Mikrostrukturrekonstruktion und FEM-Mikrostrukturmodelle für Lithium-Ionen Batterien

Size: px
Start display at page:

Download "Mikrostrukturrekonstruktion und FEM-Mikrostrukturmodelle für Lithium-Ionen Batterien"

Transcription

1 Modellbildung elektrochemischer Systeme Mikrostrukturrekonstruktion und FEM-Mikrostrukturmodelle für Lithium-Ionen Batterien André Weber - IAM-WET Adenauerring 20b, Geb (FZU), Raum 314 phone: 0721/ , fax: 0721/ andre.weber@kit.edu KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

2 Microstructure Reconstruction and Parameter Evaluation electrolyte Li + 1 Charge transfer at the interface between active material and electrolyte Li electrochemically active surface active material 2 Solid state diffusion into particles particle size carbon black e - 3 ionic and electronic transport in porous structure tortuosity of transport paths Quantification of a cathode microstructure FIB tomography using new preparation method microstructure parameter determination Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 2,

3 LiFePO 4 Cathode cathode composition LiFePO 4 (70% by weight) carbon black (24% by weight) PVDF binder (6% by weight) Slurry (mixed with NMP) was coated on aluminum current collector Z / Ω LiFePO 4 /Li cell (SOC 100%, T=20 C) Z / Ω Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 3,

4 FIB/SEM Reconstruction of LiB Electrodes Zeiss 1540XB CrossBeam SEM imaging FIB milling 200 consecutive images (24 million voxels) slice to slice spacing: 25nm current collector infiltrated cathode silicon resin 5 µm [1] B. Rüger, J. Joos, T. Carraro, A. Weber and E. Ivers-Tiffée, ECS Trans., 25 (2), p (2009) [2] J. Joos, T. Carraro, A. Weber and E. Ivers-Tiffée, J. Power Sources (2010), in press 15 µm Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 4,

5 Sample Preparation No infiltration Common infiltration (epoxy resin) New infiltration (silicon resin) LiFePO 4 carbon black porosity 1 µm LiFePO 4 carbon black & porosity 1 µm LiFePO 4 carbon black porosity 1 µm BUT: more complex preparation caused by elastic nature of the silicon resin Schematic assembly Finished sample porous electrode on current collector epoxy resin silicon resin M. Ender, J. Joos, T. Carraro and E. Ivers-Tiffée, Electrochemistry Communications 13, pp (2011). Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 5,

6 Image Preprocessing SEM raw frame raw image adjusted image 1 cropping & Alignment adjustment of relative positions 2 resampling change of pixel size ( nm) 3 4 stretching of histogram noise filtering y x Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 6,

7 Image Preprocessing SEM raw frame raw image adjusted image 1 cropping & Alignment adjustment of relative positions 2 resampling change of pixel size ( nm) 3 4 stretching of histogram noise filtering y x Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 7,

8 Segmentation Threshold Calculation histogram of whole reconstructed volume probability density functions p(t) p pore p CB p LiFePO grayscale value t different algorithms available when a minimum is present Minimum algorithm Otsu s algorithm fitting of normal distributions to grayscale values Maximum likelihood: calculation of probabilities P i, that a grayscale value t is caused by material of phase i Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 8,

9 Segmentation Threshold Calculation histogram of whole reconstructed volume probability density functions p(t) p CB grayscale value t p pore t 1 t 2 p LiFePO4 fitting of normal distributions to grayscale values Maximum likelihood: calculation of probabilities P i, that a grayscale value t is caused by material of phase i probability P i (t) probabilities P i P CB P pore P LiFePO4 t 1 t grayscale value t Best threshold: Value of t where the adjacent phases have the same probability: P i (t)=p j (t) t 1 = 61, t 2 = 138 Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 9,

10 Segmentation Improved Threshold Calculation Local Threshold Technique What if luminosity and contrast are not constant over the whole volume? Partitioning of the volume into = 192 cubes (consisting of voxel each) y x z p(t) entire volume indicated cube Threshold determination for all cubes t t 2 local threshold z 3 x a 0 a 1 a 2 a 3 t t Fitting of a linear function to get a local threshold Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 10,

11 Filtering of Reconstruction Data comparison of volume fractions Global threshold [1] Local threshold Local threshold (filtered) LiFePO Carbon black Pores Small corrections due to filtering three demands can be made: [1] M. Ender, J. Joos, T. Carraro and E. Ivers-Tiffée, Electrochemistry Communications, 13 (2), p. 166 (2011). exampel: island removal filter pore volume is completely connected active material has a minimum particle size (particles with less than 5 voxel are noise) No floating particles (active material and carbon black are connected) Application on pores & carbon black Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 11,

12 Spatial Material Distribution 3D material distribution 24 Million Voxel! 2 µm carbon black LiFePO 4 representative volume element??? (RVE) porosity (semi transparent) µm 3 parameter determination for quantification of the electrode s microstructure electrochemically active surface A active particle size d LiFePO4 tortuosity of transport paths τ pore, CB, Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 12,

13 Representative Volume Element full height (15 µm) full base area (5 5 µm 2 ) volume fraction volume fraction volume / µm volume / µm 3 pores carbon black LiFePO 4 Half base area leads to a difference of up to 3.5% in the volume fractions Half height leads to a difference of up to 15.5% in the volume fractions Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 13,

14 Necessary Volume Element - Loss and Benefit Reduction of the volume Half of the base area Half of the number of frames Half of the milling time Half of the base area leads to a change in the volume fractions of up to 3.5% Calculation of the microstructure parameters from the whole reconstructed volume Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 14,

15 Tortuosity of Transport Paths definition of tortuosity σ eff examples x = σi τ x=0.5 τ=1 l x=0.5 τ= d d τ tortuosity x volume fraction x=0.5 τ=1.12 x=? τ=? l? l d d ( σ φ) = 0 bulk Φ / V Φ=1V Φ=0V Transport equation solved by own parallel FEM software [1] results for τ porosity 1.31 carbon black 5.52 LiFePO 4 + carbon black 3.16 calculation by FEM simulation [1] J. Joos, B. Rüger, T. Carraro, A. Weber and E. Ivers-Tiffée, ECS Trans., 28 (11), p. 81 (2010). Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 15,

16 Electrochemically Active Surface Marching cube algorithm The method active LiFePO LiFePO possibilities 15 fundamental cases 1 Marching through the volume and selecting cubes of eight voxel each Calculation of the electrochemically active surface becomes 2 now possible: A assigning the vertices to material or pore 3 selecting the corresponding case from a lookup table (15 fundamental cases) 4CBcounting Apore of the = frequency 3.56 of occurrence for each case and multiplying it with the corresponding surface 1 = A µm 4 2 ( ) 1 A + A specific surface / µm -1 LiFePO carbon black porosity Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 16,

17 Other Reconstructions Tomography of a complete Cell 65 mm 18 mm Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 17,

18 Reconstruction ~350 µm Quelle: Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 18,

19 Microstructure Parameters graphite anode (Sony) glas fibre separator (EL-Cell) LiFePO 4 cathode (Sony) x Graphit = x Pore = a Graphit = µm -1 a Pore = µm -1 d Graphit = 2.31 µm d Pore = 1.10 µm τ Pore = 2.2 (Bruggemann) x Glasfaser = x Pore = a Pore = µm -1 d Glasfaser = 0.78 µm d Pore = 2.41 µm τ Pore = 1.16 x LiFePO4 = x carbon = x Pore = a LiFePO4 = µm -1 a carbon = µm -1 a Pore = µm -1 d LiFePO4 = 205 nm d agglomerat = 1.15 µm d carbon = 112 nm d Pore = 125 nm τ Pore = 1.9 Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 19,

20 Homogenized Model Graphite Anode model geometry simulations and measurements of anode y x z measurement simulation r z ε cat τ cat a spec ε sep τ sep D cell voltage U / V C 0.5 C OCV 1C C x in Li x C 6 The homogenized model parameterized with geometrical parameters from reconstruction is able to describe the principle electrode behavior. Further improvements:, Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 20,

21 Model Extension Two Particle Diameters model geometry influence on charge/discharge curves,!," µm 1µm & 10µm (1:1 by vol.) r z cell voltage U / V C OCV 1C 0.5 C 2C 0.1 x cat,1 a spec,1 1 x cat,2 a spec, x in Li x C 6 coupling of two particle diameters leads to a smoothing of the charge/discharge curves real particle size distributions, arbitrary particle shapes and dual-scale electrode structures require 3D space-resolved models Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 21,

22 Gradierte Elektroden Prozessbedingter Gradient: Gezielter Gradient: Nasser Film Fall 1 Fall 2 Zweischichtiger Elektrodenaufbau Sedimentierung Sedimentierung Trocknung Trocknung Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 22,

23 Erweiterung Gradierte Elektroden / 2-Schichtaufbau r z ε cat τ cat a spec ε cat τ cat a spec Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 23,

24 Gradierte Elektroden / 2-Schichtaufbau Simulation Elektrodenpotential / V LiFePO 4 Kathode 1C Entladung Gradiert 1 Normal Gradiert 2 20 µm 20 µm r = 4.1µm ε = 0.35 r = 5µm ε = 0.3 r = 3µm ε = 0.4 r = 4.1µm ε = 0.35 r = 3µm ε = 0.4 r = 5µm ε = C/C theo Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 24,

25 Blendelektroden Kokam 2 µm Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 25,

26 Blendelektroden Kokam Co Al Ni C 2 µm Kathode ist ein Blend aus: LiCoO2 LiNi0.8Co0.18Al0.02O2 Graphit/Kohlenstoff Leitruß Kombination verschiedener Materialien um möglichst gutes Gesamtverhalten zu erzielen. Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 26,

27 Erweiterung Blendelektroden,!," r z Φ OCV1 LiMn 2 O 4 Φ OCV2 ε cat τ cat a spec ε cat τ cat a spec LiNi x Co y Al z O 2 Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 27,

28 Blendelektroden LiMn 2 O 4 / LiNi x Co y Al 1-x-y O 2 Simulation 4.2 Entladung mit 1C LiMn 2 O 4 NCA Blend (1:1) Φ / V Q / mah g -1 Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 28,

29 Grenzen homogenisierter Modelle? LiFePO 4 Kathode (kommerziell, AJ02) Zweiskaliger Aufbau? 2µm 3D Simulationen Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 29,

30 Entwicklung des Mikrostrukturmodells Was soll modelliert werden? Lade-/EntladeVorgänge in der Li-Batterie: Ionentransport im Elektrolyten Ladungstransfer Elektrolyt/Aktivmaterial Li-Diffusion im Festkörper (Phasenseparation) Elektronischer Transport in der Elektroden Anforderungen Zeitabhängige Simulation Beliebige Geometrien (real und künstlich) Einfache Variation der Materialparameter Verschiedene Randbedingungen (Lade-/Entladeraten, Relaxation, CV???) Konstante Li- Konzentration Ladungstransfer (Butler-Vollmer) Kontaktwiderstand Laststrom Diffusion Diffusion Elektr. Leitung Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 30,

31 Graphit Ladevorgang Simulierter Ladevorgang (1C und 5C) E / V OCV 5C 1C Li-Konzentration Austauschstrom (t =1200 =3600 s) C cat / mol m -3 j ct / A m x in Li x C 6 Entladerate: 1C D El = 10-6 m/s 2 c max,cat = mol/m D(c/c max ) k ct = m/s 10-9 cat Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 31,

32 Mikrostrukturmodelle Ansätze 3D Modell (Graphitanode) C/10 Ladevorgang (t = 0 8,9 h) Mikrostruktur - Rekonstruktion % 1 Parameterbestimmung homogenisiertes Modell 3D-Modell % 0 makroskopisches Verhalten mikroskopisches Verhalten µm 3 Lithiumverteilung im Aktivmaterial 2.5 Tage Rechenzeit Quelle: IWE Vorlesung MES 09 - Mikrostrukturrekonstruktion LiB - Zellen.pptx, Folie: 32,

Performance analysis of Lithium-ion-batteries: status and prospects

Performance analysis of Lithium-ion-batteries: status and prospects Performance analysis of Lithium-ion-batteries: status and prospects DPG conference Erlangen March 218 Ellen Ivers-Tiffée, Philipp Braun, Michael Weiss Karlsruhe Institute of Technology (KIT), Germany KIT

More information

Modeling the next battery generation: Lithium-sulfur and lithium-air cells

Modeling the next battery generation: Lithium-sulfur and lithium-air cells Modeling the next battery generation: Lithium-sulfur and lithium-air cells D. N. Fronczek, T. Danner, B. Horstmann, Wolfgang G. Bessler German Aerospace Center (DLR) University Stuttgart (ITW) Helmholtz

More information

Capacity fade studies of Lithium Ion cells

Capacity fade studies of Lithium Ion cells Capacity fade studies of Lithium Ion cells by Branko N. Popov, P.Ramadass, Bala S. Haran, Ralph E. White Center for Electrochemical Engineering, Department of Chemical Engineering, University of South

More information

raw materials C V Mn Mg S Al Ca Ti Cr Si G H Nb Na Zn Ni K Co A B C D E F

raw materials C V Mn Mg S Al Ca Ti Cr Si G H Nb Na Zn Ni K Co A B C D E F Today s advanced batteries require a range of specialized analytical tools to better understand the electrochemical processes that occur during battery cycling. Evans Analytical Group (EAG) offers a wide-range

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/12/eaao7233/dc1 Supplementary Materials for Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life Hao Chen, Hanyan Xu, Siyao Wang, Tieqi

More information

Thermal & Electrochemical Simulation of Battery Pack Systems Steve Hartridge Director, Electric & Hybrid Vehicles

Thermal & Electrochemical Simulation of Battery Pack Systems Steve Hartridge Director, Electric & Hybrid Vehicles Thermal & Electrochemical Simulation of Battery Pack Systems Steve Hartridge Director, Electric & Hybrid Vehicles CD-adapco Battery Modeling Technology Micro-structure Electrochemistry Virtually test SEM

More information

How to develop post lithium ion battery. based on new concepts

How to develop post lithium ion battery. based on new concepts How to develop post lithium ion battery based on new concepts A new type Li-Cu battery &Li-Air battery/fuel cell Dr. Haoshen ZHOU (hs.zhou@aist.go.jp) Group Leader of Energy Interface Technology Group

More information

VI. Porous Media. Lecture 34: Transport in Porous Media

VI. Porous Media. Lecture 34: Transport in Porous Media VI. Porous Media Lecture 34: Transport in Porous Media 4/29/20 (corrected 5/4/2 MZB) Notes by MIT Student. Conduction In the previous lecture, we considered conduction of electricity (or heat conduction

More information

Fast and reversible thermoresponsive polymer switching materials for safer batteries

Fast and reversible thermoresponsive polymer switching materials for safer batteries ARTICLE NUMBER: 15009 DOI: 10.1038/NENERGY.2015.9 Fast and reversible thermoresponsive polymer switching materials for safer batteries Zheng Chen, Po-Chu Hsu, Jeffrey Lopez, Yuzhang Li, John W. F. To,

More information

LITHIUM ION BATTERIES

LITHIUM ION BATTERIES LITHIUM ION BATTERIES 1 Electrodes & Jelly roll 2 3 Types of Lithium ion batteries 원형, 원통형, cylindrical 각형, prismatic 폴리머, polymer (pouch type) 4 Materials composing electrodes 5 6 Terminology-1

More information

Introduction to Solid Oxide Fuel Cells. Solid Oxide Fuel Cell (SOFC)

Introduction to Solid Oxide Fuel Cells. Solid Oxide Fuel Cell (SOFC) Introduction to Solid Oxide Fuel Cells Basics Electrochemistry Microstructure Effects Stacks Solid Oxide Fuel Cell (SOFC) CATHODE: (La,Sr)(Mn)O 3 (LSM) LSM-YSZ ELECTROLYTE: ANODE: Y-doped ZrO 2 (YSZ) Ni-YSZ

More information

Scaling Analysis of Energy Storage by Porous Electrodes

Scaling Analysis of Energy Storage by Porous Electrodes Scaling Analysis of Energy Storage by Porous Electrodes Martin Z. Bazant May 14, 2012 1 Theoretical Capacity The maximum theoretical capacity occurs as E i 0, E p 0 E a 1, where E i, E p, and E a are the

More information

On Continuum Models for Heat Transfer in Small Scale Porous Materials Professor Jinliang Yuan

On Continuum Models for Heat Transfer in Small Scale Porous Materials Professor Jinliang Yuan On Continuum Models for Heat Transfer in Small Scale Porous Materials Professor Jinliang Yuan August 30, 2013 Department of Energy Sciences Lund University, Sweden Jinliang.yuan@energy.lth.se Why porous

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Supplementary Figure 1 Scanning electron microscopy image of a lithium dendrite. Dendrite formation in lithium ion batteries pose significant safety issues

More information

A New Type of Lithium-ion Battery Based on Tin Electroplated Negative Electrodes

A New Type of Lithium-ion Battery Based on Tin Electroplated Negative Electrodes Int. J. Electrochem. Sci., 1(2006)110-121 www.electrochemsci.org A New Type of Lithium-ion Battery Based on Tin Electroplated Negative Electrodes J. Hassoun, S. Panero, P. Reale and B. Scrosati Department

More information

Supplemental Information. Crumpled Graphene Balls Stabilized. Dendrite-free Lithium Metal Anodes

Supplemental Information. Crumpled Graphene Balls Stabilized. Dendrite-free Lithium Metal Anodes JOUL, Volume 2 Supplemental Information Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes Shan Liu, Aoxuan Wang, Qianqian Li, Jinsong Wu, Kevin Chiou, Jiaxing Huang, and Jiayan Luo

More information

Development of First Principles Capacity Fade Model for Li-Ion Cells

Development of First Principles Capacity Fade Model for Li-Ion Cells A196 Journal of The Electrochemical Society, 151 2 A196-A203 2004 0013-4651/2004/151 2 /A196/8/$7.00 The Electrochemical Society, Inc. Development of First Principles Capacity Fade Model for Li-Ion Cells

More information

Experimental Production, Evaluation and Analysis Technologies for Li-ion Secondary Batteries

Experimental Production, Evaluation and Analysis Technologies for Li-ion Secondary Batteries Experimental Production, Evaluation and Analysis Technologies for Li-ion Secondary Batteries Takayuki TSUBOTA *1, Takashi ACHIHA *1, Yoshiki HAYASHI *1, Dr. Rinun SYU *1, Takashi IKEDA *1, Masato NISHIUCHI

More information

Electrochimica Acta 64 (2012) Contents lists available at SciVerse ScienceDirect. Electrochimica Acta

Electrochimica Acta 64 (2012) Contents lists available at SciVerse ScienceDirect. Electrochimica Acta Electrochimica Acta 64 (2012) 46 64 Contents lists available at SciVerse ScienceDirect Electrochimica Acta j ourna l ho me pag e: www.elsevier.com/locate/electacta 3-D pore-scale resolved model for coupled

More information

Lithium Batteries. Rechargeable batteries

Lithium Batteries. Rechargeable batteries Lithium Batteries One of the main attractions of lithium as an anode material is its position as the most electronegative metal in the electrochemical series combined with its low density, thus offering

More information

Thermodynamics of lithium ion batteries Hans J. Seifert

Thermodynamics of lithium ion batteries Hans J. Seifert Thermodynamics of lithium ion batteries Hans J. Seifert Institute for Applied Materials Applied Materials Physics (IAM-AWP) KIT University of the State of Baden-Wuerttemberg and National Research Center

More information

Basic overall reaction for hydrogen powering

Basic overall reaction for hydrogen powering Fuel Cell Basics Basic overall reaction for hydrogen powering 2H 2 + O 2 2H 2 O Hydrogen produces electrons, protons, heat and water PEMFC Anode reaction: H 2 2H + + 2e Cathode reaction: (½)O 2 + 2H +

More information

Supporting information. Alkali Metal Ion Templated Transition Metal Formate. Framework Materials: Synthesis, Crystal Structures,

Supporting information. Alkali Metal Ion Templated Transition Metal Formate. Framework Materials: Synthesis, Crystal Structures, Supporting information Alkali Metal Ion Templated Transition Metal Formate Framework Materials: Synthesis, Crystal Structures, Ion Migration and Magnetism Espen Eikeland, 1 Nina Lock, 2 Mette Filsø, 1

More information

Final Draft of the original manuscript:

Final Draft of the original manuscript: Final Draft of the original manuscript: Klink, S.; Hoeche, D.; La Mantia, F.; Schuhmann, W.: FEM modelling of a coaxial three-electrode test cell for electrochemical impedance spectroscopy in lithium ion

More information

Lattice Boltzmann simulation of ion and electron transport in lithium ion battery porous electrode during discharge process

Lattice Boltzmann simulation of ion and electron transport in lithium ion battery porous electrode during discharge process Available online at www.sciencedirect.com ScienceDirect Energy Procedia 88 (2016 ) 642 646 CUE2015-Applied Energy Symposium and Summit 2015: Low carbon cities and urban energy systems Lattice Boltzmann

More information

Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720

Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720 Supporting Information for The Most Promising Routes to a High Li + Transference Number Electrolyte for Lithium Ion Batteries Kyle M. Diederichsen, Eric J. McShane, Bryan D. McCloskey* Department of Chemical

More information

The Role of Cesium Cation in Controlling Interphasial. Chemistry on Graphite Anode in Propylene Carbonate-Rich

The Role of Cesium Cation in Controlling Interphasial. Chemistry on Graphite Anode in Propylene Carbonate-Rich Supporting Information The Role of Cesium Cation in Controlling Interphasial Chemistry on Graphite Anode in Propylene Carbonate-Rich Electrolytes Hongfa Xiang,,# Donghai Mei, + Pengfei Yan, Priyanka Bhattacharya,

More information

Unique Behaviour of Nonsolvents for Polysulphides in Lithium-Sulphur Batteries.

Unique Behaviour of Nonsolvents for Polysulphides in Lithium-Sulphur Batteries. Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 214 Supplementary Information Unique Behaviour of Nonsolvents for Polysulphides

More information

Modeling, Validation and Analysis of Degradation Processes of Lithium Ion Polymer Batteries. Rujian Fu

Modeling, Validation and Analysis of Degradation Processes of Lithium Ion Polymer Batteries. Rujian Fu Modeling, Validation and Analysis of Degradation Processes of Lithium Ion Polymer Batteries by Rujian Fu A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of

More information

Mikaël Cugnet, Issam Baghdadi, and Marion Perrin OCTOBER 10, Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan

Mikaël Cugnet, Issam Baghdadi, and Marion Perrin OCTOBER 10, Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan Mikaël Cugnet, Issam Baghdadi, and Marion Perrin OCTOBER 0, 202 Comsol Conference Europe 202, Milan, CEA Italy 0 AVRIL 202 PAGE Excerpt from the Proceedings of the 202 COMSOL Conference in Milan SUMMARY

More information

Template-Free Synthesis of Highly Porous Boron. Nitride: Insights into Pore Network Design and Impact

Template-Free Synthesis of Highly Porous Boron. Nitride: Insights into Pore Network Design and Impact Template-Free Synthesis of Highly Porous Boron Nitride: Insights into Pore Network Design and Impact on Gas Sorption Sofia Marchesini a, Catriona M. McGilvery b, Josh Bailey c and Camille Petit a, * a

More information

Understanding Impedance of Li-Ion Batteries with Battery Design Studio

Understanding Impedance of Li-Ion Batteries with Battery Design Studio Understanding Impedance of Li-Ion Batteries with Battery Design Studio Robert Spotnitz Battery Consultant Thursday July 6, 2017 16:40-17:10 Understanding Impedance Li-Ion Batteries with Battery Design

More information

Supplementary Figure 1 A schematic representation of the different reaction mechanisms

Supplementary Figure 1 A schematic representation of the different reaction mechanisms Supplementary Figure 1 A schematic representation of the different reaction mechanisms observed in electrode materials for lithium batteries. Black circles: voids in the crystal structure, blue circles:

More information

2015 GCEP Report - external

2015 GCEP Report - external 2015 GCEP Report - external Project title: Self-Healing Polymers for High-Energy-Density Lithium Ion Battery Investigators Zhenan Bao, Professor, Chemical Engineering Yi Cui, Professor, Material Sciences

More information

Experimental identification and validation of an electrochemical model of a Lithium-Ion Battery

Experimental identification and validation of an electrochemical model of a Lithium-Ion Battery Experimental identification and validation of an electrochemical model of a Lithium-Ion Battery Carmelo Speltino, Domenico Di Domenico, Giovanni Fiengo and Anna Stefanopoulou Abstract In this work an experimental

More information

Messung des differentiellen Wirkungsquerschnitts der Z-Boson Produktion im Elektron-Zerfallskanal mit dem CMS-Detektor bei s=8 TeV.

Messung des differentiellen Wirkungsquerschnitts der Z-Boson Produktion im Elektron-Zerfallskanal mit dem CMS-Detektor bei s=8 TeV. Messung des differentiellen Wirkungsquerschnitts der Z-Boson Produktion im Elektron-Zerfallskanal mit dem CMS-Detektor bei s=8 TeV. DPG Frühjahrstagung 2015 Dominik Haitz, Klaus Rabbertz, Günter Quast

More information

Higgs Boson Physics. Analysis Techniques. Günter Quast, Roger Wolf, Andrew Gilbert Master-Kurs SS

Higgs Boson Physics. Analysis Techniques. Günter Quast, Roger Wolf, Andrew Gilbert Master-Kurs SS Higgs Boson Physics Analysis Techniques Günter Quast, Roger Wolf, Andrew Gilbert Master-Kurs SS 2015 Institut für Experimentelle Kernphysik KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

More information

Topological and Network Analysis of Lithium Ion Battery Components: The Importance of Pore Space Connectivity for Cell Operation

Topological and Network Analysis of Lithium Ion Battery Components: The Importance of Pore Space Connectivity for Cell Operation Topological and Network Analysis of Lithium Ion Battery Components: The Importance of Pore Space Connectivity for Cell Operation M. F. Lagadec, 1 R. Zahn, 1 S. Müller 1 and V. Wood 1 1 Department of Information

More information

(name) Electrochemical Energy Systems, Spring 2014, M. Z. Bazant. Final Exam

(name) Electrochemical Energy Systems, Spring 2014, M. Z. Bazant. Final Exam 10.626 Electrochemical Energy Systems, Spring 2014, M. Z. Bazant Final Exam Instructions. This is a three-hour closed book exam. You are allowed to have five doublesided pages of personal notes during

More information

Übung 7: Elektrochemische Kinetik (2. Teil) Konzentrationsüberspannung

Übung 7: Elektrochemische Kinetik (2. Teil) Konzentrationsüberspannung Elektrochemie Prof. Petr Novàk WS 2017/2018 Übung 7: Elektrochemische Kinetik (2. Teil) Konzentrationsüberspannung Assistant: Laura Höltschi (laura.hoeltschi@psi.ch) Exercise 1 In a very diluted aqueous

More information

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010 Modeling as a tool for understanding the MEA Henrik Ekström Utö Summer School, June 22 nd 2010 COMSOL Multiphysics and Electrochemistry Modeling The software is based on the finite element method A number

More information

State-Space Modeling of Electrochemical Processes. Michel Prestat

State-Space Modeling of Electrochemical Processes. Michel Prestat State-Space Modeling of Electrochemical Processes Who uses up my battery power? Michel Prestat ETH-Zürich Institute for Nonmetallic Materials Head: Prof. L.J. Gauckler Outline Electrochemistry Electrochemical

More information

Effect of Intercalation Diffusivity When Simulating Mixed Electrode Materials in Li-Ion Batteries

Effect of Intercalation Diffusivity When Simulating Mixed Electrode Materials in Li-Ion Batteries Effect of Intercalation Diffusivity When Simulating Mixed Electrode Materials in Li-Ion Batteries E. Wikner *1 1 Chalmers University of Technology *Hörsalvägen 11, evelina.wikner@chalmers.se Abstract:

More information

REFRACTORY METAL OXIDES: FABRICATION OF NANOSTRUCTURES, PROPERTIES AND APPLICATIONS

REFRACTORY METAL OXIDES: FABRICATION OF NANOSTRUCTURES, PROPERTIES AND APPLICATIONS REFRACTORY METAL OXIDES: FABRICATION OF NANOSTRUCTURES, PROPERTIES AND APPLICATIONS S.K. Lazarouk, D.A. Sasinovich BELARUSIAN STATE UNIVERSITY OF INFORMATICS AND RADIOELECTRONICS Outline: -- experimental

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201604015 High Performance Graphene/Ni 2 P Hybrid Anodes for Lithium

More information

Electrochemical Cell for in-situ XAFS Measurements

Electrochemical Cell for in-situ XAFS Measurements Electrochemical Cell for in-situ XAFS Measurements Ryota Miyahara, Kazuhiro Hayashi, Misaki Katayama, and Yasuhiro Inada Applied Chemistry Course, Graduate School of Life Sciences, Ritsumeikan University,

More information

High-Performance Silicon Battery Anodes Enabled by

High-Performance Silicon Battery Anodes Enabled by Supporting Information for: High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies Min Zhou,, Xianglong Li, *, Bin Wang, Yunbo Zhang, Jing Ning, Zhichang Xiao, Xinghao Zhang,

More information

Supplementary Figure 1 a-c, The viscosity fitting curves of high-molecular-weight poly(vinyl alcohol) (HMW-PVA) (a), middle-molecular-weight

Supplementary Figure 1 a-c, The viscosity fitting curves of high-molecular-weight poly(vinyl alcohol) (HMW-PVA) (a), middle-molecular-weight Supplementary Figure 1 a-c, The viscosity fitting curves of high-molecular-weight poly(vinyl alcohol) (HMW-PVA) (a), middle-molecular-weight poly(vinyl alcohol) (MMW-PVA) (b) and low-molecular-weight poly(vinyl

More information

Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode 1

Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode 1 Kyle N. Grew John R. Izzo, Jr. Wilson K. S. Chiu 2 e-mail: wchiu@engr.uconn.edu Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269-3139 Characterization

More information

Modeling Battery Behavior for Accurate State-of-Charge Indication

Modeling Battery Behavior for Accurate State-of-Charge Indication Journal of The Electrochemical Society, 153 11 A2013-A2022 2006 0013-4651/2006/153 11 /A2013/10/$20.00 The Electrochemical Society Modeling Battery Behavior for Accurate State-of-Charge Indication V. Pop,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for SC Advances. This journal is The oyal Society of Chemistry 2014 Supporting Information Novel Functional Material Carboxymethyl Cellulose Lithium (CMC-Li) Enhanced

More information

[Supporting information]

[Supporting information] [Supporting information] Proof of ionic transport in interparticles of LiMPO 4 electrodes Kyu T. Lee, Wang H. Kan, Linda F. Nazar *. University of Waterloo, Department of Chemistry, Waterloo, Ontario,

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/1/e1501038/dc1 Supplementary Materials for Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life Xiaoli Dong,

More information

Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells

Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells K. Tseronis a, I. Kookos b, C. Theodoropoulos a* a School of Chemical Engineering and Analytical Science, University

More information

Supporting Information for Atomic layer deposited TiO 2 on nitrogen-doped graphene/sulfur electrode for high performance lithiumsulfur

Supporting Information for Atomic layer deposited TiO 2 on nitrogen-doped graphene/sulfur electrode for high performance lithiumsulfur Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Supporting Information for Atomic layer deposited TiO 2 on nitrogen-doped

More information

TOPOLOGY OPTIMIZATION APPLIED TO DESIGN OF SOLID OXIDE FUEL CELLS

TOPOLOGY OPTIMIZATION APPLIED TO DESIGN OF SOLID OXIDE FUEL CELLS TOPOLOGY OPTIMIZATION APPLIED TO DESIGN OF SOLID OXIDE FUEL CELLS By Xiankai Song A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Mechanical

More information

VII. Porous Media Lecture 36: Electrochemical Supercapacitors

VII. Porous Media Lecture 36: Electrochemical Supercapacitors VII. Porous Media Lecture 36: Electrochemical Supercapacitors MIT Student (and MZB) 1. Transmission Line Model for Linear Response Last time, we took the supercapacitor limit of a general porous medium

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature17653 Supplementary Methods Electronic transport mechanism in H-SNO In pristine RNO, pronounced electron-phonon interaction results in polaron formation that dominates the electronic

More information

Supporting Information

Supporting Information Supporting Information A Novel Potassium-Ion Hybrid Capacitor Based on an Anode of K 2 Ti 6 O 13 Micro-Scaffolds Shengyang Dong,, Zhifei Li, Zhenyu Xing, Xianyong Wu, Xiulei Ji*, and Xiaogang Zhang*, Jiangsu

More information

Research Article Preparation and Characterisation of LiFePO 4 /CNT Material for Li-Ion Batteries

Research Article Preparation and Characterisation of LiFePO 4 /CNT Material for Li-Ion Batteries SAGE-Hindawi Access to Research International Electrochemistry Volume 2011, Article ID 283491, 5 pages doi:10.4061/2011/283491 Research Article Preparation and Characterisation of LiFePO 4 /CNT Material

More information

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electronic Supplementary Information Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electrolytes Wen Lu, * Adam Goering, Liangti Qu, and Liming Dai * 1. Synthesis of

More information

AP CHEMISTRY NOTES 12-1 ELECTROCHEMISTRY: ELECTROCHEMICAL CELLS

AP CHEMISTRY NOTES 12-1 ELECTROCHEMISTRY: ELECTROCHEMICAL CELLS AP CHEMISTRY NOTES 12-1 ELECTROCHEMISTRY: ELECTROCHEMICAL CELLS Review: OXIDATION-REDUCTION REACTIONS the changes that occur when electrons are transferred between reactants (also known as a redox reaction)

More information

Studying On Capacity Fade Mechanisms of Li-Ion Batteries Through Modeling

Studying On Capacity Fade Mechanisms of Li-Ion Batteries Through Modeling University of South Carolina Scholar Commons Theses and Dissertations 1-1-2013 Studying On Capacity Fade Mechanisms of Li-Ion Batteries Through Modeling Yiling Dai University of South Carolina - Columbia

More information

Electrochemical Cell - Basics

Electrochemical Cell - Basics Electrochemical Cell - Basics The electrochemical cell e - (a) Load (b) Load e - M + M + Negative electrode Positive electrode Negative electrode Positive electrode Cathode Anode Anode Cathode Anode Anode

More information

CFD Analysis of PEM Fuel Cell

CFD Analysis of PEM Fuel Cell CFD Analysis of PEM Fuel Cell Group Seminar Munir Khan Division of Heat Transfer Department of Energy Sciences Lund University Outline 1 Geometry 2 Mathematical Model 3 Results 4 Conclusions I 5 Pore Scale

More information

Basic overall reaction for hydrogen powering

Basic overall reaction for hydrogen powering Fuel Cell Basics Basic overall reaction for hydrogen powering 2H 2 + O 2 2H 2 O Hydrogen produces electrons, protons, heat and water PEMFC Anode reaction: H 2 2H + + 2e Cathode reaction: (½)O 2 + 2H +

More information

Mathematical Modeling All Solid State Batteries

Mathematical Modeling All Solid State Batteries Katharina Becker-Steinberger, Stefan Funken, Manuel Landsdorfer, Karsten Urban Institute of Numerical Mathematics Konstanz, 04.03.2010 Mathematical Modeling All Solid State Batteries Page 1/31 Mathematical

More information

Detailed numerical investigations of two-phase flow and transport. narrow channels. Dr.-Ing. Martin Wörner. Institut für Kern- und Energietechnik

Detailed numerical investigations of two-phase flow and transport. narrow channels. Dr.-Ing. Martin Wörner. Institut für Kern- und Energietechnik Detailed numerical investigations of two-phase flow and transport INSTITUT phenomena FÜR KERN- UND ENERGIETECHNIK in narrow channels Dr.-Ing. Martin Wörner Opening Workshop Helmholtz Research School Energy-Related

More information

STRESS ANALYSIS OF THE SEPARATOR IN A LITHIUM-ION BATTERY

STRESS ANALYSIS OF THE SEPARATOR IN A LITHIUM-ION BATTERY STRESS ANALYSIS OF THE SEPARATOR IN A LITHIUM-ION BATTERY By Danghe Shi A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Mechanical

More information

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Supporting Information Dual redox catalysts for oxygen reduction and evolution reactions:

More information

Supporting Information

Supporting Information Supporting Information Zeolite-Templated Mesoporous Silicon Particles for Advanced Lithium-Ion Battery Anodes Nahyeon Kim, Hyejung Park, Naeun Yoon, and Jung Kyoo Lee * Department of Chemical Engineering,

More information

International Journal of Energy Research. A Validation Study of Lithium-ion Cell Constant C-Rate Discharge Simulation with Battery Design Studio

International Journal of Energy Research. A Validation Study of Lithium-ion Cell Constant C-Rate Discharge Simulation with Battery Design Studio International Journal of Energy Research A Validation Study of Lithium-ion Cell Constant C-Rate Discharge Simulation with Battery Design Studio Journal: International Journal of Energy Research Manuscript

More information

According to the mixing law of local porosity theory [1{10] the eective frequency dependent dielectric function " e (!) of a heterogeneous mixture may

According to the mixing law of local porosity theory [1{10] the eective frequency dependent dielectric function  e (!) of a heterogeneous mixture may Local Percolation Probabilities for a Natural Sandstone R. Hilfer 1;2, T. Rage 3 and B. Virgin 3 1 ICA-1, Universitat Stuttgart, Pfaenwaldring 27, 70569 Stuttgart 2 Institut fur Physik, Universitat Mainz,

More information

Multiphysics modeling of thermal batteries

Multiphysics modeling of thermal batteries Multiphysics modeling of thermal batteries Scott A. Roberts, Ph.D. Thermal/Fluid Component Sciences Department Sandia National Laboratories, Albuquerque, NM The Future of Munitions Batteries Workshop Army

More information

3-D Imaging of separator pore structure and Li + diffusion behavior

3-D Imaging of separator pore structure and Li + diffusion behavior 3-D Imaging of separator pore structure and Li + diffusion behavior Dr. Akira Yoshino Yoshino Laboratory Asahi Kasei Corp. E-mail: yoshino.ab@om.asahi-kasei.co.jp Outline 1. Background 2. Method to measure

More information

A Boundary Condition for Porous Electrodes

A Boundary Condition for Porous Electrodes Electrochemical Solid-State Letters, 7 9 A59-A63 004 0013-4651/004/79/A59/5/$7.00 The Electrochemical Society, Inc. A Boundary Condition for Porous Electrodes Venkat R. Subramanian, a, *,z Deepak Tapriyal,

More information

Enhanced Power Systems Through Nanotechnology

Enhanced Power Systems Through Nanotechnology Enhanced Power Systems Through Nanotechnology Applied Power Electronics Conference and Exposition Fort Worth, Texas March 19, 2014 Dale Teeters Chemistry and Biochemistry The University of Tulsa The Movie,

More information

Thermodynamics of Lithium Battery Materials

Thermodynamics of Lithium Battery Materials Thermodynamics of Lithium Battery Materials Hans J. Seifert Elke Schuster, Maren Lepple, Damian Cupid, Peter Franke, Carlos Ziebert Karlsruhe Institute of Technology (KIT) Institute for Applied Materials

More information

Rechargeable Lithium-Air Batteries Using Mathematical Modelling

Rechargeable Lithium-Air Batteries Using Mathematical Modelling Rechargeable Lithium-Air Batteries Using Mathematical Modelling A Thesis Submitted by Ukrit Sahapatsombut For the Degree of Doctor of Philosophy School of Chemical Engineering and Advanced Materials Newcastle

More information

Supporting Information. Fabrication, Testing and Simulation of All Solid State Three Dimensional Li-ion Batteries

Supporting Information. Fabrication, Testing and Simulation of All Solid State Three Dimensional Li-ion Batteries Supporting Information Fabrication, Testing and Simulation of All Solid State Three Dimensional -ion Batteries A. Alec Talin* 1, Dmitry Ruzmetov 2, Andrei Kolmakov 2, Kim McKelvey 3, Nicholas Ware 4, Farid

More information

Boosting rate capability of hard carbon with an ether-based. electrolyte for sodium ion batteries

Boosting rate capability of hard carbon with an ether-based. electrolyte for sodium ion batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information (ESI) Boosting rate capability of

More information

Evaluation of design options for tubular redox flow batteries

Evaluation of design options for tubular redox flow batteries Dept. Mechanical Engineering and Production Heinrich-Blasius-Institute for Physical Technologies Evaluation of design options for tubular redox flow batteries Thorsten Struckmann, Max Nix, Simon Ressel

More information

Battery Design Studio Update

Battery Design Studio Update Advanced Thermal Modeling of Batteries Battery Design Studio Update March 20, 2012 13:30 13:55 New Features Covered Today 3D models Voltage dependent diffusion Let s start with brief introduction to Battery

More information

In Situ X-Ray Emission Spectroscopy of Battery Materials

In Situ X-Ray Emission Spectroscopy of Battery Materials In Situ X-Ray Emission Spectroscopy of Battery Materials Colleen Werkheiser Department of Physics, University of Washington (Dated: August 27, 2015) X-ray emission spectroscopy measurements were taken

More information

Analysis of the decay B + l + νγ, l + = e +, µ +

Analysis of the decay B + l + νγ, l + = e +, µ + Analysis of the decay B l νγ, l = e, µ Bad Liebenzell 1 Andreas Heller, Michael Feindt, Martin Heck, Anže Zupanc, Thomas Kuhr, Pablo Goldenzweig INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (EKP), KARLSRUHER

More information

THE EFFECTS OF PULSED CHARGING ON LITHIUM ION BATTERIES

THE EFFECTS OF PULSED CHARGING ON LITHIUM ION BATTERIES THE EFFECTS OF PULSED CHARGING ON LITHIUM ION BATTERIES A Thesis Presented to The Academic Faculty by Daniel William Gaddes In Partial Fulfillment of the Requirements for the Degree Masters of Science

More information

Thermal-Electrochemical Modeling and Parameter Sensitivity Analysis of Lithium-ion Battery

Thermal-Electrochemical Modeling and Parameter Sensitivity Analysis of Lithium-ion Battery A publication of VOL. 33, 2013 CHEMICAL ENGINEERING TRANSACTIONS Guest Editors: Enrico Zio, Piero Baraldi Copyright 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-24-2; ISSN 1974-9791 The Italian Association

More information

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Unterpoerlitzer

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

A validation study of lithium-ion cell constant c-rate discharge simulation with Battery Design Studio W

A validation study of lithium-ion cell constant c-rate discharge simulation with Battery Design Studio W INTERNATIONAL JOURNAL OF ENERGY RESEARCH Int. J. Energy Res. 2013; 37:1562 1568 Published online 17 December 2012 in Wiley Online Library (wileyonlinelibrary.com)..2999 TECHNICAL NOTE A validation study

More information

Lecture 4. Conductance sensors. ChemFET. Electrochemical Impedance Spectroscopy. py Practical consideration for electrochemical biosensors.

Lecture 4. Conductance sensors. ChemFET. Electrochemical Impedance Spectroscopy. py Practical consideration for electrochemical biosensors. Lecture 4 Conductance sensors. ChemFET. Electrochemical Impedance Spectroscopy. py Practical consideration for electrochemical biosensors. Conductivity I V = I R=, L - conductance L= κa/, l Λ= κ /[ C]

More information

Batteries: Now and Future

Batteries: Now and Future Batteries: Now and Future Yi Cui Department of Materials Science and Engineering Stanford University Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory Mobile Phone

More information

Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries

Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries ARTICLE NUMBER: 16113 DOI: 10.1038/NENERGY.2016.113 Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries Minseong Ko, Sujong Chae, Jiyoung Ma, Namhyung Kim, Hyun-Wook

More information

Electronic Supporting Information

Electronic Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry

More information

A1308. Combined experimental and modeling study of interaction between LSCF and CGO in SOFC cathodes

A1308. Combined experimental and modeling study of interaction between LSCF and CGO in SOFC cathodes A1308 Combined experimental and modeling study of interaction between LSCF and CGO in SOFC cathodes Rémi Costa (1), Roberto Spotorno (1), Claudia Repetto (1), Zeynep Ilhan (1,2) and Vitaliy Yurkiv (1,2)

More information

Molecular Electronics For Fun and Profit(?)

Molecular Electronics For Fun and Profit(?) Molecular Electronics For Fun and Profit(?) Prof. Geoffrey Hutchison Department of Chemistry University of Pittsburgh geoffh@pitt.edu July 22, 2009 http://hutchison.chem.pitt.edu Moore s Law: Transistor

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Microstructure, morphology and chemical composition of the carbon microspheres: (a) A SEM image of the CM-NFs; and EDS spectra of CM-NFs (b), CM-Ns (d) and

More information

Energy Storage material status and challenges for KSA and practical application of 3D holey-graphene structure. Imran Shakir

Energy Storage material status and challenges for KSA and practical application of 3D holey-graphene structure. Imran Shakir Energy Storage material status and challenges for KSA and practical application of 3D holey-graphene structure Imran Shakir Specific Power (W/kg) Energy Storage Research Group Objective Development of

More information

Developing Mathematical Models of Batteries in Modelica for Energy Storage Applications

Developing Mathematical Models of Batteries in Modelica for Energy Storage Applications Developing Mathematical Models of Batteries in Modelica for Energy Storage Applications Dr. Thanh-Son Dao Dr. Chad Schmitke Maplesoft, Waterloo, Ontario, Canada, {tdao, cschmitke}@maplesoft.com Abstract

More information

Supporting information: Stability limits of tin-based electrocatalyst supports. Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany

Supporting information: Stability limits of tin-based electrocatalyst supports. Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany Supporting information: Stability limits of tin-based electrocatalyst supports Simon Geiger a,*, Olga Kasian a, Andrea M. Mingers a, Karl J. J. Mayrhofer a,b,c, Serhiy Cherevko a,b,* a Department of Interface

More information