Connections between Plasma and Outer Vessels Ports: Bellows FE Models

Size: px
Start display at page:

Download "Connections between Plasma and Outer Vessels Ports: Bellows FE Models"

Transcription

1 WENDELSTEIN 7- X Andrea Capriccioli Connections between Plasma and Outer Vessels Ports: Bellows FE Models KKS.-Nr.: 1- xxx Max-Planck- Institut für Plasmaphysik Dok.-Kennz.: -x000xx.0 Connections between Plasma and Outer Vessels Ports: Bellows FE Models A. Capriccioli Rev. Datum erstellt geprüft genehmigt Bemerkungen

2 Abstract... 3 I. Description of the Model... 4 II. Results... 8 References Annex Annex A. Capriccioli Page 2 of 13

3 ABSTRACT. The main structural components of the experimental stellarator (W7-X) are the Magnet System, the Cryostat System comprising the Plasma Vessel (PV), the Outer Vessel (OV), the Ports and the Machine Base (MB), see Figure 1. The connections between PV and OV are named Ports. These components are constituted from a two cylindrical elements connected with a third soft element: the bellow. In the present work the models of the several types of bellows used in W7-X will be presented and their characteristics, in term of stiffness, will be analyzed. Figure 1 CAD view of Outer Vessel Ports Magnet system Plasma Vessel Machine base A. Capriccioli Page 3 of 13

4 I. DESCRIPTION OF THE MODEL Three bellows shapes are considered: the rectangular, the oval and circular. For the oval bellows, 5 different shapes (in section dimensions and length) while for the circular ones 10 different shapes (section dimensions, length and presence of the intermediate ring) were modeled. All the ANSYS 3-D FE models use SHELL63 elements and the geometry is derived from the Reference Documents [1] [16] (an example of input file for ANSYS is enclosed in ANNEX 1). In the Figures from 2 to 9 some views of the FE models are reported, only to show the types of bellows (rectangular, oval, circular with and without intermediate ring). For the rectangular port the number of elements and nodes is about (the listing of the model is enclosed in ANNEX 2). Materials: 1 layer bellows material properties: Young s modulus [N/mm2]: 0.2E+06, 0.19E+06 (at RT and at 150 C respectively) Coefficient of thermal expansion [1/K]: 0.16E-04, 0.17E-04 Minor Poisson's ratio: 0.3 Mass density [Kg/mm3]: 0.801E-05 3 layers bellows material properties: the Young s modulus of the material assigned to the convolutions is multiplied by 3. Constraints (see Fig.10) : - All the nodes on one side (base x=0) are grounded (U=0; Rot=0) - Axial (along x axis) stiffness: all the nodes on the other side (x=bellow length=l) can have only axial displacements. - Lateral (along y axis) or Colateral (along z axis) stiffness: all the nodes on the other side (x=l) can have only lateral or colateral displacements. - Torsional (around x axis) stiffness: all the nodes at x=l can have a rotation around x. Displacement along x is allowed. - Rotational (around x and y axes) stiffness: all the nodes at x=l can have a rotation around y or z. Displacements in the plane xz (if rotation around y) or in the plane xy (if rotation around z) are allowed. A. Capriccioli Page 4 of 13

5 Fig.2 Fig.3 Fig.4 Fig.5

6 Fig.6 Fig.7 Fig.8 Fig.9 A. Capriccioli Page 6 of 13

7 Fig.10

8 II. RESULTS The Tables reported below summarize the results per each type of bellow. The abbreviation Type 1 Circ 1 and Type 2 Circ 1 are indicative of the difference between circular ports with or without intermediate ring. PORTS name AEA-V1, AEA-V3, AEE- V1, AEE-V2, AEE-V3 Bellows ID number Bellows Shape Length [mm] Axial X [N/mm] Lateral Y [N/mm] Colateral Z [N/mm] Torsion X [N*mm/rad] Rotational Y[N*mm/rad] Rotational Z [N*mm/rad] 1 Rectangular E E E E E E+06 AEK-V3, AET-V2 AEM-V2 AEN-V1, AEN-V2, AEO- V2, AEN-V4 AEK-V2 AEK-V1, AEN-V3 2 Oval E E E E E E+06 3 Oval E E E E E E+06 4 Oval E E E E E E+06 5 Oval E E E E E E+06 6 Oval E E E E E E+06 AEF, AEA-V2, AEB-V2, AFD, AED, AEG AEB-V1, AEC, AEO-V1, AEY, AFA, AFG, AEW, AFB AEH-V1, AEH-V2, AEM- V3, AET-V1, AEP 7 Type1 Circ E E+01 lateral Y 7.42E E+05 rotational Y 8 Type1 Circ E E+01 = 6.67E E+05 = 9 Type1 Circ E E+01 = 1.17E E+06 =

9 AEI, AEJ-V1, AEJ-V2, AEJ-V3, AFE, AFF, AFC AER, AEV AEL AEQ-V1, AEQ-V2 AEX, AEZ AEM-V1 AEU 10 Type 2 Circ E E+01 lateral Y 8.60E E+05 rotational Y 11 Type 2 Circ E E+01 = 7.45E E+05 = 12 Type 2 Circ E E+01 = 2.16E E+06 = 13 Type 2 Circ E E+00 = 5.52E E+04 = 14 Type 2 Circ E E+01 = 2.86E E+05 = 15 Type 2 Circ E E+01 = 7.45E E+05 = 16 Type 2 Circ E E+02 = 9.13E E+06 = A. Capriccioli Page 9 of 13

10 REFERENCES [1] kompaflex Kompensator mit Stutzen AEA-V1, AEA-V3, AEE-V1, AEE-V2, AEE-V3 Drawing n a [2] kompaflex Kompensator mit Stutzen AEK-V3, AET-V2 Drawing n b [3] kompaflex Kompensator mit Stutzen AEM-V2 Drawing n b [4] kompaflex Kompensator mit Stutzen AEN-V1, AEN-V2, AEO-V2, AEN-V4 Drawing n c [5] kompaflex Kompensator mit Stutzen AEK-V2 Drawing n b [6] kompaflex Kompensator mit Stutzen AEK-V1, AEN-V3 Drawing n c [7] kompaflex Kompensator mit Stutzen AEI, AEJ-V1, AEJ-V2, AEJ-V3, AFE, AFF, AFC Drawing n b [8] kompaflex Kompensator mit Stutzen AER, AEV Drawing n b [9] kompaflex Kompensator mit Stutzen AEL Drawing n b [10] kompaflex Kompensator mit Stutzen AEQ-V1, AEQ-V2 Drawing n b [11] kompaflex Kompensator mit Stutzen AEX, AEZ Drawing n b [12] kompaflex Kompensator mit Stutzen AEM-V1 Drawing n b [13] kompaflex Kompensator mit Stutzen AEF, AEA-V2, AEB-V2, AFD, AED, AEG Drawing n b [14] kompaflex Kompensator mit Stutzen AEB-V1, AEC, AEO-V1, AEY, AFA, AFG, AEW, AFB Drawing n b [15] kompaflex Kompensator mit Stutzen AEH-V1, AEH-V2, AEM-V3, AET-V1, AEP Drawing n c [16] kompaflex Kompensator mit Stutzen AEU Drawing n

11 ANNEX 1!Oval_1_Geom!************************ CONVOLUTIONS NC=5!number of external Convolutions DC=( )/2/(2*NC)!Diameter of the Conv. VF=( )/2!vertical ring height mm HF=( )/2-DC-(Spes*3)!horizontal convolution line HR=225-2*VF!Height of the central ring!************************ SECTION RB=199-(Spes*3)/2!Radius of curvature average LBx=( )/2-2*RB!larger side lenght average LBz=1!smaller side lenght

12 ANNEX 2 Finish /clear, start /UNITS, MPA /prep7!material 1: CONVOLUTIONS 3 LAYERS 3*Young's modulus and density mate=1 MPDATA,EX,mate,1,3*0.20E+6,3*0.19E+6![N/mm2] MPDATA,NUXY,mate,1,0.3,0.3 MPDATA,DENS,mate,1,3*0.801E-08,3*0.801E-08!>>>>[Mg/mm3] MPDATA,ALPX,mate,1,0.16e-04,0.17e-04![1/K]!Material 2!Central Ring mate=2 MPDATA,EX,mate,1,0.20E+6,0.19E+6![N/mm2] MPDATA,NUXY,mate,1,0.3,0.3 MPDATA,DENS,mate,1,0.801E-08,0.801E-08!>>>>[Mg/mm3] MPDATA,ALPX,mate,1,0.16e-04,0.17e-04![1/K] TREF,20 TUNIF,20!KEYOPT 3 =2: Include extra displacement shapes, and use the Allman in-plane rotational stiffness about the element z-axis).!keyopt 11=2: Store data for TOP, BOTTOM, and MID surfaces ET,1,SHELL63 KEYOPT,1,3,2 KEYOPT,1,11,2 ET,2,SHELL63 KEYOPT,1,3,2 KEYOPT,1,11,2 Spes=0.4!Shell Thickness 0.4 mm single layer R,1,Spes!Shell Thickness 0.4 mm single layer R,2,12 RRDl=Spes*10 RRDc=Spes*4 A. Capriccioli Page 12 of 13

13 !************************ CONVOLUTIONS NC=8!number of external Convolutions DC=( )/2/(2*NC)!Diameter of the Conv. VF=( )/2!vertical ring height mm HF=( )/2-DC-(Spes*3)!horizontal convolution line HR=110-2*VF!Height of the central ring!************************ SECTION RB=181-(Spes*3)/2!Radius of curvature LBz=( )/2-2*RB!larger lenght along Z (vertical) LBy=( )/2-2*RB!smaller lenght along Y (Horizontal) A. Capriccioli Page 13 of 13

Plasma Vessel Vertical Supports. Pendulum solution: Equivalent Friction Factor calculation

Plasma Vessel Vertical Supports. Pendulum solution: Equivalent Friction Factor calculation WENDELSTEIN 7- X Andrea Capriccioli Plasma Vessel vertical supports. Pendulum solution: Equivalent Friction Factor calculation KKS.-Nr.: 1- xxx Max-Planck- Institut für Plasmaphysik Dok.-Kennz.: -x000xx.0

More information

Downloaded from Downloaded from / 1

Downloaded from   Downloaded from   / 1 PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION-2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring ROTATIONAL STRESSES INTRODUCTION High centrifugal forces are developed in machine components rotating at a high angular speed of the order of 100 to 500 revolutions per second (rps). High centrifugal force

More information

Two Tier projects for students in ME 160 class

Two Tier projects for students in ME 160 class ME 160 Introduction to Finite Element Method Spring 2016 Topics for Term Projects by Teams of 2 Students Instructor: Tai Ran Hsu, Professor, Dept. of Mechanical engineering, San Jose State University,

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)

More information

Lecture 8. Stress Strain in Multi-dimension

Lecture 8. Stress Strain in Multi-dimension Lecture 8. Stress Strain in Multi-dimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]

More information

Chapter 3. Load and Stress Analysis. Lecture Slides

Chapter 3. Load and Stress Analysis. Lecture Slides Lecture Slides Chapter 3 Load and Stress Analysis 2015 by McGraw Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner.

More information

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002 student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity

More information

[5] Stress and Strain

[5] Stress and Strain [5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

More information

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE 1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

More information

CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR

CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR 2014-2015 UNIT - 1 STRESS, STRAIN AND DEFORMATION OF SOLIDS PART- A 1. Define tensile stress and tensile strain. The stress induced

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

Exercise: concepts from chapter 8

Exercise: concepts from chapter 8 Reading: Fundamentals of Structural Geology, Ch 8 1) The following exercises explore elementary concepts associated with a linear elastic material that is isotropic and homogeneous with respect to elastic

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

Shear stresses around circular cylindrical openings

Shear stresses around circular cylindrical openings Shear stresses around circular cylindrical openings P.C.J. Hoogenboom 1, C. van Weelden 1, C.B.M. Blom 1, 1 Delft University of Technology, the Netherlands Gemeentewerken Rotterdam, the Netherlands In

More information

ME 475 Modal Analysis of a Tapered Beam

ME 475 Modal Analysis of a Tapered Beam ME 475 Modal Analysis of a Tapered Beam Objectives: 1. To find the natural frequencies and mode shapes of a tapered beam using FEA.. To compare the FE solution to analytical solutions of the vibratory

More information

THE EFFECT OF GEOMETRY ON FATIGUE LIFE FOR BELLOWS

THE EFFECT OF GEOMETRY ON FATIGUE LIFE FOR BELLOWS Advanced Materials Development and Performance (AMDP2011) International Journal of Modern Physics: Conference Series Vol. 6 (2012) 343-348 World Scientific Publishing Company DOI: 10.1142/S2010194512003418

More information

N = Shear stress / Shear strain

N = Shear stress / Shear strain UNIT - I 1. What is meant by factor of safety? [A/M-15] It is the ratio between ultimate stress to the working stress. Factor of safety = Ultimate stress Permissible stress 2. Define Resilience. [A/M-15]

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

STRENGTH OF MATERIALS-I. Unit-1. Simple stresses and strains

STRENGTH OF MATERIALS-I. Unit-1. Simple stresses and strains STRENGTH OF MATERIALS-I Unit-1 Simple stresses and strains 1. What is the Principle of surveying 2. Define Magnetic, True & Arbitrary Meridians. 3. Mention different types of chains 4. Differentiate between

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

18.Define the term modulus of resilience. May/June Define Principal Stress. 20. Define Hydrostatic Pressure.

18.Define the term modulus of resilience. May/June Define Principal Stress. 20. Define Hydrostatic Pressure. CE6306 STREGNTH OF MATERIALS Question Bank Unit-I STRESS, STRAIN, DEFORMATION OF SOLIDS PART-A 1. Define Poison s Ratio May/June 2009 2. What is thermal stress? May/June 2009 3. Estimate the load carried

More information

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM - 613 403 - THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub : Strength of Materials Year / Sem: II / III Sub Code : MEB 310

More information

2012 MECHANICS OF SOLIDS

2012 MECHANICS OF SOLIDS R10 SET - 1 II B.Tech II Semester, Regular Examinations, April 2012 MECHANICS OF SOLIDS (Com. to ME, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~

More information

46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference April 2005 Austin, Texas

46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference April 2005 Austin, Texas th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference - April, Austin, Texas AIAA - AIAA - Bi-stable Cylindrical Space Frames H Ye and S Pellegrino University of Cambridge, Cambridge,

More information

Sub. Code:

Sub. Code: Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written by candidate may

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 N-s/m. To make the system

More information

3 Hours/100 Marks Seat No.

3 Hours/100 Marks Seat No. *17304* 17304 14115 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full

More information

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1 UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define: Stress When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The

More information

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 UNIT-I STRESS, STRAIN 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 Young s modulus E= 2 x10 5 N/mm 2 Area1=900mm 2 Area2=400mm 2 Area3=625mm

More information

Members Subjected to Torsional Loads

Members Subjected to Torsional Loads Members Subjected to Torsional Loads Torsion of circular shafts Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d applied in a plane perpendicular

More information

Finite Element Analysis of Collision Phenomenon that Occurs during the Manufacturing Process of Axial Bearings Rollers

Finite Element Analysis of Collision Phenomenon that Occurs during the Manufacturing Process of Axial Bearings Rollers ANALELE UNIVERSITĂłII EFTIMIE MURGU REŞIłA ANUL XVIII, NR. 1, 2011, ISSN 1453-7397 Tiberiu Stefan Manescu, Tiberiu Manescu Jr., Vasile Cojocaru Finite Element Analysis of Collision Phenomenon that Occurs

More information

Studying Decreased Methods of Stress Concentration around Holes and Openings of Plate and Shell Structures Body

Studying Decreased Methods of Stress Concentration around Holes and Openings of Plate and Shell Structures Body International Research Journal of Applied and Basic Sciences 01 Available online at www.irjabs.com ISSN 51-88X / Vol, 5 (8): 1008-1015 Science Explorer Publications Studying Decreased Methods of Stress

More information

Aluminum shell. Brass core. 40 in

Aluminum shell. Brass core. 40 in PROBLEM #1 (22 points) A solid brass core is connected to a hollow rod made of aluminum. Both are attached at each end to a rigid plate as shown in Fig. 1. The moduli of aluminum and brass are EA=11,000

More information

Solving the torsion problem for isotropic matrial with a rectangular cross section using the FEM and FVM methods with triangular elements

Solving the torsion problem for isotropic matrial with a rectangular cross section using the FEM and FVM methods with triangular elements Solving the torsion problem for isotropic matrial with a rectangular cross section using the FEM and FVM methods with triangular elements Nasser M. Abbasi. June 0, 04 Contents Introduction. Problem setup...................................

More information

Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

More information

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft. ME 323 - Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM M (x) y 20 kip ft 0.2

More information

MEG 795 COURSE PROJECT

MEG 795 COURSE PROJECT MEG 795 COURSE PROJECT Transient dynamic analysis of a 3 Point Impact Hammer Test on a simply supported steel plate using ANSYS and LS-DYNA JAGANNADHA RAO NARAPARAJU DEPARTMENT OF MECHANICAL ENGINEERING

More information

Analysis of Catalyst Support Ring in a pressure vessel based on ASME Section VIII Division 2 using ANSYS software

Analysis of Catalyst Support Ring in a pressure vessel based on ASME Section VIII Division 2 using ANSYS software IJSRD - International Journal for Scientific Research & Development Vol. 1, Issue 3, 2013 ISSN (online): 2321-0613 Analysis of Catalyst Support Ring in a pressure vessel based on ASME Section VIII Division

More information

Comparison of Ply-wise Stress-Strain results for graphite/epoxy laminated plate subjected to in-plane normal loads using CLT and ANSYS ACP PrepPost

Comparison of Ply-wise Stress-Strain results for graphite/epoxy laminated plate subjected to in-plane normal loads using CLT and ANSYS ACP PrepPost Comparison of Ply-wise Stress-Strain results for graphite/epoxy laminated plate subjected to in-plane normal loads using CLT and ANSYS ACP PrepPost 1 Mihir A. Mehta, 2 Satyen D. Ramani 1 PG Student, Department

More information

Only for Reference Page 1 of 18

Only for Reference  Page 1 of 18 Only for Reference www.civilpddc2013.weebly.com Page 1 of 18 Seat No.: Enrolment No. GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER II EXAMINATION WINTER 2013 Subject Code: X20603 Date: 26-12-2013 Subject

More information

Dynamic Response Of Laminated Composite Shells Subjected To Impulsive Loads

Dynamic Response Of Laminated Composite Shells Subjected To Impulsive Loads IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 14, Issue 3 Ver. I (May. - June. 2017), PP 108-123 www.iosrjournals.org Dynamic Response Of Laminated

More information

Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method

Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method 9210-220 Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method You should have the following for this examination one answer book scientific calculator No

More information

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA (Declared as Deemed-to-be University under Section 3 of the UGC Act, 1956, Vide notification No.F.9.9/92-U-3 dated 26 th May 1993 of the Govt. of

More information

Seismic Response Analysis of Structure Supported by Piles Subjected to Very Large Earthquake Based on 3D-FEM

Seismic Response Analysis of Structure Supported by Piles Subjected to Very Large Earthquake Based on 3D-FEM Seismic Response Analysis of Structure Supported by Piles Subjected to Very Large Earthquake Based on 3D-FEM *Hisatoshi Kashiwa 1) and Yuji Miyamoto 2) 1), 2) Dept. of Architectural Engineering Division

More information

GATE SOLUTIONS E N G I N E E R I N G

GATE SOLUTIONS E N G I N E E R I N G GATE SOLUTIONS C I V I L E N G I N E E R I N G From (1987-018) Office : F-16, (Lower Basement), Katwaria Sarai, New Delhi-110016 Phone : 011-65064 Mobile : 81309090, 9711853908 E-mail: info@iesmasterpublications.com,

More information

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR:

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR: MECHANICS OF STRUCTURES- ASSIGNMENT NO 1 SEMESTER: V 1) Find the least moment of Inertia about the centroidal axes X-X and Y-Y of an unequal angle section 125 mm 75 mm 10 mm as shown in figure 2) Determine

More information

Unified Quiz M4 May 7, 2008 M - PORTION

Unified Quiz M4 May 7, 2008 M - PORTION 9:00-10: 00 (last four digits) 32-141 Unified Quiz M4 May 7, 2008 M - PORTION Put the last four digits of your MIT ID # on each page of the exam. Read all questions carefully. Do all work on that question

More information

Practice Final Examination. Please initial the statement below to show that you have read it

Practice Final Examination. Please initial the statement below to show that you have read it EN175: Advanced Mechanics of Solids Practice Final Examination School of Engineering Brown University NAME: General Instructions No collaboration of any kind is permitted on this examination. You may use

More information

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 TIME SCHEDULE MODULE TOPICS PERIODS 1 Simple stresses

More information

Homework #2 MEAM Automotive Body Structures 1998 Winter

Homework #2 MEAM Automotive Body Structures 1998 Winter Homework #2 MEAM 599-02 Automotive Body Structures 1998 Winter 1. Using AISI/CARS 96_GAS or equivalent software such as UNIGRAPHICS if you are familiar with, find the geometric property of the following

More information

Mars Ascent Vehicle Hybrid Motor Structural Analysis

Mars Ascent Vehicle Hybrid Motor Structural Analysis Mars Ascent Vehicle Hybrid Motor Structural Analysis MSFC - James Luce ER41 (Summer intern program) NASA Sensitive But Unclassified 1 Background: the MAV MAV: Mars Ascent Vehicle (MAV) is a small rocket

More information

202 Index. failure, 26 field equation, 122 force, 1

202 Index. failure, 26 field equation, 122 force, 1 Index acceleration, 12, 161 admissible function, 155 admissible stress, 32 Airy's stress function, 122, 124 d'alembert's principle, 165, 167, 177 amplitude, 171 analogy, 76 anisotropic material, 20 aperiodic

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF MECHANICAL ENGINEERING ME 6603 FINITE ELEMENT ANALYSIS PART A (2 MARKS)

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF MECHANICAL ENGINEERING ME 6603 FINITE ELEMENT ANALYSIS PART A (2 MARKS) DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF MECHANICAL ENGINEERING ME 6603 FINITE ELEMENT ANALYSIS UNIT I : FINITE ELEMENT FORMULATION OF BOUNDARY VALUE PART A (2 MARKS) 1. Write the types

More information

Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure

Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure ISSN : 48-96, Vol. 6, Issue 8, ( Part -4 August 06, pp.3-38 RESEARCH ARTICLE Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure Dr.Ragbe.M.Abdusslam Eng. Khaled.S.Bagar ABSTRACT

More information

JEPPIAAR ENGINEERING COLLEGE

JEPPIAAR ENGINEERING COLLEGE JEPPIAAR ENGINEERING COLLEGE Jeppiaar Nagar, Rajiv Gandhi Salai 600 119 DEPARTMENT OFMECHANICAL ENGINEERING QUESTION BANK VI SEMESTER ME6603 FINITE ELEMENT ANALYSIS Regulation 013 SUBJECT YEAR /SEM: III

More information

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C CE-1259, Strength of Materials UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS Part -A 1. Define strain energy density. 2. State Maxwell s reciprocal theorem. 3. Define proof resilience. 4. State Castigliano

More information

Sample Question Paper

Sample Question Paper Scheme I Sample Question Paper Program Name : Mechanical Engineering Program Group Program Code : AE/ME/PG/PT/FG Semester : Third Course Title : Strength of Materials Marks : 70 Time: 3 Hrs. Instructions:

More information

PES Institute of Technology

PES Institute of Technology PES Institute of Technology Bangalore south campus, Bangalore-5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject

More information

Transient Coupled Field Solution for a Pion / Muon Collector

Transient Coupled Field Solution for a Pion / Muon Collector Transient Coupled Field Solution for a Pion / Muon Collector Mike Yaksh Yaksh Magnetic Solutions 1 Some background on Pion/Muon Collection An axial magnetic field is generated by current flowing in circumferential

More information

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Simple stresses

More information

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

More information

THEORY OF PLATES AND SHELLS

THEORY OF PLATES AND SHELLS THEORY OF PLATES AND SHELLS S. TIMOSHENKO Professor Emeritus of Engineering Mechanics Stanford University S. WOINOWSKY-KRIEGER Professor of Engineering Mechanics Laval University SECOND EDITION MCGRAW-HILL

More information

EFFECTS OF THERMAL STRESSES AND BOUNDARY CONDITIONS ON THE RESPONSE OF A RECTANGULAR ELASTIC BODY MADE OF FGM

EFFECTS OF THERMAL STRESSES AND BOUNDARY CONDITIONS ON THE RESPONSE OF A RECTANGULAR ELASTIC BODY MADE OF FGM Proceedings of the International Conference on Mechanical Engineering 2007 (ICME2007) 29-31 December 2007, Dhaka, Bangladesh ICME2007-AM-76 EFFECTS OF THERMAL STRESSES AND BOUNDARY CONDITIONS ON THE RESPONSE

More information

ON THE INTEGRATION OF EQUATIONS OF MOTION: FEM AND MOLECULAR DYNAMICS PROBLEMS

ON THE INTEGRATION OF EQUATIONS OF MOTION: FEM AND MOLECULAR DYNAMICS PROBLEMS 8th International Congress on Computational Mechanics, Volos, 1-15 July 015 ON THE INTEGRATION OF EQUATIONS OF MOTION: FEM AND MOLECULAR DYNAMICS PROBLEMS E.G. Kakouris, V.K. Koumousis Institute of Structural

More information

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2 Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force

More information

Analytical Strip Method for Thin Isotropic Cylindrical Shells

Analytical Strip Method for Thin Isotropic Cylindrical Shells IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 14, Issue 4 Ver. III (Jul. Aug. 2017), PP 24-38 www.iosrjournals.org Analytical Strip Method for

More information

VIBRATION AND DAMPING ANALYSIS OF FIBER REINFORCED COMPOSITE MATERIAL CONICAL SHELLS

VIBRATION AND DAMPING ANALYSIS OF FIBER REINFORCED COMPOSITE MATERIAL CONICAL SHELLS VIBRATION AND DAMPING ANALYSIS OF FIBER REINFORCED COMPOSITE MATERIAL CONICAL SHELLS Mechanical Engineering Department, Indian Institute of Technology, New Delhi 110 016, India (Received 22 January 1992,

More information

A two-dimensional FE truss program

A two-dimensional FE truss program A two-dimensional FE truss program 4M020: Design Tools Eindhoven University of Technology Introduction The Matlab program fem2d allows to model and analyze two-dimensional truss structures, where trusses

More information

Botlek Railway Tunnel: Comparison between BorTas, LDesign and analytical solutions

Botlek Railway Tunnel: Comparison between BorTas, LDesign and analytical solutions Botlek Railway Tunnel: Comparison between BorTas, and analytical solutions Ir. C.B.M. Blom, Delft, 2001 Holland Railconsult, Delft University of Technology CONCEPT!! Wednesday, September 26, 2001 1-8 1

More information

New Representation of Bearings in LS-DYNA

New Representation of Bearings in LS-DYNA 13 th International LS-DYNA Users Conference Session: Aerospace New Representation of Bearings in LS-DYNA Kelly S. Carney Samuel A. Howard NASA Glenn Research Center, Cleveland, OH 44135 Brad A. Miller

More information

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS Name :. Roll No. :..... Invigilator s Signature :.. 2011 SOLID MECHANICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras (Refer Slide Time: 00:25) Module - 01 Lecture - 13 In the last class, we have seen how

More information

FINAL EXAMINATION. (CE130-2 Mechanics of Materials)

FINAL EXAMINATION. (CE130-2 Mechanics of Materials) UNIVERSITY OF CLIFORNI, ERKELEY FLL SEMESTER 001 FINL EXMINTION (CE130- Mechanics of Materials) Problem 1: (15 points) pinned -bar structure is shown in Figure 1. There is an external force, W = 5000N,

More information

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 3 ME 276 Spring 2017-2018 Dr./ Ahmed Mohamed Nagib Elmekawy Axial Stress 2 Beam under the action of two tensile forces 3 Beam under the action of two tensile forces 4 Shear Stress

More information

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

More information

Design against fluctuating load

Design against fluctuating load Design against fluctuating load In many applications, the force acting on the spring is not constants but varies in magnitude with time. The valve springs of automotive engine subjected to millions of

More information

Massachusetts Institute of Technology 22.68J/2.64J Superconducting Magnets. February 27, Lecture #4 Magnetic Forces and Stresses

Massachusetts Institute of Technology 22.68J/2.64J Superconducting Magnets. February 27, Lecture #4 Magnetic Forces and Stresses Massachusetts Institute of Technology.68J/.64J Superconducting Magnets February 7, 003 Lecture #4 Magnetic Forces and Stresses 1 Forces For a solenoid, energy stored in the magnetic field acts equivalent

More information

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS)

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)

More information

PRACTICE 2 PROYECTO Y CONSTRUCCIÓN DE PUENTES. 1º Máster Ingeniería de Caminos. E.T.S.I. Caminos, canales y puertos (Ciudad Real) 01/06/2016

PRACTICE 2 PROYECTO Y CONSTRUCCIÓN DE PUENTES. 1º Máster Ingeniería de Caminos. E.T.S.I. Caminos, canales y puertos (Ciudad Real) 01/06/2016 PRACTICE 2 PROYECTO Y CONSTRUCCIÓN DE PUENTES 1º Máster Ingeniería de Caminos E.T.S.I. Caminos, canales y puertos (Ciudad Real) 01/06/2016 AUTHOR: CONTENT 1. INTRODUCTION... 3 2. BRIDGE GEOMETRY AND MATERIAL...

More information

( ) 5. Bearing internal load distribution and displacement. 5.1 Bearing internal load distribution

( ) 5. Bearing internal load distribution and displacement. 5.1 Bearing internal load distribution 5. internal load distribution and displacement 5. internal load distribution This section will begin by examing the effect of a radial load F r and an axial load F a applied on a single-row bearing with

More information

Validation of Stresses with Numerical Method and Analytical Method

Validation of Stresses with Numerical Method and Analytical Method ISSN 303-451 PERIODICALS OF ENGINEERING AND NATURAL SCIENCES Vol. 4 No. 1 (016) Available online at: http://pen.ius.edu.ba Validation of Stresses with Numerical Method and Analytical Method Enes Akca International

More information

Due Date 1 (for confirmation of final grade): Monday May 10 at 11:59pm Due Date 2 (absolute latest possible submission): Friday May 14 at 5pm

Due Date 1 (for  confirmation of final grade): Monday May 10 at 11:59pm Due Date 2 (absolute latest possible submission): Friday May 14 at 5pm ! ME345 Modeling and Simulation, Spring 2010 Case Study 3 Assigned: Friday April 16! Due Date 1 (for email confirmation of final grade): Monday May 10 at 11:59pm Due Date 2 (absolute latest possible submission):

More information

Design, Installation and Commissioning of new Vacuum chamber for Analysing Magnet of K-130 Cyclotron

Design, Installation and Commissioning of new Vacuum chamber for Analysing Magnet of K-130 Cyclotron Journal of Physics: Conference eries Design, Installation and Commissioning of new Vacuum chamber for Analysing Magnet of K-130 Cyclotron To cite this article: Bidhan Chandra Mandal et al 01 J. Phys.:

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

Micro-meso draping modelling of non-crimp fabrics

Micro-meso draping modelling of non-crimp fabrics Micro-meso draping modelling of non-crimp fabrics Oleksandr Vorobiov 1, Dr. Th. Bischoff 1, Dr. A. Tulke 1 1 FTA Forschungsgesellschaft für Textiltechnik mbh 1 Introduction Non-crimp fabrics (NCFs) are

More information

ZZZZ120 - Calculation of an assembly pin-attaches

ZZZZ120 - Calculation of an assembly pin-attaches Titre : ZZZZ120 - Calcul d un assemblage goujon-bride Date : 01/08/2011 Page : 1/16 ZZZZ120 - Calculation of an assembly pin-attaches Summary: The purpose of these two tests are to validate the two macro-orders

More information

CRITERIA FOR SELECTION OF FEM MODELS.

CRITERIA FOR SELECTION OF FEM MODELS. CRITERIA FOR SELECTION OF FEM MODELS. Prof. P. C.Vasani,Applied Mechanics Department, L. D. College of Engineering,Ahmedabad- 380015 Ph.(079) 7486320 [R] E-mail:pcv-im@eth.net 1. Criteria for Convergence.

More information

ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING

ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING QUESTION BANK FOR THE MECHANICS OF MATERIALS-I 1. A rod 150 cm long and of diameter 2.0 cm is subjected to an axial pull of 20 kn. If the modulus

More information

Esben Byskov. Elementary Continuum. Mechanics for Everyone. With Applications to Structural Mechanics. Springer

Esben Byskov. Elementary Continuum. Mechanics for Everyone. With Applications to Structural Mechanics. Springer Esben Byskov Elementary Continuum Mechanics for Everyone With Applications to Structural Mechanics Springer Contents Preface v Contents ix Introduction What Is Continuum Mechanics? "I Need Continuum Mechanics

More information

1 4 3 A Scalar Multiplication

1 4 3 A Scalar Multiplication 1 Matrices A matrix is a rectangular array of variables or constants in horizontal rows and vertical columns, usually enclosed in brackets. In a matrix, the numbers or data are organized so that each position

More information

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams.

More information

COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS. Abstract. Introduction

COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS. Abstract. Introduction COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS Hsiang-Chuan Tsai, National Taiwan University of Science and Technology, Taipei, Taiwan James M. Kelly, University of California,

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering Lecture slides Challenge the future 1 Aircraft & spacecraft loads Translating loads to stresses Faculty of Aerospace Engineering 29-11-2011 Delft University of Technology

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

More information

MATERIAL MECHANICS, SE2126 COMPUTER LAB 4 MICRO MECHANICS. E E v E E E E E v E E + + = m f f. f f

MATERIAL MECHANICS, SE2126 COMPUTER LAB 4 MICRO MECHANICS. E E v E E E E E v E E + + = m f f. f f MATRIAL MCHANICS, S226 COMPUTR LAB 4 MICRO MCHANICS 2 2 2 f m f f m T m f m f f m v v + + = + PART A SPHRICAL PARTICL INCLUSION Consider a solid granular material, a so called particle composite, shown

More information

WORKBOOK MECHANICS OF MATERIALS AND ELEMENTS OF ENGINEERING STRUCTURES

WORKBOOK MECHANICS OF MATERIALS AND ELEMENTS OF ENGINEERING STRUCTURES WORKBOOK MECHANICS OF MATERIALS AND ELEMENTS OF ENGINEERING STRUCTURES LUBLIN 014 Authors: Sylwester Samborski, Andrzej Teter and Marcin Bocheński Desktop publishing: Sylwester Samborski, Andrzej Teter

More information