da. The pressure p is defined to the force acting on the area element df da Pressure is normal to the area element Doesn t depend on orientation of volume External forces (e.g., gravitational force) must be balanced by a pressure gradient to get a stationary fluid in equilibrium Pressure force (per unit volume) F pr p p x Theoretical Mechanics Fall 18

7 Fluid at rest Fluid in motion Hydrostatic Equilibrium f app p dv f app p dv dv Fnet p fapp dv m dv dt dt As with density use total derivative (sometimes called material derivative or convective derivative) dv dt v v t v Theoretical Mechanics Fall 18

8 Fluid Dynamic Equations dv v p v v fapp dt t Manipulate with vector identity vv v v v v Final velocity equation v v v v v f p app t One more thing: equation of state relating p and ρ Theoretical Mechanics Fall 18

9 Energy Conservation For energy in a fixed volume 3 v Etot d x V ε internal energy per unit mass Work done (first law in co-moving frame) Mp Md pdv d p s, d Isentropic process (s constant, no heat transfer in) p t t Theoretical Mechanics Fall 18

10 1 1 t v v v v p v fapp p p v pv v t p p pv v p t 1 1 t 1 je v p v v p v fapp v Theoretical Mechanics Fall 18

11 Bernoulli s Theorem Exact first integral of velocity equation when Irrotational motion v v External force conservative f U Flow incompressible with fixed ρ Bernouli s Theorem If flow compressible but isentropic app p U t p U t Theoretical Mechanics Fall 18

12 Kelvin s Theorem on Circulation Already discussed this in the Arnold material dv v v p v U dt t t To linear order t ds v C t C s, t t C s, t t v C s, t, t 1 v C C s, t t t t v C s, t t, t t ds s C s, t t v C s, t, t ds s Theoretical Mechanics Fall 18

13 d dv C,,,, C s t t ds v C s t t v C s, t, t ds dt dt s s p C v C U ds ds s s (the integrand is exact!) The circulation is constant about any closed curve that moves with the fluid. If a fluid is stationary and acted on by a conservative force, the flow in a simply connected region necessarily remains irrotational. Theoretical Mechanics Fall 18

14 Lagrangian for Isentropic Flow Two independent field variables: ρ and Φ Lagrangian density t p U t L U t Canonical momenta L P / t P L / t Theoretical Mechanics Fall 18

15 Euler Lagrange Equations L L P t t p Hamiltonian Density L L p P U t t H P U t P t L internal energy plus potential energy plus kinetic energy Theoretical Mechanics Fall 18

16 Sound Waves Linearize about a uniform stationary state,,, x t v x t v p x t p p Continuity equation 1 v v t t Velocity equation v 1 p t Isentropic equation of state p p p ps, p p c s Theoretical Mechanics Fall 18

17 Flow Irrotational Take curl of velocity equation. Conclude flow irrotational v p v t t t 1 p c t t t Scalar wave equation 1 c t c t Boundary conditions nˆ nˆ V for a fixed boundary free surface t Theoretical Mechanics Fall 18

18 3-D Plane Wave Solutions Ansatz, Re e i k xt k c v ik c i iv ik c Energy flux j E ik i k c k t 1 * 1 Re ˆ Theoretical Mechanics Fall 18

19 Helmholz Equation and Organ Pipes Velocity potential solves Helmholtz equation r k r BCs vr r a vz r z z, L Cylindrical Solutions 1 1 r k r r r r z r,, z Rr F Z z im p F e Z z cos z zero possible L Theoretical Mechanics Fall 18

20 Bessel Function Solutions Bessel Functions solve 1 d d r m r J mr Jmr k r dr dr r Eigenfunctions mn p mnp r, t ReJm r cos z expim it a L mnp Fundamental Open ended mn p c kmnp c a L Theoretical Mechanics Fall 18 ck c L ck 1 1 c L

21 Green Function for Wave Equation Green Function in 3-D Apply Fourier Transforms u r u r f r 3 ipr f p d re f r 3 ipr f r d pe f p 3 1 Fourier transform equation to solve and integrate by parts twice p u p u p f p Theoretical Mechanics Fall 18

22 Green Function Solution The Fourier transform of the solution is The solution is u p 1 f p ipx u r 3 e d p p The Green function is p f 1 1 p p 3 ipr ipr 3 3 u r e e d pf r d r p ipr ipr 3 G r r e e d p 3 Theoretical Mechanics Fall 18

23 Alternate equation for Green function 1 ipr ipr 3 Gr r e e d p 3 r r Simplify iprcos iprcos 1 e 3 1 e sin 3 p G R d p p dp d p R 1 psin pr 1 psin pr e dp 4 R dp R p R p Yukawa potential (Green function) rr e Gr r 4 r r Theoretical Mechanics Fall 18

24 Helmholtz Equation Driven (Inhomogeneous) Wave Equation 1 c t Time Fourier Transform r, t f r, t Wave Equation Fourier Transformed r, f r, c 1 f r t 1 d e f r it r, t de r, it,, Theoretical Mechanics Fall 18

25 c Green function satisfies Green Function 3 r, t d r dtg r r, t t f r, t,, k k f k, ik r t 1 f k 3 r, t 4 d kd e k c ik r t ik rt r, t d r dt d k d e e f 4 r, t k c Theoretical Mechanics Fall 18

26 Green function is ik r t ik rt 1 3 e e G r r, t t d k d 4 k c Satisfies 1 c t G r r t t r r t t, Also, with causal boundary conditions is G r r, i r r / c e 4 r r Theoretical Mechanics Fall 18

27 Causal Boundary Conditions Can get causal B. C. by correct pole choice ω k plane kc i kc i i / c i / c Gives so-called retarded Green function Green function evaluated 3 ik R, d k e G R 3 k i / c 1 e e e kdk k i / c R ikr ikr ir/ c 8 ir 4 Theoretical Mechanics Fall 18

28 Method of Images Suppose have homogeneous boundary conditions on the x- y half plane. The can solve the problem by making an image source and making a combined Green function. The rigid boundary solution has i r r / c i r r / c e e G r r r r r r 4 r r 4 r r,, x y z To satisfy the boundary condition so that the solution vanishes on the boundary i r r / c i r r / c e e G r r r r r r 4 r r 4 r r,, x y z Theoretical Mechanics Fall 18

29 V Kirchhoff s Approximation We all know sound waves diffract (easily pass around corners). Standard approximation schema r k r r r Zeroth solution the Image GF i r r / c i r r / c e e G r r r r x, r y, r z 4 r r 4 r r Boundary condition not correct at hole d r da 3 A da G G lim da G 3 3 d r G G d r k G r r Gk r R R H Theoretical Mechanics Fall 18

30 Exact relation In RHP For short wavelengths, evaluate RHS as if screen not there! Huygens Principle r dag da H H ik e e ik r r e r r z ik r r ik r r r da G da 8 H H r r r r r r z Theoretical Mechanics Fall 18

31 Babinet s Principle r da G r, r H r da G r, r PH ik r r e z 4 r r r r da G r, r P ik r r e z 4 r r ik r r e z 4 r r Apply Green s identity ik r r e inc 4 r r r r r G r, r r r r diff diff inc ik rr e 4 r r Theoretical Mechanics Fall 18

32 r r r rˆ r Diffracted Amplitude ˆ r r r r ik r kˆ r ikr r r r ik e ikr k ˆ kˆ r r dae cos exp 8 rr ik H r kˆ r r Fresnel diffraction: phase shifts across the aperture important. Full integral must be completed Fraunhofer diffraction ka / r 1 ka / r 1 Pattern is the transverse Fourier Transform! ik r r ik r r irq ik e ikr k ˆ kˆ ik e r dae dae 8 r r 8 r r H H Theoretical Mechanics Fall 18

33 Rectangular aperture Two Cases sin qa sin qb x y I r I qxa qyb Destructive interference at q x a=π Circular aperture J1 sin q a I r I qa Airy disk (angle of first zero) sin.61 a Theoretical Mechanics Fall 18

34 Equation for Heat Conduction Field variable: temperature scalar Additional inputs: heat capacity (at constant pressure) c p, thermal conductivity k th dt c de Thermal diffusivity Heat Equation H p j k T k th th c p T T t q c p Theoretical Mechanics Fall 18

35 Boundary Conditions Closed boundary surface held at constant T ex Insulating surface nt Separate variables, T r t T r e t Helmholtz again T r k T r q c p Theoretical Mechanics Fall 18

36 Long Rectangular Rod Long ends held at temperature T Eigensolutions T r X xy y Z z X x Y y Z z k mnp m x sin a m 1,,3 n y cos b n,1,,3 p z cos c p,1,,3 m n p a b c Theoretical Mechanics Fall 18

37 General Solution m x n y p z T r, t Cmnp sin cos cos e a b c mnp m x n y p z T r, t Cmnp sin cos cos a b c mnp Find expansion coefficients with the orthogonality relations mnp t Long term solution dominated by slowest decaying mode x T r t T C1 e a 1, sin t Theoretical Mechanics Fall 18

38 Thermal Waves Put periodic boundary condition on plane z = T z, t T cost 1-D problem T z T z t, Re d T dz T z 1 T t T z e i T z e it i 1 i Theoretical Mechanics Fall 18

39 Penetration Depth Exponential falloff length (for amplitude) 1/ 1/ T Solution for thermal wave /, z z T z t Te cos t On earth, 3. m with a one year period! Theoretical Mechanics Fall 18

40 Green Function for Heat Equation Fourier Transform spatial dependence T T t Solve using initial condition T k, t t, T k t Theoretical Mechanics Fall 18 k T k, t A k e ik r 3,, T r t e d r T k t A k 1 ik r 3 k t ik r 3 T r, t T r, t e d r e e d k 3 1 kt ik r r 3 G r r, t e e d k 3 kt

41 Complete the square 1 kt ik r r cos G r r, t e e k dkd cosd 3 1 cos k t ik r r r r k t ik r r ik r r cos i 1 e e k dkd e e e kdk 1 1 kt ik r r e e kdk e i r r r r i l t k i r r /t t k ik r r /t r r /4 t r r /4t 1 r r /4 t l 1 r r /4t / 3/ i t t r r dl G e e l i r r t e 4 kdk e Theoretical Mechanics Fall 18

Physics 451/551 Theoretical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 18

Physics 451/551 Theoretical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 18 Physics 451/551 Theoretical Mechanics G. A. Krafft Old Dominion University Jefferson Lab Lecture 18 Theoretical Mechanics Fall 018 Properties of Sound Sound Waves Requires medium for propagation Mainly

More information

Continuum Mechanics Lecture 5 Ideal fluids

Continuum Mechanics Lecture 5 Ideal fluids Continuum Mechanics Lecture 5 Ideal fluids Prof. http://www.itp.uzh.ch/~teyssier Outline - Helmholtz decomposition - Divergence and curl theorem - Kelvin s circulation theorem - The vorticity equation

More information

The Euler Equation of Gas-Dynamics

The Euler Equation of Gas-Dynamics The Euler Equation of Gas-Dynamics A. Mignone October 24, 217 In this lecture we study some properties of the Euler equations of gasdynamics, + (u) = ( ) u + u u + p = a p + u p + γp u = where, p and u

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University TAADI Electromagnetic Theory

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University TAADI Electromagnetic Theory TAAD1 Electromagnetic Theory G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University 8-31-12 Classical Electrodynamics A main physics discovery of the last half of the 2 th

More information

3.5 Vorticity Equation

3.5 Vorticity Equation .0 - Marine Hydrodynamics, Spring 005 Lecture 9.0 - Marine Hydrodynamics Lecture 9 Lecture 9 is structured as follows: In paragraph 3.5 we return to the full Navier-Stokes equations (unsteady, viscous

More information

In this section, mathematical description of the motion of fluid elements moving in a flow field is

In this section, mathematical description of the motion of fluid elements moving in a flow field is Jun. 05, 015 Chapter 6. Differential Analysis of Fluid Flow 6.1 Fluid Element Kinematics In this section, mathematical description of the motion of fluid elements moving in a flow field is given. A small

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

Lecture notes 5: Diffraction

Lecture notes 5: Diffraction Lecture notes 5: Diffraction Let us now consider how light reacts to being confined to a given aperture. The resolution of an aperture is restricted due to the wave nature of light: as light passes through

More information

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/

More information

Fluid mechanics and living organisms

Fluid mechanics and living organisms Physics of the Human Body 37 Chapter 4: In this chapter we discuss the basic laws of fluid flow as they apply to life processes at various size scales For example, fluid dynamics at low Reynolds number

More information

Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy

Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy Interference, Diffraction and Fourier Theory ATI 2014 Lecture 02! Keller and Kenworthy The three major branches of optics Geometrical Optics Light travels as straight rays Physical Optics Light can be

More information

ENGI Gradient, Divergence, Curl Page 5.01

ENGI Gradient, Divergence, Curl Page 5.01 ENGI 94 5. - Gradient, Divergence, Curl Page 5. 5. The Gradient Operator A brief review is provided here for the gradient operator in both Cartesian and orthogonal non-cartesian coordinate systems. Sections

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lecture 4 Continuous Systems and Fields (Chapter 13) What We Did Last Time Built Lagrangian formalism for continuous system Lagrangian L Lagrange s equation = L dxdydz Derived simple

More information

Quick Recapitulation of Fluid Mechanics

Quick Recapitulation of Fluid Mechanics Quick Recapitulation of Fluid Mechanics Amey Joshi 07-Feb-018 1 Equations of ideal fluids onsider a volume element of a fluid of density ρ. If there are no sources or sinks in, the mass in it will change

More information

Concepts in Engineering Mathematics: Lecture 39

Concepts in Engineering Mathematics: Lecture 39 Concepts in Engineering Mathematics: Lecture 39 Part IV: Vector Calculus Lecture 39 Version: 0.94 Dec7.15 Jont B. Allen; UIUC Urbana IL, USA December 9, 2015 Jont B. Allen; UIUC Urbana IL, USA Concepts

More information

OPAC102. The Acoustic Wave Equation

OPAC102. The Acoustic Wave Equation OPAC102 The Acoustic Wave Equation Acoustic waves in fluid Acoustic waves constitute one kind of pressure fluctuation that can exist in a compressible fluid. The restoring forces responsible for propagating

More information

Chapter 5. Sound Waves and Vortices. 5.1 Sound waves

Chapter 5. Sound Waves and Vortices. 5.1 Sound waves Chapter 5 Sound Waves and Vortices In this chapter we explore a set of characteristic solutions to the uid equations with the goal of familiarizing the reader with typical behaviors in uid dynamics. Sound

More information

Fluid Dynamics. Massimo Ricotti. University of Maryland. Fluid Dynamics p.1/14

Fluid Dynamics. Massimo Ricotti. University of Maryland. Fluid Dynamics p.1/14 Fluid Dynamics p.1/14 Fluid Dynamics Massimo Ricotti ricotti@astro.umd.edu University of Maryland Fluid Dynamics p.2/14 The equations of fluid dynamics are coupled PDEs that form an IVP (hyperbolic). Use

More information

Physics 607 Final Exam

Physics 607 Final Exam Physics 607 Final Exam Please be well-organized, and show all significant steps clearly in all problems. You are graded on your work, so please do not just write down answers with no explanation! Do all

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

2.20 Fall 2018 Math Review

2.20 Fall 2018 Math Review 2.20 Fall 2018 Math Review September 10, 2018 These notes are to help you through the math used in this class. This is just a refresher, so if you never learned one of these topics you should look more

More information

AE/ME 339. K. M. Isaac. 9/22/2005 Topic 6 FluidFlowEquations_Introduction. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

AE/ME 339. K. M. Isaac. 9/22/2005 Topic 6 FluidFlowEquations_Introduction. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept. AE/ME 339 Computational Fluid Dynamics (CFD) 1...in the phrase computational fluid dynamics the word computational is simply an adjective to fluid dynamics.... -John D. Anderson 2 1 Equations of Fluid

More information

KINEMATICS OF CONTINUA

KINEMATICS OF CONTINUA KINEMATICS OF CONTINUA Introduction Deformation of a continuum Configurations of a continuum Deformation mapping Descriptions of motion Material time derivative Velocity and acceleration Transformation

More information

The Divergence Theorem Stokes Theorem Applications of Vector Calculus. Calculus. Vector Calculus (III)

The Divergence Theorem Stokes Theorem Applications of Vector Calculus. Calculus. Vector Calculus (III) Calculus Vector Calculus (III) Outline 1 The Divergence Theorem 2 Stokes Theorem 3 Applications of Vector Calculus The Divergence Theorem (I) Recall that at the end of section 12.5, we had rewritten Green

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Review of fluid dynamics

Review of fluid dynamics Chapter 2 Review of fluid dynamics 2.1 Preliminaries ome basic concepts: A fluid is a substance that deforms continuously under stress. A Material olume is a tagged region that moves with the fluid. Hence

More information

ENGI 4430 Line Integrals; Green s Theorem Page 8.01

ENGI 4430 Line Integrals; Green s Theorem Page 8.01 ENGI 443 Line Integrals; Green s Theorem Page 8. 8. Line Integrals Two applications of line integrals are treated here: the evaluation of work done on a particle as it travels along a curve in the presence

More information

A Brief Revision of Vector Calculus and Maxwell s Equations

A Brief Revision of Vector Calculus and Maxwell s Equations A Brief Revision of Vector Calculus and Maxwell s Equations Debapratim Ghosh Electronic Systems Group Department of Electrical Engineering Indian Institute of Technology Bombay e-mail: dghosh@ee.iitb.ac.in

More information

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity Chapter 1 Governing Equations of GFD The fluid dynamical governing equations consist of an equation for mass continuity, one for the momentum budget, and one or more additional equations to account for

More information

Fundamentals of Acoustics

Fundamentals of Acoustics Fundamentals of Acoustics Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research of the Polish Academy of Sciences

More information

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3 Review of Fundamental Equations Supplementary notes on Section. and.3 Introduction of the velocity potential: irrotational motion: ω = u = identity in the vector analysis: ϕ u = ϕ Basic conservation principles:

More information

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0.

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0. Problem #1 A. A projectile of mass m is shot vertically in the gravitational field. Its initial velocity is v o. Assuming there is no air resistance, how high does m go? B. Now assume the projectile is

More information

Fundamentals of Fluid Dynamics: Waves in Fluids

Fundamentals of Fluid Dynamics: Waves in Fluids Fundamentals of Fluid Dynamics: Waves in Fluids Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/ tzielins/ Institute

More information

Microscopic electrodynamics. Trond Saue (LCPQ, Toulouse) Microscopic electrodynamics Virginia Tech / 46

Microscopic electrodynamics. Trond Saue (LCPQ, Toulouse) Microscopic electrodynamics Virginia Tech / 46 Microscopic electrodynamics Trond Saue (LCPQ, Toulouse) Microscopic electrodynamics Virginia Tech 2015 1 / 46 Maxwell s equations for electric field E and magnetic field B in terms of sources ρ and j The

More information

J10M.1 - Rod on a Rail (M93M.2)

J10M.1 - Rod on a Rail (M93M.2) Part I - Mechanics J10M.1 - Rod on a Rail (M93M.2) J10M.1 - Rod on a Rail (M93M.2) s α l θ g z x A uniform rod of length l and mass m moves in the x-z plane. One end of the rod is suspended from a straight

More information

Optical Imaging Chapter 5 Light Scattering

Optical Imaging Chapter 5 Light Scattering Optical Imaging Chapter 5 Light Scattering Gabriel Popescu University of Illinois at Urbana-Champaign Beckman Institute Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu Principles of Optical

More information

Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow

Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow Anderson: Chapter 2 pp. 41-54 1 Equation of State: Section 1 Review p = R g T " > R g = R u M w - R u = 8314.4126

More information

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics AE301 Aerodynamics I UNIT B: Theory of Aerodynamics ROAD MAP... B-1: Mathematics for Aerodynamics B-: Flow Field Representations B-3: Potential Flow Analysis B-4: Applications of Potential Flow Analysis

More information

18.325: Vortex Dynamics

18.325: Vortex Dynamics 8.35: Vortex Dynamics Problem Sheet. Fluid is barotropic which means p = p(. The Euler equation, in presence of a conservative body force, is Du Dt = p χ. This can be written, on use of a vector identity,

More information

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem 1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem Objective of the Chapter: Formulation of the potential flow around the hull of a ship advancing and oscillationg in waves Results of the Chapter:

More information

Solution Set Two. 1 Problem #1: Projectile Motion Cartesian Coordinates Polar Coordinates... 3

Solution Set Two. 1 Problem #1: Projectile Motion Cartesian Coordinates Polar Coordinates... 3 : Solution Set Two Northwestern University, Classical Mechanics Classical Mechanics, Third Ed.- Goldstein October 7, 2015 Contents 1 Problem #1: Projectile Motion. 2 1.1 Cartesian Coordinates....................................

More information

Electromagnetic waves in free space

Electromagnetic waves in free space Waveguide notes 018 Electromagnetic waves in free space We start with Maxwell s equations for an LIH medum in the case that the source terms are both zero. = =0 =0 = = Take the curl of Faraday s law, then

More information

Module 2 : Convection. Lecture 12 : Derivation of conservation of energy

Module 2 : Convection. Lecture 12 : Derivation of conservation of energy Module 2 : Convection Lecture 12 : Derivation of conservation of energy Objectives In this class: Start the derivation of conservation of energy. Utilize earlier derived mass and momentum equations for

More information

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Central concepts: Phase velocity: velocity with which surfaces of constant phase move Group velocity: velocity with which slow

More information

AST242 LECTURE NOTES PART 5

AST242 LECTURE NOTES PART 5 AST242 LECTURE NOTES PART 5 Contents 1. Waves and instabilities 1 1.1. Sound waves compressive waves in 1D 1 2. Jeans Instability 5 3. Stratified Fluid Flows Waves or Instabilities on a Fluid Boundary

More information

Marion and Thornton. Tyler Shendruk October 1, Hamilton s Principle - Lagrangian and Hamiltonian dynamics.

Marion and Thornton. Tyler Shendruk October 1, Hamilton s Principle - Lagrangian and Hamiltonian dynamics. Marion and Thornton Tyler Shendruk October 1, 2010 1 Marion and Thornton Chapter 7 Hamilton s Principle - Lagrangian and Hamiltonian dynamics. 1.1 Problem 6.4 s r z θ Figure 1: Geodesic on circular cylinder

More information

ENGI Gradient, Divergence, Curl Page 5.01

ENGI Gradient, Divergence, Curl Page 5.01 ENGI 940 5.0 - Gradient, Divergence, Curl Page 5.0 5. e Gradient Operator A brief review is provided ere for te gradient operator in bot Cartesian and ortogonal non-cartesian coordinate systems. Sections

More information

0.2. CONSERVATION LAW FOR FLUID 9

0.2. CONSERVATION LAW FOR FLUID 9 0.2. CONSERVATION LAW FOR FLUID 9 Consider x-component of Eq. (26), we have D(ρu) + ρu( v) dv t = ρg x dv t S pi ds, (27) where ρg x is the x-component of the bodily force, and the surface integral is

More information

Kirchhoff, Fresnel, Fraunhofer, Born approximation and more

Kirchhoff, Fresnel, Fraunhofer, Born approximation and more Kirchhoff, Fresnel, Fraunhofer, Born approximation and more Oberseminar, May 2008 Maxwell equations Or: X-ray wave fields X-rays are electromagnetic waves with wave length from 10 nm to 1 pm, i.e., 10

More information

If the wavelength is larger than the aperture, the wave will spread out at a large angle. [Picture P445] . Distance l S

If the wavelength is larger than the aperture, the wave will spread out at a large angle. [Picture P445] . Distance l S Chapter 10 Diffraction 10.1 Preliminary Considerations Diffraction is a deviation of light from rectilinear propagation. t occurs whenever a portion of a wavefront is obstructed. Hecht; 11/8/010; 10-1

More information

MATH 280 Multivariate Calculus Fall Integrating a vector field over a surface

MATH 280 Multivariate Calculus Fall Integrating a vector field over a surface MATH 280 Multivariate Calculus Fall 2011 Definition Integrating a vector field over a surface We are given a vector field F in space and an oriented surface in the domain of F as shown in the figure below

More information

Maxwell's Equations and Conservation Laws

Maxwell's Equations and Conservation Laws Maxwell's Equations and Conservation Laws 1 Reading: Jackson 6.1 through 6.4, 6.7 Ampère's Law, since identically. Although for magnetostatics, generally Maxwell suggested: Use Gauss's Law to rewrite continuity

More information

FLUID MECHANICS. Chapter 3 Elementary Fluid Dynamics - The Bernoulli Equation

FLUID MECHANICS. Chapter 3 Elementary Fluid Dynamics - The Bernoulli Equation FLUID MECHANICS Chapter 3 Elementary Fluid Dynamics - The Bernoulli Equation CHAP 3. ELEMENTARY FLUID DYNAMICS - THE BERNOULLI EQUATION CONTENTS 3. Newton s Second Law 3. F = ma along a Streamline 3.3

More information

Flaw Scattering Models

Flaw Scattering Models Flaw Scattering Models Learning Objectives Far-field scattering amplitude Kirchhoff approximation Born approximation Separation of Variables Examples of scattering of simple shapes (spherical pore, flat

More information

2 The incompressible Kelvin-Helmholtz instability

2 The incompressible Kelvin-Helmholtz instability Hydrodynamic Instabilities References Chandrasekhar: Hydrodynamic and Hydromagnetic Instabilities Landau & Lifshitz: Fluid Mechanics Shu: Gas Dynamics 1 Introduction Instabilities are an important aspect

More information

2. Conservation of Mass

2. Conservation of Mass 2 Conservation of Mass The equation of mass conservation expresses a budget for the addition and removal of mass from a defined region of fluid Consider a fixed, non-deforming volume of fluid, V, called

More information

Divergence Theorem and Its Application in Characterizing

Divergence Theorem and Its Application in Characterizing Divergence Theorem and Its Application in Characterizing Fluid Flow Let v be the velocity of flow of a fluid element and ρ(x, y, z, t) be the mass density of fluid at a point (x, y, z) at time t. Thus,

More information

Chapter 3 - Vector Calculus

Chapter 3 - Vector Calculus Chapter 3 - Vector Calculus Gradient in Cartesian coordinate system f ( x, y, z,...) dr ( dx, dy, dz,...) Then, f f f f,,,... x y z f f f df dx dy dz... f dr x y z df 0 (constant f contour) f dr 0 or f

More information

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Soft-Body Physics Soft Bodies Realistic objects are not purely rigid. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Deformed

More information

Physics in Faculty of

Physics in Faculty of Why we study Physics in Faculty of Engineering? Dimensional analysis Scalars and vector analysis Rotational of a rigid body about a fixed axis Rotational kinematics 1. Dimensional analysis The ward dimension

More information

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1 Lecture 3 Optical fibers as waveguides Maxwell s equations The wave equation Fiber modes Phase velocity, group velocity Dispersion Fiber Optical Communication Lecture 3, Slide 1 Maxwell s equations in

More information

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 5

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 5 .9 Numerical Fluid Mechanics Fall 011 Lecture 5 REVIEW Lecture 4 Roots of nonlinear equations: Open Methods Fixed-point Iteration (General method or Picard Iteration), with examples Iteration rule: x g(

More information

FORMULA SHEET. General formulas:

FORMULA SHEET. General formulas: FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

More information

Chapter 2: Basic Governing Equations

Chapter 2: Basic Governing Equations -1 Reynolds Transport Theorem (RTT) - Continuity Equation -3 The Linear Momentum Equation -4 The First Law of Thermodynamics -5 General Equation in Conservative Form -6 General Equation in Non-Conservative

More information

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Benjamin Hornberger 1/26/1 Phy 55, Classical Electrodynamics, Prof. Goldhaber Lecture notes from Oct. 26, 21 Lecture held by Prof. Weisberger

More information

2. FLUID-FLOW EQUATIONS SPRING 2019

2. FLUID-FLOW EQUATIONS SPRING 2019 2. FLUID-FLOW EQUATIONS SPRING 2019 2.1 Introduction 2.2 Conservative differential equations 2.3 Non-conservative differential equations 2.4 Non-dimensionalisation Summary Examples 2.1 Introduction Fluid

More information

PHYS2330 Intermediate Mechanics Fall Final Exam Tuesday, 21 Dec 2010

PHYS2330 Intermediate Mechanics Fall Final Exam Tuesday, 21 Dec 2010 Name: PHYS2330 Intermediate Mechanics Fall 2010 Final Exam Tuesday, 21 Dec 2010 This exam has two parts. Part I has 20 multiple choice questions, worth two points each. Part II consists of six relatively

More information

Lecture 1: Introduction to Linear and Non-Linear Waves

Lecture 1: Introduction to Linear and Non-Linear Waves Lecture 1: Introduction to Linear and Non-Linear Waves Lecturer: Harvey Segur. Write-up: Michael Bates June 15, 2009 1 Introduction to Water Waves 1.1 Motivation and Basic Properties There are many types

More information

Laplace equation in polar coordinates

Laplace equation in polar coordinates Laplace equation in polar coordinates The Laplace equation is given by 2 F 2 + 2 F 2 = 0 We have x = r cos θ, y = r sin θ, and also r 2 = x 2 + y 2, tan θ = y/x We have for the partials with respect to

More information

Fiber Optics. Equivalently θ < θ max = cos 1 (n 0 /n 1 ). This is geometrical optics. Needs λ a. Two kinds of fibers:

Fiber Optics. Equivalently θ < θ max = cos 1 (n 0 /n 1 ). This is geometrical optics. Needs λ a. Two kinds of fibers: Waves can be guided not only by conductors, but by dielectrics. Fiber optics cable of silica has nr varying with radius. Simplest: core radius a with n = n 1, surrounded radius b with n = n 0 < n 1. Total

More information

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives. PRACTICE PROBLEMS Please let me know if you find any mistakes in the text so that i can fix them. 1.1. Let Show that f is C 1 and yet How is that possible? 1. Mixed partial derivatives f(x, y) = {xy x

More information

Vector diffraction theory of refraction of light by a spherical surface

Vector diffraction theory of refraction of light by a spherical surface S. Guha and G. D. Gillen Vol. 4, No. 1/January 007/J. Opt. Soc. Am. B 1 Vector diffraction theory of refraction of light by a spherical surface Shekhar Guha and Glen D. Gillen* Materials and Manufacturing

More information

Physics 506 Winter 2004

Physics 506 Winter 2004 Physics 506 Winter 004 G. Raithel January 6, 004 Disclaimer: The purpose of these notes is to provide you with a general list of topics that were covered in class. The notes are not a substitute for reading

More information

ENGI Partial Differentiation Page y f x

ENGI Partial Differentiation Page y f x ENGI 344 4 Partial Differentiation Page 4-0 4. Partial Differentiation For functions of one variable, be found unambiguously by differentiation: y f x, the rate of change of the dependent variable can

More information

is conserved, calculating E both at θ = 0 and θ = π/2 we find that this happens for a value ω = ω given by: 2g

is conserved, calculating E both at θ = 0 and θ = π/2 we find that this happens for a value ω = ω given by: 2g UNIVERSITETET I STAVANGER Institutt for matematikk og naturvitenskap Suggested solutions, FYS 500 Classical Mechanics Theory 2016 fall Set 5 for 23. September 2016 Problem 27: A string can only support

More information

F1.9AB2 1. r 2 θ2 + sin 2 α. and. p θ = mr 2 θ. p2 θ. (d) In light of the information in part (c) above, we can express the Hamiltonian in the form

F1.9AB2 1. r 2 θ2 + sin 2 α. and. p θ = mr 2 θ. p2 θ. (d) In light of the information in part (c) above, we can express the Hamiltonian in the form F1.9AB2 1 Question 1 (20 Marks) A cone of semi-angle α has its axis vertical and vertex downwards, as in Figure 1 (overleaf). A point mass m slides without friction on the inside of the cone under the

More information

Chapter 5. The Differential Forms of the Fundamental Laws

Chapter 5. The Differential Forms of the Fundamental Laws Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations

More information

Module 2: Governing Equations and Hypersonic Relations

Module 2: Governing Equations and Hypersonic Relations Module 2: Governing Equations and Hypersonic Relations Lecture -2: Mass Conservation Equation 2.1 The Differential Equation for mass conservation: Let consider an infinitely small elemental control volume

More information

Multivariable Calculus

Multivariable Calculus Multivariable Calculus In thermodynamics, we will frequently deal with functions of more than one variable e.g., P PT, V, n, U UT, V, n, U UT, P, n U = energy n = # moles etensive variable: depends on

More information

Lecture 16 February 25, 2016

Lecture 16 February 25, 2016 MTH 262/CME 372: pplied Fourier nalysis and Winter 2016 Elements of Modern Signal Processing Lecture 16 February 25, 2016 Prof. Emmanuel Candes Scribe: Carlos. Sing-Long, Edited by E. Bates 1 Outline genda:

More information

CONSERVATION OF MASS AND BALANCE OF LINEAR MOMENTUM

CONSERVATION OF MASS AND BALANCE OF LINEAR MOMENTUM CONSERVATION OF MASS AND BALANCE OF LINEAR MOMENTUM Summary of integral theorems Material time derivative Reynolds transport theorem Principle of conservation of mass Principle of balance of linear momentum

More information

d Wave Equation. Rectangular membrane.

d Wave Equation. Rectangular membrane. 1 ecture1 1.1 2-d Wave Equation. Rectangular membrane. The first problem is for the wave equation on a rectangular domain. You can interpret this as a problem for determining the displacement of a flexible

More information

MAE 3130: Fluid Mechanics Lecture 7: Differential Analysis/Part 1 Spring Dr. Jason Roney Mechanical and Aerospace Engineering

MAE 3130: Fluid Mechanics Lecture 7: Differential Analysis/Part 1 Spring Dr. Jason Roney Mechanical and Aerospace Engineering MAE 3130: Fluid Mechanics Lecture 7: Differential Analysis/Part 1 Spring 2003 Dr. Jason Roney Mechanical and Aerospace Engineering Outline Introduction Kinematics Review Conservation of Mass Stream Function

More information

Mathematical Models of Fluids

Mathematical Models of Fluids SOUND WAVES Mathematical Models of Fluids Fluids molecules roam and collide no springs Collisions cause pressure in fluid (Units: Pascal Pa = N/m 2 ) 2 mathematical models for fluid motion: 1) Bulk properties

More information

Mathematical Concepts & Notation

Mathematical Concepts & Notation Mathematical Concepts & Notation Appendix A: Notation x, δx: a small change in x t : the partial derivative with respect to t holding the other variables fixed d : the time derivative of a quantity that

More information

Pressure in stationary and moving fluid Lab- Lab On- On Chip: Lecture 2

Pressure in stationary and moving fluid Lab- Lab On- On Chip: Lecture 2 Pressure in stationary and moving fluid Lab-On-Chip: Lecture Lecture plan what is pressure e and how it s distributed in static fluid water pressure in engineering problems buoyancy y and archimedes law;

More information

CIV-E1060 Engineering Computation and Simulation Examination, December 12, 2017 / Niiranen

CIV-E1060 Engineering Computation and Simulation Examination, December 12, 2017 / Niiranen CIV-E16 Engineering Computation and Simulation Examination, December 12, 217 / Niiranen This examination consists of 3 problems rated by the standard scale 1...6. Problem 1 Let us consider a long and tall

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

Chapter 1. Vector Algebra and Vector Space

Chapter 1. Vector Algebra and Vector Space 1. Vector Algebra 1.1. Scalars and vectors Chapter 1. Vector Algebra and Vector Space The simplest kind of physical quantity is one that can be completely specified by its magnitude, a single number, together

More information

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod)

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) 28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) θ + ω 2 sin θ = 0. Indicate the stable equilibrium points as well as the unstable equilibrium points.

More information

Dr. Gundersen Phy 206 Test 2 March 6, 2013

Dr. Gundersen Phy 206 Test 2 March 6, 2013 Signature: Idnumber: Name: You must do all four questions. There are a total of 100 points. Each problem is worth 25 points and you have to do ALL problems. A formula sheet is provided on the LAST page

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. MAC2313 Final A (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. ii. The vector field F = 5(x 2 + y 2 ) 3/2 x, y is radial. iii. All constant

More information

Fourier transforms, Generalised functions and Greens functions

Fourier transforms, Generalised functions and Greens functions Fourier transforms, Generalised functions and Greens functions T. Johnson 2015-01-23 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson 1 Motivation A big part of this course concerns

More information

Rotational & Rigid-Body Mechanics. Lectures 3+4

Rotational & Rigid-Body Mechanics. Lectures 3+4 Rotational & Rigid-Body Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion - Definitions

More information

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS MATH 228: Calculus III (FALL 216) Sample Problems for FINAL EXAM SOLUTIONS MATH 228 Page 2 Problem 1. (2pts) Evaluate the line integral C xy dx + (x + y) dy along the parabola y x2 from ( 1, 1) to (2,

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Overview in Images. S. Lin et al, Nature, vol. 394, p , (1998) T.Thio et al., Optics Letters 26, (2001).

Overview in Images. S. Lin et al, Nature, vol. 394, p , (1998) T.Thio et al., Optics Letters 26, (2001). Overview in Images 5 nm K.S. Min et al. PhD Thesis K.V. Vahala et al, Phys. Rev. Lett, 85, p.74 (000) J. D. Joannopoulos, et al, Nature, vol.386, p.143-9 (1997) T.Thio et al., Optics Letters 6, 197-1974

More information

Introduction to Fluid Dynamics

Introduction to Fluid Dynamics Introduction to Fluid Dynamics Roger K. Smith Skript - auf englisch! Umsonst im Internet http://www.meteo.physik.uni-muenchen.de Wählen: Lehre Manuskripte Download User Name: meteo Password: download Aim

More information