3-D Imaging of separator pore structure and Li + diffusion behavior

Size: px
Start display at page:

Download "3-D Imaging of separator pore structure and Li + diffusion behavior"

Transcription

1 3-D Imaging of separator pore structure and Li + diffusion behavior Dr. Akira Yoshino Yoshino Laboratory Asahi Kasei Corp. yoshino.ab@om.asahi-kasei.co.jp

2 Outline 1. Background 2. Method to measure diffusion rate of Li + within separator by PFG-NMR 3. Direct observation of 3-D pore structure by FIB SEM 4. Summary 2

3 Outline 1. Background 2. Method to measure diffusion rate of Li + within separator by PFG-NMR 3. Direct observation of 3-D pore structure by FIB SEM 4. Summary 3

4 Three kinds of separators used for LIB SEM photo images of separators 5μm 5μm 5μm One component dry process Two components wet process Three components wet process 4

5 Important roles of separators Electronic insulation and Ionic conduction Shut down effect Impedance of separator /Ω cm 2 1.E+05 1.E+04 1.E+03 1.E+02 1.E+01 1.E+00 1.E Temperature / 5

6 Outline 1. Background 2. Method to measure diffusion rate of Li + within separator by PFG-NMR 3. Direct observation of 3-D pore structure by FIB SEM 4. Summary 6

7 Principle of pulsed field gradient NMR (PFG-NMR) Conventional NMR: Excitation by electromagnetic pulse detection PFG-NMR: Excitation by electromagnetic pulse labeling of position by pulsed field gradient diffusion time detection Intensity After certain time Migration from labeled position by self-diffusion Static magnetic field Position T3 T4 T5 T2 T1 T0 7

8 Principle of PFG-NMR Diffusion coefficient by PFG-NMR: D in the following formula ln(e/e 0 ) = -D (γ 2 δ 2 g 2 (Δ-δ/3)) E: Peak intensity at each measurement E 0 : Peak intensity without PFG γ: Gyromagnetic ratio of nuclear spin δ: PFG exposure time g: PFG intensity Δ: Diffusion time ln(e/e0) Li F H(EC) H(MEC) Li + : m 2 /s TFSI - : m 2 /s EC: m 2 /s MEC: m 2 /s Li 輸率 transport :0.46no: E E E E E E+10 γ 2 δ 2 g 2 ( -δ/3) Slope of diffusion plot D Calculation of diffusion coefficient in direction of static magnetic field (vertical direction of test tube) 8

9 New method to measure ion diffusion coefficient within separator Electrolyte 1M LiTFSI / EC-MEC (1:2 vol.%) Sample preparation Separator is impregnated with electrolyte, inserted in test tubes in three directions (X, Y, and Z axes) as shown at right Y X Y X axis X X X Y Y Y axis Z axis X axis Y axis PFG-NMR measurement conditions Apparatus: ECA400 (JEOL) Probe: GR probe (max. magnetic field gradient strength =13 T/m) Δ: 50 ms, δ: 0.3 ms ( 1 H, 19 F), 0.5 ms ( 7 Li), temp: 30 Z 方向 X 方向 Y 方向 Species detected Cation: 7 Li Anion: 19 F (CF 3 SO 2 ) 2 N - EC: 1 H MEC: 1 H CH 3 OCOC 2 H 5 Yoshino, A. et. al., The 51st Battery Symposium in Japan (2010), Nagoya, Japan 9

10 Ion diffusion coefficients within separator X axis Y axis Z axis ln(e/e0) -0.5 ln(e/e0) ln(e/e0) E+10 2E+10 3E+10 4E+10 5E+10 6E+10 7E γ 2 δ 2 g 2 ( -δ/3) Li+ TFSI- EC MEC E+10 2E+10 3E+10 4E+10 5E+10 6E+10 7E+10 γ 2 δ 2 g 2 ( -δ/3) Li+ TFSI- EC MEC Li+ TFSI- EC MEC Bulk electrolyte solution Separator Li + diffusion coefficient (m 2 s -1 ) Z Relative comparison X axis Y axis Z axis E+10 2E+10 3E+10 4E+10 5E+10 6E+10 7E+10 γ 2 δ 2 g 2 ( -δ/3) Y Anisotropy Li + の拡散係数の異方性 of Li + diffusion coefficients X 10

11 7 Li + diffusion coefficients within various separators A B C D E F D X D Y D Z Z A B C D E F To clarify this anisotropy, tried to take 3D photo images of pore of separators by FIB SEM Y Anisotropy of Li + diffusion coefficients X 11

12 Outline 1. Background 2. Method to measure diffusion rate of Li + within separator by PFG-NMR 3. Direct observation of 3-D pore structure by FIB SEM 4. Summary 12

13 FIB-SEM measurements of separators Take SEM photo Sputter 10 nm Ga + FIB Take SEM photo e - SEM Sputter 10 nm Repeat 200 times 13

14 2D and 3D SEM photo images of separator C 2D SEM photo images of separator C (200 photo images) 3D SEM photo image of separator C 14

15 3D FIB-SEM images of pore of separator C X axis Bulk electrolyte solution Separator Li + diffusion coefficient (m 2 s -1 ) Relative comparison X axis Y axis Z axis Y axis Z axis Z A B C D E F Y Anisotropy of Li + diffusion coefficients X 15

16 Animation of 3D pore structure of separator C X axis 0.84 Y axis 0.34 Z axis

17 Outline 1. Background 2. Method to measure diffusion rate of Li + within separator by PFG-NMR 3. Direct observation of 3-D pore structure by FIB SEM 4. Summary 17

18 Summary Ionic conductivity of separators is the most important performance It became possible to measure diffusion rate of Li + within separators taken in X, Y, and Z axes by PFG-NMR There was a high correlation between diffusion coefficients (D X, D Y, D Z ) and the 3D pore structures of separator measured by FIB SEM This is a useful finding for separators and electrode design 18

Pingshan Wang. Jim Rui

Pingshan Wang. Jim Rui Probing, Charging and Discharging of Single Nanopores in a Supercapacitor Pingshan Wang Electrical and Computer Engineering Department, Clemson University Jim Rui Mechanical Engineering Department Clemson

More information

D-NMR study on pores of the activated carbon fiber electrode for EDLC with inorganic electrolyte

D-NMR study on pores of the activated carbon fiber electrode for EDLC with inorganic electrolyte D-NMR study on pores of the activated carbon fiber electrode for EDLC with inorganic electrolyte Sang-Ick Lee*, Mitani Satoshi, Seong-Ho Yoon, Yozo Korai, Koji Saito, Isao Mochida Institute for materials

More information

Supporting Information for

Supporting Information for Supporting Information for Tetragonal Li 10 GeP 2 S 12 and Li 7 GePS 8 exploring the Li ion dynamics in LGPS Li electrolytes Alexander Kuhn, a Viola Duppel a and Bettina V. Lotsch* a,b a Max Planck Institute

More information

Applications of Micro-Area Analysis Used by JPS-9200 X-ray Photoelectron Spectrometer

Applications of Micro-Area Analysis Used by JPS-9200 X-ray Photoelectron Spectrometer Applications of Micro-Area Analysis Used by JPS-9200 X-ray Photoelectron Spectrometer Yoshitoki Iijima Application & Research Center, JEOL Ltd. Introduction Recently, with advances in the development of

More information

Unique Behaviour of Nonsolvents for Polysulphides in Lithium-Sulphur Batteries.

Unique Behaviour of Nonsolvents for Polysulphides in Lithium-Sulphur Batteries. Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 214 Supplementary Information Unique Behaviour of Nonsolvents for Polysulphides

More information

Laboratory Electrical Conductivity Measurement of Mantle Minerals

Laboratory Electrical Conductivity Measurement of Mantle Minerals Laboratory Electrical Conductivity Measurement of Mantle Minerals Takashi Yoshino Institute for Study of the Earth s Interior, Okayama University Outline 1. Brief introduction 2. Conduction mechanisms

More information

Protic Organic Ionic Plastic Crystals

Protic Organic Ionic Plastic Crystals Structure and Ion Dynamics in Imidazolium-based Protic Organic Ionic Plastic Crystals Haijin Zhu *,1,2, Xiaoen Wang 1,2, R. Vijayaraghavan 3, Yundong Zhou 1, Douglas R. MacFarlane 3, Maria Forsyth *,1,2

More information

On Accurate Measurements of Diffusion Coefficients by PGSE NMR Methods (Version 2) Kikuko Hayamizu

On Accurate Measurements of Diffusion Coefficients by PGSE NMR Methods (Version 2) Kikuko Hayamizu February 15, 2012 On Accurate Measurements of Diffusion Coefficients by PGSE NMR Methods (Version 2) -Room-Temperature Ionic Liquids- Kikuko Hayamizu Diffusion coeffients of molecules, ions and particles

More information

Nuclear Magnetic Resonance (NMR)

Nuclear Magnetic Resonance (NMR) Nuclear Magnetic Resonance (NMR) Nuclear Magnetic Resonance (NMR) The Nuclear Magnetic Resonance Spectroscopy (NMR) is one of the most important spectroscopic methods to explore the structure and dynamic

More information

Interfacial Chemistry in Solid-state Batteries: Formation of

Interfacial Chemistry in Solid-state Batteries: Formation of Supporting Information Interfacial Chemistry in Solid-state Batteries: Formation of Interphase and Its Consequences Shaofei Wang, Henghui Xu, Wangda Li, Andrei Dolocan and Arumugam Manthiram* Materials

More information

The dielectric properties of glassy ion-conducting materials

The dielectric properties of glassy ion-conducting materials The dielectric properties of glassy ion-conducting materials F.Kremer Co-authors: J.R. Sangoro, A.Serghei, C. Iacob, S. Naumov, J. Kärger Example for ion-conducting glassy materials: Ionic Liquids (ILs)

More information

Temperature Effects in Nuclear Quadrupole Resonance Spectroscopy. Allen Majewski Department of Physics University of Florida Fall 2016

Temperature Effects in Nuclear Quadrupole Resonance Spectroscopy. Allen Majewski Department of Physics University of Florida Fall 2016 Temperature Effects in Nuclear Quadrupole Resonance Spectroscopy Allen Majewski Department of Physics University of Florida Fall 2016 Overview What is nuclear quadrupole resonance (NQR)? NMR vs NQR Electric

More information

Spectroscopy of Polymers

Spectroscopy of Polymers Spectroscopy of Polymers Jack L. Koenig Case Western Reserve University WOMACS Professional Reference Book American Chemical Society, Washington, DC 1992 Contents Preface m xiii Theory of Polymer Characterization

More information

Multi-nuclei NMR study on behavior of organic electrolyte at charged and discharged states on activated carbon as an electrode for EDLC

Multi-nuclei NMR study on behavior of organic electrolyte at charged and discharged states on activated carbon as an electrode for EDLC Multi-nuclei NMR study on behavior of organic electrolyte at charged and discharged states on activated carbon as an electrode for EDLC Sang-Ick Lee a, Koji Saito b, Koji Kanehashi b, Moriake Hatakeyama

More information

Electric Charge. Conductors A material that transfers charge easily Metals

Electric Charge. Conductors A material that transfers charge easily Metals Electric Charge An electrical property of matter that creates a force between objects. Like charges repel Opposite charges attract Equal amount of positive and negative = no net charge Electrons: Negative

More information

Uses of Nuclear Magnetic Resonance (NMR) in Metal Hydrides and Deuterides. Mark S. Conradi

Uses of Nuclear Magnetic Resonance (NMR) in Metal Hydrides and Deuterides. Mark S. Conradi Uses of Nuclear Magnetic Resonance (NMR) in Metal Hydrides and Deuterides Mark S. Conradi Washington University Department of Physics St. Louis, MO 63130-4899 USA msc@physics.wustl.edu 1 Uses of Nuclear

More information

Supplemental Information. An In Vivo Formed Solid. Electrolyte Surface Layer Enables. Stable Plating of Li Metal

Supplemental Information. An In Vivo Formed Solid. Electrolyte Surface Layer Enables. Stable Plating of Li Metal JOUL, Volume 1 Supplemental Information An In Vivo Formed Solid Electrolyte Surface Layer Enables Stable Plating of Li Metal Quan Pang, Xiao Liang, Abhinandan Shyamsunder, and Linda F. Nazar Supplemental

More information

Introduction to Nuclear Magnetic Resonance Spectroscopy

Introduction to Nuclear Magnetic Resonance Spectroscopy Introduction to Nuclear Magnetic Resonance Spectroscopy Dr. Dean L. Olson, NMR Lab Director School of Chemical Sciences University of Illinois Called figures, equations, and tables are from Principles

More information

PROBING THE CONNECTIVITY BETWEEN PORES IN ROCK CORE SAMPLES

PROBING THE CONNECTIVITY BETWEEN PORES IN ROCK CORE SAMPLES SCA2007-42 1/6 PROBING THE CONNECTIVITY BETWEEN PORES IN ROCK CORE SAMPLES Geir Humborstad Sørland 1,3, Ketil Djurhuus 3, Hege Christin Widerøe 2, Jan R. Lien 3, Arne Skauge 3, 1 Anvendt Teknologi AS,

More information

Nuclear magnetic resonance spectroscopy

Nuclear magnetic resonance spectroscopy nuclear spin transitions O Nuclear magnetic resonance spectroscopy 1 H, 13 C, 2-dimensional which transitions? wavelength and intensity; ppm what happens if we change the environment of the nucleus? substituent

More information

Electrolytes for Innovative Li-Batteries

Electrolytes for Innovative Li-Batteries Miriam Kunze, Alexandra Lex-Balducci Andrea Balducci, Stefano Passerini, Gerhard Hörpel, Martin Winter Neue Materialien in der Energietechnologie: Batterietag NRW 22.02.2010 Dr. Miriam Kunze uture market

More information

7.1 Electrolyte and electrolytic solution

7.1 Electrolyte and electrolytic solution Out-class reading: Levine, pp. 294-310 Section 10.6 solutions of electrolytes Section 10.9 ionic association pp. 512-515 Section 16.6 electrical conductivity of electrolyte solutions. Contents of solution

More information

Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries

Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries Supplementary information Polymer characterization. The composition of the A-BCEs has been determined using

More information

Study of Mechanisms of Ion Transport in Ion Conducting Glasses

Study of Mechanisms of Ion Transport in Ion Conducting Glasses Study of Mechanisms of Ion Transport in Ion Conducting Glasses P. Bury a), P. Hockicko a), M. Jamnický b) and I. Jamnický a) a) Department of Physics, Žilina University, 010 26 Žilina, Slovakia (bury@fel.utc.sk)

More information

Supporting Information Elucidating Lithium-Ion and Proton Dynamics in Anti- Perovskite Solid Electrolytes

Supporting Information Elucidating Lithium-Ion and Proton Dynamics in Anti- Perovskite Solid Electrolytes Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supporting Information Elucidating Lithium-Ion and Proton Dynamics in Anti-

More information

Shimming of a Magnet for Calibration of NMR Probes UW PHYSICS REU 2013

Shimming of a Magnet for Calibration of NMR Probes UW PHYSICS REU 2013 Shimming of a Magnet for Calibration of NMR Probes RACHEL BIELAJEW UW PHYSICS REU 2013 Outline Background The muon anomaly The g-2 Experiment NMR Design Helmholtz coils producing a gradient Results Future

More information

Magnetization Gradients, k-space and Molecular Diffusion. Magnetic field gradients, magnetization gratings and k-space

Magnetization Gradients, k-space and Molecular Diffusion. Magnetic field gradients, magnetization gratings and k-space 2256 Magnetization Gradients k-space and Molecular Diffusion Magnetic field gradients magnetization gratings and k-space In order to record an image of a sample (or obtain other spatial information) there

More information

Nuclear Magnetic Resonance Log

Nuclear Magnetic Resonance Log Objective The development of the nuclear magnetic resonance (NMR) log was fueled by the desire to obtain an estimate of permeability from a continuous measurement. Previous work had relied on empirical

More information

Introduction to Thermoelectric Materials and Devices

Introduction to Thermoelectric Materials and Devices Introduction to Thermoelectric Materials and Devices 4th Semester of 2012 2012.03.29, Thursday Department of Energy Science Sungkyunkwan University Radioisotope Thermoelectric Generator (PbTe) Space probe

More information

Measuring Spin-Lattice Relaxation Time

Measuring Spin-Lattice Relaxation Time WJP, PHY381 (2009) Wabash Journal of Physics v4.0, p.1 Measuring Spin-Lattice Relaxation Time L.W. Lupinski, R. Paudel, and M.J. Madsen Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated:

More information

High-Resolutio n NMR Techniques i n Organic Chemistry TIMOTHY D W CLARIDGE

High-Resolutio n NMR Techniques i n Organic Chemistry TIMOTHY D W CLARIDGE High-Resolutio n NMR Techniques i n Organic Chemistry TIMOTHY D W CLARIDGE Foreword Preface Acknowledgements V VI I X Chapter 1. Introduction 1.1. The development of high-resolution NMR 1 1.2. Modern

More information

NMR Imaging in porous media

NMR Imaging in porous media NMR Imaging in porous media What does NMR give us. Chemical structure. Molecular structure. Interactions between atoms and molecules. Incoherent dynamics (fluctuation, rotation, diffusion). Coherent flow

More information

Gas Transport in Aluminosilicate Nanotubes by Diffusion NMR

Gas Transport in Aluminosilicate Nanotubes by Diffusion NMR The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application Gas Transport in Aluminosilicate Nanotubes by Diffusion NMR Muslim Dvoyashkin,3, Ryan Wood, Clifford R.

More information

PHYSICS PAST PAPERS PHYSICS PAPER Suppose the handle bars of the wheelbarrow in question 2 were extended, which force(s) would

PHYSICS PAST PAPERS PHYSICS PAPER Suppose the handle bars of the wheelbarrow in question 2 were extended, which force(s) would PHYSICS PAST PAPERS PHYSICS PAPER 1 1995 1. Name the instrument that would be most suitable for measuring the thickest of one sheet of this question paper. Figure 1 shows a worker ready to lift a load

More information

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons Fundamental MRI Principles Module 2 N S 1 Nuclear Magnetic Resonance There are three main subatomic particles: protons positively charged neutrons no significant charge electrons negatively charged Protons

More information

Introduction to Relaxation Theory James Keeler

Introduction to Relaxation Theory James Keeler EUROMAR Zürich, 24 Introduction to Relaxation Theory James Keeler University of Cambridge Department of Chemistry What is relaxation? Why might it be interesting? relaxation is the process which drives

More information

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electronic Supplementary Information Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electrolytes Wen Lu, * Adam Goering, Liangti Qu, and Liming Dai * 1. Synthesis of

More information

NMR Spectroscopy. Guangjin Hou

NMR Spectroscopy. Guangjin Hou NMR Spectroscopy Guangjin Hou 22-04-2009 NMR History 1 H NMR spectra of water H NMR spectra of water (First NMR Spectra on Water, 1946) 1 H NMR spectra ethanol (First bservation of the Chemical Shift,

More information

Electrochemical Cells Intro

Electrochemical Cells Intro Electrochemical Cells Intro Outcomes: Outline the historical development of voltaic (galvanic) cells. Explain the operation of a voltaic cell at the visual, particulate and symbolic levels. Vocabulary:

More information

Suppression of Static Magnetic Field in Diffusion Measurements of Heterogeneous Materials

Suppression of Static Magnetic Field in Diffusion Measurements of Heterogeneous Materials PIERS ONLINE, VOL. 5, NO. 1, 2009 81 Suppression of Static Magnetic Field in Diffusion Measurements of Heterogeneous Materials Eva Gescheidtova 1 and Karel Bartusek 2 1 Faculty of Electrical Engineering

More information

Membrane Electrodes. Several types

Membrane Electrodes. Several types Membrane Electrodes Electrical connection Several types - Glass membrane electrode - Liquid membrane electrode - Solid State membrane electrode - Permeable membrane electrode seal 0.1 M HCl Filling solution

More information

Periodic Trends 12/7/14 6.3

Periodic Trends 12/7/14 6.3 Periodic Trends 1 of 31 Periodic Trends Sodium chloride (table salt) produced the geometric pattern in the photograph. Such a pattern can be used to calculate the position of nuclei in a solid. You will

More information

Electrochemical Cells

Electrochemical Cells CH302 LaBrake and Vanden Bout Electrochemical Cells Experimental Observations of Electrochemical Cells 1. Consider the voltaic cell that contains standard Co 2+ /Co and Au 3+ /Au electrodes. The following

More information

Quantitative analysis of GITT measurements of Li-S batteries

Quantitative analysis of GITT measurements of Li-S batteries Quantitative analysis of GITT measurements of Li-S batteries James Dibden, Nina Meddings, Nuria Garcia-Araez, and John R. Owen Acknowledgements to Oxis and EPSRC for EP/M5066X/1 - CASE studentship, EP/P019099/1-

More information

NMR Spectroscopy: A Quantum Phenomena

NMR Spectroscopy: A Quantum Phenomena NMR Spectroscopy: A Quantum Phenomena Pascale Legault Département de Biochimie Université de Montréal Outline 1) Energy Diagrams and Vector Diagrams 2) Simple 1D Spectra 3) Beyond Simple 1D Spectra 4)

More information

Anisotropy of Shale Properties: A Multi-Scale and Multi-Physics Characterization

Anisotropy of Shale Properties: A Multi-Scale and Multi-Physics Characterization Observation Scale Wavelength 10 0 10 4 10 6 10 8 10 12 10 16 10 18 10 20 Frequency (Hz) Anisotropy of Shale Properties: A Multi-Scale and Multi-Physics Characterization Elastic, Mechanical, Petrophysical

More information

Electrodeposited nickel hydroxide on nickel foam with ultrahigh. capacitance

Electrodeposited nickel hydroxide on nickel foam with ultrahigh. capacitance Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance Guang-Wu Yang, Cai-Ling Xu* and Hu-Lin Li* College of Chemistry and Chemical Engineering, Lanzhou University, 73 (PR China) 1.

More information

Nuclear Magnetic Resonance Study of Adsorption of Electrolyte Ions on Carbide-derived Carbon Electronic Supplementary Information

Nuclear Magnetic Resonance Study of Adsorption of Electrolyte Ions on Carbide-derived Carbon Electronic Supplementary Information Nuclear Magnetic Resonance Study of Adsorption of Electrolyte Ions on Carbide-derived Carbon Electronic Supplementary Information Alexander C. Forse, a John M. Griffin, a Hao Wang, a,b Nicole M. Trease,

More information

3.155J/6.152J Microelectronic Processing Technology Fall Term, 2004

3.155J/6.152J Microelectronic Processing Technology Fall Term, 2004 3.155J/6.152J Microelectronic Processing Technology Fall Term, 2004 Bob O'Handley Martin Schmidt Quiz Nov. 17, 2004 Ion implantation, diffusion [15] 1. a) Two identical p-type Si wafers (N a = 10 17 cm

More information

Ion Diffusion and Electrochemically Driven Transport in Homogenous and Nanostructured Polymer Electrolytes

Ion Diffusion and Electrochemically Driven Transport in Homogenous and Nanostructured Polymer Electrolytes Ion Diffusion and Electrochemically Driven Transport in Homogenous and Nanostructured Polymer Electrolytes By Ksenia Timachova A dissertation submitted for the degree of Doctor of Philosophy in Chemical

More information

Stable Operation of Li-Air Batteries

Stable Operation of Li-Air Batteries Stable Operation of Li-Air Batteries Ji-Guang Zhang Pacific Northwest National Laboratory Richland, Washington, U.S.A. The 4th Symposium on Energy Storage: Beyond Lithium Ion June 8, 211 1 2 Outline 1.

More information

doi: /j.physc

doi: /j.physc doi: 10.1016/j.physc.2013.06.016 Experimental evaluation of the magnetization process in a high T c bulk superconducting magnet using magnetic resonance imaging Daiki Tamada* 1, 2, Takashi Nakamura 1,

More information

EXPERIMENT 9 SALTWATER CONDUCTANCE: The Effect of Concentration

EXPERIMENT 9 SALTWATER CONDUCTANCE: The Effect of Concentration EXPERIMENT 9 SALTWATER CONDUCTANCE: The Effect of Concentration Introduction According to the Theory of Ionization proposed by S. Arrhenius, about 1880, ionic compounds dissolve in water forming cations

More information

Supplementary Information Supplementary Figures

Supplementary Information Supplementary Figures Supplementary Information Supplementary Figures Supplementary Figure 1 SEM images of the morphologies of Li metal after plating on Cu (1st cycle) from different electrolytes. The current density was 0.5

More information

SUPORTING INFORMATION The Cathodic Voltammetric Behavior of Pillar[5]quinone in Nonaqueous Media. Symmetry Effects on the Electron Uptake Sequence.

SUPORTING INFORMATION The Cathodic Voltammetric Behavior of Pillar[5]quinone in Nonaqueous Media. Symmetry Effects on the Electron Uptake Sequence. SUPORTING INFORMATION The Cathodic Voltammetric Behavior of Pillar[5]quinone in Nonaqueous Media. Symmetry Effects on the Electron Uptake Sequence. Beijun Cheng and Angel E. Kaifer* Department of Chemistry

More information

Electrochemical Synthesis of Luminescent MoS 2 Quantum Dots

Electrochemical Synthesis of Luminescent MoS 2 Quantum Dots Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Electronic Supplimentary Information Electrochemical Synthesis of Luminescent MoS

More information

PII S X(98) DEPHASING OF HAHN ECHO IN ROCKS BY DIFFUSION IN SUSCEPTIBILITY- INDUCED FIELD INHOMOGENEITIES

PII S X(98) DEPHASING OF HAHN ECHO IN ROCKS BY DIFFUSION IN SUSCEPTIBILITY- INDUCED FIELD INHOMOGENEITIES PII S0730-725X(98)00059-9 Magnetic Resonance Imaging, Vol. 16, Nos. 5/6, pp. 535 539, 1998 1998 Elsevier Science Inc. All rights reserved. Printed in the USA. 0730-725X/98 $19.00.00 Contributed Paper DEPHASING

More information

ELECTRON PARAMAGNETIC RESONANCE

ELECTRON PARAMAGNETIC RESONANCE ELECTRON PARAMAGNETIC RESONANCE = MAGNETIC RESONANCE TECHNIQUE FOR STUDYING PARAMAGNETIC SYSTEMS i.e. SYSTEMS WITH AT LEAST ONE UNPAIRED ELECTRON Examples of paramagnetic systems Transition-metal complexes

More information

Application of Linear, Nonlinear and Nanoscale Conductivity Spectroscopy for Characterising Ion Transport in Solid Electrolytes

Application of Linear, Nonlinear and Nanoscale Conductivity Spectroscopy for Characterising Ion Transport in Solid Electrolytes Application of Linear, Nonlinear and Nanoscale Conductivity Spectroscopy for Characterising Ion Transport in Solid Electrolytes Bernhard Roling Institute of Physical Chemistry and Collaborative Research

More information

SC Hydration Measurements: The +ve & -ve

SC Hydration Measurements: The +ve & -ve SC Hydration Measurements: The +ve & -ve Bob Imhof, Biox Systems Ltd Keynote Lecture: SCVII & Skin Forum, Cardiff 2012 1 Plan Introduction Measurement Science Fundamentals SC Hydration Model Overview of

More information

Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at Transport in plants

Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at   Transport in plants Transport in plants Question Paper 1 Level A Level Subject Biology Exam Board OCR Topic Exchange and transport Sub-Topic Transport in plants Booklet Question Paper 1 Time Allowed: 75 minutes Score: / 62

More information

III- *~ IIIIIN III 36 [U 1111I O LT-6. k~copyresol T. EOS CHARTl. Ij. l]' '

III- *~ IIIIIN III 36 [U 1111I O LT-6. k~copyresol T. EOS CHARTl. Ij. l]' ' It -A162 211 A PULSED FIELD GRADIENT NUCLEAR MAGNETIC RESONANCE 1 SPECTROMETER FOR DIREC (U) NORTHWESTERN UNIV EVANSTON IL D H WHITMORE 24 APR 87 AFOSR-TR-87-8847 UNCLASSIFIED AFOSR-85-0898 F/G 7/4 NL

More information

3. Perturbed Angular Correlation Spectroscopy

3. Perturbed Angular Correlation Spectroscopy 3. Perturbed Angular Correlation Spectroscopy Dileep Mampallil Augustine K.U.Leuven, Belgium Perturbed Angular Correlation Spectroscopy (PAC) is a gamma ray spectroscopy and can be used to investigate

More information

Nuclear magnetic resonance spectroscopy II. 13 C NMR. Reading: Pavia Chapter , 6.7, 6.11, 6.13

Nuclear magnetic resonance spectroscopy II. 13 C NMR. Reading: Pavia Chapter , 6.7, 6.11, 6.13 Nuclear magnetic resonance spectroscopy II. 13 NMR Reading: Pavia hapter 6.1-6.5, 6.7, 6.11, 6.13 1. General - more/better/additional structural information for larger compounds -problems: a) isotopes

More information

A Multi-Line De-Embedding Technique for mm-wave CMOS Circuits

A Multi-Line De-Embedding Technique for mm-wave CMOS Circuits A Multi-Line De-Embedding Technique for mm-wave CMOS Circuits Naoki Takayama, Kota Matsushita, Shogo Ito, Ning Li, Keigo Bunsen Kenichi Okada, and Akira Tokyo Institute of Technology, Japan Outline 2 Background

More information

DIRECTIVITY AND SENSITIVITY OF HIGH FREQUENCY CARRIER TYPE THIN-FILM MAGNETIC FIELD SENSOR

DIRECTIVITY AND SENSITIVITY OF HIGH FREQUENCY CARRIER TYPE THIN-FILM MAGNETIC FIELD SENSOR DIRECTIVITY AND SENSITIVITY OF HIGH FREQUENCY CARRIER TYPE THIN-FILM MAGNETIC FIELD SENSOR M. Yamaguchi a, M. Takezawa a, H. Ohdaira b, K. I. Arai a, and A. Haga b a Research Institute of Electrical Communication,

More information

Unilateral NMR of Activated Carbon

Unilateral NMR of Activated Carbon Unilateral NMR of Activated Carbon Stuart Brewer 2, Hans Adriaensen 1, Martin Bencsik 1, Glen McHale 1 and Martin W Smith 2 [1]: Nottingham Trent University (NTU), UK [2]: Defence Science and Technology

More information

Magnetic resonance imaging MRI

Magnetic resonance imaging MRI Magnetic resonance imaging MRI Introduction What is MRI MRI is an imaging technique used primarily in medical settings that uses a strong magnetic field and radio waves to produce very clear and detailed

More information

The NMR Inverse Imaging Problem

The NMR Inverse Imaging Problem The NMR Inverse Imaging Problem Nuclear Magnetic Resonance Protons and Neutrons have intrinsic angular momentum Atoms with an odd number of proton and/or odd number of neutrons have a net magnetic moment=>

More information

Supporting Information

Supporting Information Supporting Information Electrogenerated Chemiluminescence of Single Conjugated Polymer Nanoparticles Ya-Lan Chang, Rodrigo E. Palacios, Fu-Ren F. Fan, Allen J. Bard, and Paul F. Barbara Department of Chemistry

More information

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt Spin Dynamics Basics of Nuclear Magnetic Resonance Second edition Malcolm H. Levitt The University of Southampton, UK John Wiley &. Sons, Ltd Preface xxi Preface to the First Edition xxiii Introduction

More information

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) Magnetic Resonance Imaging Introduction The Components The Technology (MRI) Physics behind MR Most slides taken from http:// www.slideworld.org/ viewslides.aspx/magnetic- Resonance-Imaging- %28MRI%29-MR-Imaging-

More information

Chapter 1 Pulsed Field Gradient NMR Sequences

Chapter 1 Pulsed Field Gradient NMR Sequences Chapter 1 Pulsed Field Gradient NMR Sequences Abstract The mechanism via which an NMR signal is generated and how diffusion can be measured from solving the equation of motion of the nuclear spins is described.

More information

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations CONTENTS Preface Acknowledgements Symbols Abbreviations 1 INTRODUCTION 1.1 Scope of pulse EPR 1.2 A short history of pulse EPR 1.3 Examples of Applications 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon

More information

PULSED FIELD GRADIENT NMR STUDY OF SORBATE TRANSPORT IN CARBON MOLECULAR SIEVES AND SBA-16 MATERIALS

PULSED FIELD GRADIENT NMR STUDY OF SORBATE TRANSPORT IN CARBON MOLECULAR SIEVES AND SBA-16 MATERIALS PULSED FIELD GRADIENT NMR STUDY OF SORBATE TRANSPORT IN CARBON MOLECULAR SIEVES AND SBA-16 MATERIALS By ROHIT KANUNGO A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

More information

Eye on Ions: Electrical Conductivity of Aqueous Solutions

Eye on Ions: Electrical Conductivity of Aqueous Solutions Eye on Ions: Electrical Conductivity of Aqueous Solutions Pre-lab Assignment: Reading: 1. Chapter sections 4.1, 4.3, 4.5 and 4.6 in your course text. 2. This lab handout. Questions: 1. Using table 1 in

More information

Ion Concentration and Electromechanical Actuation Simulations of Ionic Polymer-Metal Composites

Ion Concentration and Electromechanical Actuation Simulations of Ionic Polymer-Metal Composites October 5-7, 2016, Boston, Massachusetts, USA Ion Concentration and Electromechanical Actuation Simulations of Ionic Polymer-Metal Composites Tyler Stalbaum, Qi Shen, and Kwang J. Kim Active Materials

More information

Ion transport through diffusion layer controlled by charge mosaic membrane. *Akira Yamauchi ABSTRACT

Ion transport through diffusion layer controlled by charge mosaic membrane. *Akira Yamauchi ABSTRACT The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Ion transport through diffusion layer controlled by charge mosaic membrane

More information

EE 527 MICROFABRICATION. Lecture 24 Tai-Chang Chen University of Washington

EE 527 MICROFABRICATION. Lecture 24 Tai-Chang Chen University of Washington EE 527 MICROFABRICATION Lecture 24 Tai-Chang Chen University of Washington EDP ETCHING OF SILICON - 1 Ethylene Diamine Pyrocatechol Anisotropy: (100):(111) ~ 35:1 EDP is very corrosive, very carcinogenic,

More information

Classification: PHYSICAL SCIENCES (Engineering) Title: Nonflammable Perfluoropolyether-based Electrolytes for Lithium Batteries

Classification: PHYSICAL SCIENCES (Engineering) Title: Nonflammable Perfluoropolyether-based Electrolytes for Lithium Batteries Classification: PHYSICAL SCIENCES (Engineering) Title: Nonflammable Perfluoropolyether-based Electrolytes for Lithium Batteries Authors: Dominica H. C. Wong 1, Jacob Thelen 2, Yanbao Fu 3, Didier Devaux

More information

Nuclear Magnetic Resonance (NMR)

Nuclear Magnetic Resonance (NMR) Nuclear Magnetic Resonance (NMR) E E increases with increasing magnetic field strength Boltzmann distribution at thermal equilibrium: N (m=-1/2) /N (m=+1/2) = e ( E/kT) with E = γ(h/2π)b o NMR Physical

More information

Supporting Information for. Impedance Spectroscopy Characterization of Porous Electrodes. under Different Electrode Thickness Using a Symmetric Cell

Supporting Information for. Impedance Spectroscopy Characterization of Porous Electrodes. under Different Electrode Thickness Using a Symmetric Cell Supporting Information for Impedance Spectroscopy Characterization of Porous Electrodes under Different Electrode Thickness Using a Symmetric Cell for High-Performance Lithium-Ion Batteries Nobuhiro Ogihara,*

More information

How NMR Works Section I

How NMR Works Section I How NMR Works ------- Section I by Shaoxiong Wu 02-20-2010 During the NMR course I use classic energy levels and vector model to explain simple NMR pulse sequences and spectra. It is limited, however,

More information

Journal of the Korean Magnetic Resonance Society 2003, 7, Kwangju, , KOREA Received September 29, 2003

Journal of the Korean Magnetic Resonance Society 2003, 7, Kwangju, , KOREA Received September 29, 2003 Journal of the Korean Magnetic Resonance Society 2003, 7, 80-88 11 B Nuclear Magnetic Resonance Study of Calcium-hexaborides B. J. Mean 1, K. H. Lee 1, K. H. Kang 1, Moohee Lee 1*, J.S. Lee 2, and B. K.

More information

Advanced Unit 6B: Chemistry Laboratory Skills II Alternative

Advanced Unit 6B: Chemistry Laboratory Skills II Alternative Write your name here Surname Other names Edexcel GCE Centre Number Candidate Number Chemistry Advanced Unit 6B: Chemistry Laboratory Skills II Alternative Wednesday 15 May 2013 Morning Time: 1 hour 15

More information

Characterization of partially reduced graphene oxide as room

Characterization of partially reduced graphene oxide as room Supporting Information Characterization of partially reduced graphene oxide as room temperature sensor for H 2 Le-Sheng Zhang a, Wei D. Wang b, Xian-Qing Liang c, Wang-Sheng Chu d, Wei-Guo Song a *, Wei

More information

INVESTIGATION OF NMR- BASED SURFACE AREA MEASUREMENT AS A QUALITY MONITOR FOR NANOPARTICLE SILICA ABRASIVES

INVESTIGATION OF NMR- BASED SURFACE AREA MEASUREMENT AS A QUALITY MONITOR FOR NANOPARTICLE SILICA ABRASIVES INVESTIGATION OF NMR- BASED SURFACE AREA MEASUREMENT AS A QUALITY MONITOR FOR NANOPARTICLE SILICA ABRASIVES 1 Olga Samsonenka, University of Washington Andy Kim, University of Washington Andrea Oehler,

More information

Part II: Self Potential Method and Induced Polarization (IP)

Part II: Self Potential Method and Induced Polarization (IP) Part II: Self Potential Method and Induced Polarization (IP) Self-potential method (passive) Self-potential mechanism Measurement of self potentials and interpretation Induced polarization method (active)

More information

Last Name or Student ID

Last Name or Student ID 12/9/15, Chem433 Final Exam Last Name or Student ID 1. (2 pts) 11. (4 pts) 2. (6 pts) 12. (3 pts) 3. (2 pts) 13. (4 pts) 4. (3 pts) 14. (3 pts) 5. (5 pts) 15. (3 pts) 6. (3 pts) 16. (7 pts) 7. (12 pts)

More information

Hydrodynamic dispersion of pressure-induced and electroosmotic flow in porous glasses probed by Nuclear Magnetic Resonance

Hydrodynamic dispersion of pressure-induced and electroosmotic flow in porous glasses probed by Nuclear Magnetic Resonance The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application Hydrodynamic dispersion of pressure-induced and electroosmotic flow in porous glasses probed by Nuclear

More information

NMR spectra of some simple molecules. Effect of spinning: averaging field inhomogeneity (nmr1.pdf pg 2)

NMR spectra of some simple molecules. Effect of spinning: averaging field inhomogeneity (nmr1.pdf pg 2) NMR spectra of some simple molecules Effect of spinning: averaging field inhomogeneity (nmr1.pdf pg 2) N S H 0 H o Because the protons have a magnetic field associated with them, the field changes as across

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature17653 Supplementary Methods Electronic transport mechanism in H-SNO In pristine RNO, pronounced electron-phonon interaction results in polaron formation that dominates the electronic

More information

Experiment and Simulation on NMR and Electrical Measurements on Liège Chalk

Experiment and Simulation on NMR and Electrical Measurements on Liège Chalk The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application Experiment and Simulation on NMR and Electrical Measurements on Liège Chalk Liangmou Li, Igor Shikhov, Yong

More information

PENNSYLVANIA. Thermal energy, the random kinetic energy of particles, is transferred as heat through conduction, convection, and radiation.

PENNSYLVANIA. Thermal energy, the random kinetic energy of particles, is transferred as heat through conduction, convection, and radiation. Know: Understand: Do: 3.2.6.B3.a -- Essential HEAT/HEAT TRANSFER - Give examples of how heat moves in predictable ways, normally flowing from warmer objects to cooler ones until they reach the same temperature.

More information

Overview. Magnetism. Electron paramagnetic resonance (EPR) 28/02/2014. Electron Paramagnetic Resonance and Dynamic Nuclear Polarisation AS:MIT CH916

Overview. Magnetism. Electron paramagnetic resonance (EPR) 28/02/2014. Electron Paramagnetic Resonance and Dynamic Nuclear Polarisation AS:MIT CH916 Electron Paramagnetic Resonance and Dynamic Nuclear Polarisation AS:MIT CH916 Overview What it is Why it s useful Gavin W Morley, Department of Physics, University of Warwick Dynamic nuclear polarization

More information

Electrochemical Cell - Basics

Electrochemical Cell - Basics Electrochemical Cell - Basics The electrochemical cell e - (a) Load (b) Load e - M + M + Negative electrode Positive electrode Negative electrode Positive electrode Cathode Anode Anode Cathode Anode Anode

More information

Efficient Aluminium Chloride Natural Graphite Battery

Efficient Aluminium Chloride Natural Graphite Battery Supporting Information for Efficient Aluminium Chloride Natural Graphite Battery Kostiantyn V. Kravchyk,,# Shutao Wang,,# Laura Piveteau, and Maksym V. Kovalenko *,, Laboratory of Inorganic Chemistry,

More information

General Physics. Nerve Conduction. Newton s laws of Motion Work, Energy and Power. Fluids. Direct Current (DC)

General Physics. Nerve Conduction. Newton s laws of Motion Work, Energy and Power. Fluids. Direct Current (DC) Newton s laws of Motion Work, Energy and Power Fluids Direct Current (DC) Nerve Conduction Wave properties of light Ionizing Radiation General Physics Prepared by: Sujood Alazzam 2017/2018 CHAPTER OUTLINE

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Supplementary Figure 1 Scanning electron microscopy image of a lithium dendrite. Dendrite formation in lithium ion batteries pose significant safety issues

More information

Demystifying Transmission Lines: What are They? Why are They Useful?

Demystifying Transmission Lines: What are They? Why are They Useful? Demystifying Transmission Lines: What are They? Why are They Useful? Purpose of This Note This application note discusses theory and practice of transmission lines. It outlines the necessity of transmission

More information