# Exercise: concepts from chapter 8

Size: px
Start display at page:

Transcription

1 Reading: Fundamentals of Structural Geology, Ch 8 1) The following exercises explore elementary concepts associated with a linear elastic material that is isotropic and homogeneous with respect to elastic properties. a) It is commonly understood that longitudinal deformation, say shortening, implies compressive normal stress acting in the direction of this strain. Use the three dimensional form of Hooke's Law for an isotropic body with Young s modulus, E, and Poisson s ratio,, as the two elastic moduli to demonstrate that this could be a misconception under some states of stress. As an illustrative example consider the state of uniaxial tension, 0, 0. Describe how your xx yy zz result depends upon the elastic moduli and define the full range of these quantities that you are considering. b) Now consider a three-dimensional state of stress that could develop in Earth s crust. The stresses are given by Anderson s standard state (an isotropic compression). We ignore strains that are associated with the development of this stress state. Suppose the rock body is subject to a tectonic stress state 0,, and 0. In other words a tectonic tension is applied in xx yy zz the x-direction and a tension of magnitude is applied in the y- and z-direction. Use Hooke s Law for an isotropic body with Young s modulus, E, and Poisson s ratio,, as the two elastic moduli to determine those conditions under which the tectonic strains in y and z are a shortening even though the tectonic stress is tensile in those directions. c) It is commonly understood that shearing deformation implies shear stresses acting on planes associated with this strain. Use the three dimensional form of Hooke's Law for an isotropic body with Young s modulus and Poisson s ratio as the two elastic moduli to demonstrate that this is an accurate conception. Describe how your result depends upon the elastic moduli and define the full range of these quantities that you are considering. d) Many types of rubber have values of Poisson's ratio approaching the upper limit of 1/2, whereas many varieties of cork have values approaching the lower limit of 0. Both of these materials are used as stoppers for bottles containing liquids. What mechanical reason can you offer for the predominant usage of cork instead of rubber for wine bottle stoppers? Assume that the stopper would be a solid cylindrical shape whether rubber or cork. On the other hand, rubber is the choice for most stoppers in a chemistry lab, presumably because of its resistance to chemical reaction. Can you suggest why most of these rubber stoppers are tapered and not cylindrical in shape? February 1, 2011 David D. Pollard and Raymond C. Fletcher

2 e) Suppose a rock mass has a Young's modulus, E = 25 GPa, and Poisson's ratio, = Determine values for Lamé's constants, G and, and the bulk modulus, K, and write down the equations you have used. Suppose you know values for the bulk modulus, K, and the shear modulus, G. Using algebra, derive equations for Young's modulus, E, and Poisson's ratio,. 2) Consider the block of rock shown in Figure 1 to be linear elastic and isotropic and homogeneous with respect to elastic properties. W Y initial state area, A H elastic block X Z f z w y B current state extended elastic block b Figure 1. Idealized block of rock that is a linear elastic material. a) Initial unloaded state. b) Current loaded state. Suppose the elastic properties of this block are Young's modulus, E = 50 GPa, and Poisson's ratio, = Also suppose the side lengths B = 1000 m, H = 150 m, and W = 125 m. a) Compute the three infinitesimal longitudinal strain components ( xx, yy, zz ) in the coordinate directions within this block for the following state of stress: xx 50 MPa, yy 35 MPa, zz 30 MPa (1) 0 xy yz zx Note that the normal components are principal stresses and all are compressive. Assess the magnitude of the strains are indicate if they are within the range for typical elastic behavior. b) Recall the general kinematic equations relating the infinitesimal strain components to the displacement components (5.118): 1 u u i j ij (2) 2 xj x i Compute the displacement components (u x, u y, u z ) at the point x = 1000 m, y = 150 m, and z = 125 m for the stress state given in (1). Assume the rock mass is fixed (zero displacement) at the origin of the coordinate system (Figure 1). f x February 1, 2011 David D. Pollard and Raymond C. Fletcher

3 c) The stretch, S, the extension (also called the infinitesimal strain),, and the strain (also called the Lagrangian strain), E, are related to the initial length, B, and final length, b, of the block as follows: b 1 ; b B ; b S E B b B 2 (3) B B B B Calculate the final length of the block, b, and use this to calculate all three measures of deformation in (3). Compare the extension and the strain to determine the error introduced when using the infinitesimal strain approximation. Assess whether you were justified in using the infinitesimal theory in parts a) and b) of this exercise. d) Show algebraically how the extension and strain are calculated as functions of the stretch. Use MATLAB to plot both the extension and the strain versus the stretch over the range 0S 3. Comment on their graphical relationship to one another. e) Determine the approximate range of S within which the error introduced by neglecting the higher order term in equation (3) for E is less than 10%. Use MATLAB to plot the error as a percentage versus the stretch. 3) The quasi-static linear elastic solution for the edge dislocation originally found application to problems of plasticity at the scale of defects in the crystal lattice. As Weertman and Weertman (1964) point out, the dislocation solution has found application as a modeling tool for many different geological structures (Figure 2). 2 Figure 2. Pairs of edge dislocations used to model geological structures at length scales ranging from centimeters to kilometers. a) Describe in words and with a carefully labeled sketch what is meant by the following attributes of the edge dislocation: extra half plane of atoms, Burgers vector, dislocation line, tangent vector, glide plane, dislocation core. b) Consider equations (8.36) and (8.37) which give the displacement components that solve Navier s equations of motion for the edge dislocation. Put these equations in dimensionless form and plot each term as a function of the polar angle,, for a circuit around the dislocation, keeping the radial coordinate, r, constant. Justify your choice of r based upon the size of the dislocation core. Identify which February 1, 2011 David D. Pollard and Raymond C. Fletcher

4 term(s) contribute to the displacement discontinuity across the glide plane and show how this is related to the magnitude, b, of Burgers vector. c) Plot a contour map of each displacement component, u x and u y, around the edge dislocation centered in a region that is 200b on a side. Choose elastic moduli such 4 that G 3 10 MPa. Compare and contrast your contour plots to those of Hytch et al. (2003) from the frontispiece for chapter 8. d) Plot a contour map of the normal stress component xx using the same elastic moduli and region as in part c). Describe the distribution of this stress component, pointing out any symmetry. Provide a physical explanation why this normal stress is tensile (positive) for y > 0 and compressive (negative) for y < 0. e) Plot a contour map of the shear stress component xy using the same elastic moduli and region as in part c). Describe the distribution of this stress component, pointing out any symmetry. Provide a physical explanation why the shear stress is positive for x < 0 and negative for x > 0 along the x-axis. Indicate how this stress distribution promotes further dislocation glide. f) Use you results from parts d) and e) to explain why the arrangement of dislocation pairs in Figure 2c represents a right lateral strike-slip fault. 4) Consider two-dimensional, plane strain conditions defined using the following constraints on the displacement components: u u x, y, u u x, y, u 0 (4) x x y y z In other words the two displacement components in the (x, y)-plane are only functions of x and y, and the z-component of displacement is zero. In this context explore the equations relating stress, strain, and displacement components, as well as the governing equations for the elastic boundary value problem. a) Start with the three-dimensional form of Hooke s Law for the isotropic elastic material using Lamé s constants with stress components as dependent variables: 2G (5) ij ij kk ij Using the constraints imposed by (4) and the kinematic equations (2), expand (5) for each of the six Cartesian stress components as functions of the strain components. b) Start with the three-dimensional form of Hooke s Law for the isotropic elastic material using Young s modulus, E, and Poisson s ratio,, as the elastic constants with infinitesimal strain components as dependent variables: 1 v v ij ij kk ij E E (6) February 1, 2011 David D. Pollard and Raymond C. Fletcher

5 Using the constraints imposed by (4), and the results from part a) of this exercise, expand (6) for the six Cartesian strain components as functions of the stress components. c) Explain how St. Venant s six equations of compatibility (7.143) (7.148) for the infinitesimal strain components reduce to one equation relating the in-plane strain components under conditions of plane strain. Transform this compatibility equation so that it is written in terms of the stress components. d) Consider the following Airy stress function: x, y 1 Cy (7) 3 6 Derive equations for the three in-plane stress components ignoring body forces. Take the region of interest as the rectangle drawn in Figure 3. Sketch and label the traction boundary conditions acting on this region. Figure 3. Rectangular region of interest for the traction boundary value problem with Airy stress function given in (7). e) Derive equations for the in-plane strain components associated with the stress distribution given in part d). Use the kinematic equations to derive the displacement components from the strains and cast these equations into dimensionless form. Plot and describe each normalized displacement component and the normalized displacement vector field for the region shown in Figure 3 where L = 2H. Plot the deformed shape of the originally rectangular region. Explain why this solution is called pure bending. 5) Cylindrical coordinates are the natural system for a number of important problems in structural geology. With zero displacement parallel to the cylindrical z-axis these constitute another important set of two-dimensional plane strain problems. a) The equilibrium equations for plane cylindrical problems are (8.73) and (8.74), and the equations relating the in-plane stress components to the Airy stress functions are (8.75) (8.77). Show by substitution, while ignoring the body force terms, that these stress components satisfy the equilibrium conditions. b) Consider the Airy stress function for the stress perturbation due to a cylindrical valley that is 100m deep cut from an elastic half-space (Figure 8.21) with mass density,, and uniform gravitational acceleration, g*: 1 r, g * R r cos (8) 2 2 February 1, 2011 David D. Pollard and Raymond C. Fletcher

6 y-axis (m) Fundamentals of Structural Geology Derive the equation for the in-plane radial stress component, rr, and write a MATLAB m-script to plot a contour map of the distribution. Describe the distribution and explain why this stress component is tensile everywhere stress srr (valley) x-axis (m) Figure 4. Radial component of normal stress, rr, for the perturbation due to the incision of a cylindrical valley in an elastic half-space under gravitational loading. Valley is 1 km deep and the unit weight of the rock is g* = 25 MPa/km. c) Add the stress state due to weight of the material in absence of the valley to the result from part b) and plot contour maps of the radial and circumferential stress components, rr and. Indicate where these components match the traction boundary conditions. Explain why the contours of the circumferential component are horizontal lines. d) Consider the total state of stress due to the weight of the half-space and the perturbation of the valley and plot the stress trajectories. What simple relationship do the trajectories have to the cylindrical coordinate system? Why? 6) Uniaxial compression test results are given for two granites and for a particular limestone measured in two different parts of the same specimen. For both figures the axial stress, a, is plotted versus the axial extension, e a. Note that both the applied stress and the resulting extension are negative. That is, the stress is compressive and the extension is a shortening. a) Use the stress-extension graph for Georgia granite to estimate the apparent Young's modulus. Compare your value with the range of values given in Table 8.2 for granites and describe the modulus of Georgia granite relative to those. Would you February 1, 2011 David D. Pollard and Raymond C. Fletcher

7 Axial stress, r a, MPa Axial stress, r a, MPa Fundamentals of Structural Geology hear a ring or a thud if Georgia granite were struck with a geologist s hammer? b) Stress-extension data from a uniaxial compression test on Colorado granite is found in the file colorado.txt with axial stress (MPa) in the first column and axial extension in the second column. Plot these data with stress (ordinate) as a function of extension (abscissa). Use a forward finite difference method to calculate the tangent elastic modulus for each value of the axial extension, omitting that at the origin. Plot the tangent elastic modulus versus axial extension. Describe the apparent non-linear behavior of this rock and provide possible explanations? a) Axial extension, e a Colorado granite -50 Georgia granite b) Axial extension, e a limestone with cracks limestone Figure 5. Uniaxial compression test results (Obert & Duvall, 1967). a) Colorado granite and Georgia granite. b) Two different areas on the same limestone sample. c) Data in the files limestone.txt and lmst_cracks.txt were taken using samples from the same limestone formation. The axial stress is in the first column and the axial extension is in the second column of the data files. Construct a plot of axial stress versus axial extension. Describe three differences between mechanical responses of the two limestones. Determine how the tangent modulus differs for each test -35 February 1, 2011 David D. Pollard and Raymond C. Fletcher

8 and plot the tangent modulus versus the axial extension. Suggest what micromechanical mechanisms might explain the differences in the tangent moduli. 7) In this exercise the two-dimensional solution for the elastic boundary-value problem of a cylindrical inclusion (Figure 6) is used to study possible states of stress both within and near material heterogeneities in rock that could serve to concentrate or diminish a remotely applied stress. The radius of the inclusion is R, the only length dimension in this problem. The four elastic moduli are the shear modulus, G, and Poisson's ratio,, for the inclusion (subscript i) and the surrounding material (subscript s). The remote boundary r r conditions are defined in terms of the principal stress components, 1 and 2, acting in the x- and y-coordinate directions respectively. surroundings: G s, m s y r 2 r r 1 r h r x inclusion: G i, m i 2R Figure 6. The plane strain elastic boundary value problem for a cylindrical inclusion loaded by remote biaxial principal stresses. a) Investigate the stress state within the inclusion as a function of the shear moduli inside and outside the inclusion. Apply a uniaxial remote stress of unit magnitude in the x-direction. Set Poisson's ratio inside and outside the inclusion to 0.25 and vary the shear moduli to consider the range from an open cavity to a rigid inclusion. Plot your results and describe how the stress state varies with the ratio of shear moduli. What conclusions can you draw from this study about stress concentration and stress diminution within the inclusion? b) Study the variation of stress within the inclusion for the same conditions as in part a) but set Poisson s ratio inside and outside the inclusion to 0.5 (incompressible) and then to 0 (perfectly compressible). Plot your results as a function of the shear moduli ratio and describe how the stress state varies for the two different values of Poisson s ratio. What conclusions can you draw from this study about stress concentration and diminution? February 1, 2011 David D. Pollard and Raymond C. Fletcher

10 a) Consider the first oil shale listed in Table 8.6 to be orthotropic and take the x-axis parallel to bedding and the y-axis perpendicular to bedding. Suppose the other two independent moduli are: G 6.0 GPa, 0.2 (10) Calculate the value of the second Poisson s ratio, 21, and write down all five elastic moduli. orthotropic elastic material y 12 r 1 r r h x E 2,m 21 2R E 1,m 12 Figure 7. The plane strain elastic boundary value problem for a cylindrical hole of radius R in an orthotropic material loaded by a remote uniaxial stress. b) Write down the llinear strain-stress equations using compliances and using the more familiar laboratory constants (Young s modulus and Poisson s ratio) for the orthotropic material. Use these equations to derive equations for the constants, C 1 and C 2, employed in solutions to the orthotropic elastic boundary value problem: s s s12 C 1, C2 (11) s s c) The elastic moduli for the oil shale from part a) must be related to elastic compliances that are real numbers. Test these values to determine if this condition holds starting with the following equations for the constants 1 and 2 which appear in the governing compatibility equation for orthotropic elastic boundary value problems: C1 1 2, C2 1 2 (12) Place an upper bound on the shear modulus assuming the measured values of the two Young s moduli and the given value for the Poisson s ratio are correct. d) Use the elastic moduli found in part a) and calculate the circumferential stress around the circular hole in the orthotropic material for a unit remote normal stress and plot this distribution. Describe the concentration and diminution of stress February 1, 2011 David D. Pollard and Raymond C. Fletcher

11 around the hole. Compare your result to that for an isotropic rock using the Kirsh solution and plot this distribution on the same graph. Note that the Kirsh solution is independent of the elastic moduli. Evaluate the errors introduced in calculations of the stress state if you were to assume the oil shale is isotropic. February 1, 2011 David D. Pollard and Raymond C. Fletcher

### Exercise: concepts from chapter 6

Reading: Fundamentals of Structural Geology, Chapter 6 1) The definition of the traction vector (6.7) relies upon the approximation of rock as a continuum, so the ratio of resultant force to surface area

### Exercise solutions: concepts from chapter 8

) The following exercises explore elementary concepts applicable to a linear elastic material that is isotropic and homogeneous with respect to the elastic properties. a) It is commonly understood that

### Exercise: concepts from chapter 5

Reading: Fundamentals of Structural Geology, Ch 5 1) Study the oöids depicted in Figure 1a and 1b. Figure 1a Figure 1b Figure 1. Nearly undeformed (1a) and significantly deformed (1b) oöids with spherulitic

### Lecture 8. Stress Strain in Multi-dimension

Lecture 8. Stress Strain in Multi-dimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]

### 20. Rheology & Linear Elasticity

I Main Topics A Rheology: Macroscopic deformation behavior B Linear elasticity for homogeneous isotropic materials 10/29/18 GG303 1 Viscous (fluid) Behavior http://manoa.hawaii.edu/graduate/content/slide-lava

### Exercise solutions: concepts from chapter 6

1) The definition of the traction vector (6.7) relies upon the approximation of rock as a continuum, so the ratio of resultant force to surface area approaches a definite value at every point. Use the

### Mechanical Properties of Materials

Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

### 3D Elasticity Theory

3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.

### Exercise: mechanics of dike formation at Ship Rock

Exercise: mechanics of dike formation at Ship Rock Reading: Fundamentals of Structural Geology, Ch. 8, p. 87 95, 319-33 Delaney & Pollard, 1981, Deformation of host rocks and flow of magma during growth

### GATE SOLUTIONS E N G I N E E R I N G

GATE SOLUTIONS C I V I L E N G I N E E R I N G From (1987-018) Office : F-16, (Lower Basement), Katwaria Sarai, New Delhi-110016 Phone : 011-65064 Mobile : 81309090, 9711853908 E-mail: info@iesmasterpublications.com,

### Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Lecture 6 Brittle Deformation Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton, unless noted otherwise Brittle deformation EarthStructure (2 nd

### 2. Mechanics of Materials: Strain. 3. Hookes's Law

Mechanics of Materials Course: WB3413, Dredging Processes 1 Fundamental Theory Required for Sand, Clay and Rock Cutting 1. Mechanics of Materials: Stress 1. Introduction 2. Plane Stress and Coordinate

### Chapter 2: Elasticity

OHP 1 Mechanical Properties of Materials Chapter 2: lasticity Prof. Wenjea J. Tseng ( 曾文甲 ) Department of Materials ngineering National Chung Hsing University wenjea@dragon.nchu.edu.tw Reference: W.F.

### SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by

SEMM Mechanics PhD Preliminary Exam Spring 2014 1. Consider a two-dimensional rigid motion, whose displacement field is given by u(x) = [cos(β)x 1 + sin(β)x 2 X 1 ]e 1 + [ sin(β)x 1 + cos(β)x 2 X 2 ]e

### Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Standard Solids and Fracture Fluids: Mechanical, Chemical Effects Effective Stress Dilatancy Hardening and Stability Mead, 1925

### Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force

### EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

### Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

### GG303 Lab 12 11/7/18 1

GG303 Lab 12 11/7/18 1 DEFORMATION AROUND A HOLE This lab has two main objectives. The first is to develop insight into the displacement, stress, and strain fields around a hole in a sheet under an approximately

### Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina

Module III - Macro-mechanics of Lamina Lecture 23 Macro-Mechanics of Lamina For better understanding of the macromechanics of lamina, the knowledge of the material properties in essential. Therefore, the

### Tensile stress strain curves for different materials. Shows in figure below

Tensile stress strain curves for different materials. Shows in figure below Furthermore, the modulus of elasticity of several materials effected by increasing temperature, as is shown in Figure Asst. Lecturer

### CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS

Chapter 9 CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS Figure 9.1: Hooke memorial window, St. Helen s, Bishopsgate, City of London 211 212 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS 9.1 Mechanical

### Distributed: Wednesday, March 17, 2004

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 019.00 MECHANICS AND MATERIALS II QUIZ I SOLUTIONS Distributed: Wednesday, March 17, 004 This quiz consists

### Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Overview Milestones in continuum mechanics Concepts of modulus and stiffness. Stress-strain relations Elasticity Surface and body

### Mohr's Circle and Earth Stress (The Elastic Earth)

Lect. 1 - Mohr s Circle and Earth Stress 6 Mohr's Circle and Earth Stress (The Elastic Earth) In the equations that we derived for Mohr s circle, we measured the angle, θ, as the angle between σ 1 and

### Homework Problems. ( σ 11 + σ 22 ) 2. cos (θ /2), ( σ θθ σ rr ) 2. ( σ 22 σ 11 ) 2

Engineering Sciences 47: Fracture Mechanics J. R. Rice, 1991 Homework Problems 1) Assuming that the stress field near a crack tip in a linear elastic solid is singular in the form σ ij = rλ Σ ij (θ), it

### CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES * Governing equations in beam and plate bending ** Solution by superposition 1.1 From Beam Bending to Plate Bending 1.2 Governing Equations For Symmetric

### ELASTICITY (MDM 10203)

LASTICITY (MDM 10203) Lecture Module 5: 3D Constitutive Relations Dr. Waluyo Adi Siswanto University Tun Hussein Onn Malaysia Generalised Hooke's Law In one dimensional system: = (basic Hooke's law) Considering

### Module-4. Mechanical Properties of Metals

Module-4 Mechanical Properties of Metals Contents ) Elastic deformation and Plastic deformation ) Interpretation of tensile stress-strain curves 3) Yielding under multi-axial stress, Yield criteria, Macroscopic

### 3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

### The Frictional Regime

The Frictional Regime Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 1/25/2016 10:08 AM We Discuss The Frictional Regime Processes of Brittle Deformation

### Continuum Mechanics. Continuum Mechanics and Constitutive Equations

Continuum Mechanics Continuum Mechanics and Constitutive Equations Continuum mechanics pertains to the description of mechanical behavior of materials under the assumption that the material is a uniform

### Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth

Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth References: Turcotte and Schubert, Geodynamics, Sections 2.1,-2.4, 2.7, 3.1-3.8, 6.1, 6.2, 6.8, 7.1-7.4. Jaeger and Cook, Fundamentals of

### STRAIN. Normal Strain: The elongation or contractions of a line segment per unit length is referred to as normal strain denoted by Greek symbol.

STRAIN In engineering the deformation of a body is specified using the concept of normal strain and shear strain whenever a force is applied to a body, it will tend to change the body s shape and size.

### NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

### [5] Stress and Strain

[5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

### Chapter 3. Load and Stress Analysis. Lecture Slides

Lecture Slides Chapter 3 Load and Stress Analysis 2015 by McGraw Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner.

### PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.

### PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

### MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

MECH 5312 Solid Mechanics II Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso Table of Contents Thermodynamics Derivation Hooke s Law: Anisotropic Elasticity

### UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST

### Advanced Structural Analysis EGF Cylinders Under Pressure

Advanced Structural Analysis EGF316 4. Cylinders Under Pressure 4.1 Introduction When a cylinder is subjected to pressure, three mutually perpendicular principal stresses will be set up within the walls

### Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

### Practice Final Examination. Please initial the statement below to show that you have read it

EN175: Advanced Mechanics of Solids Practice Final Examination School of Engineering Brown University NAME: General Instructions No collaboration of any kind is permitted on this examination. You may use

### Elements of Rock Mechanics

Elements of Rock Mechanics Stress and strain Creep Constitutive equation Hooke's law Empirical relations Effects of porosity and fluids Anelasticity and viscoelasticity Reading: Shearer, 3 Stress Consider

### CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a cross-sectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress

### Mechanics PhD Preliminary Spring 2017

Mechanics PhD Preliminary Spring 2017 1. (10 points) Consider a body Ω that is assembled by gluing together two separate bodies along a flat interface. The normal vector to the interface is given by n

### Unit I Stress and Strain

Unit I Stress and Strain Stress and strain at a point Tension, Compression, Shear Stress Hooke s Law Relationship among elastic constants Stress Strain Diagram for Mild Steel, TOR steel, Concrete Ultimate

### Chapter 3. Load and Stress Analysis

Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

### Advanced Structural Analysis EGF Section Properties and Bending

Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear

### UNIT-I Introduction & Plane Stress and Plane Strain Analysis

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Advanced Solid Mechanics (18CE1002) Year

### ME 7502 Lecture 2 Effective Properties of Particulate and Unidirectional Composites

ME 75 Lecture Effective Properties of Particulate and Unidirectional Composites Concepts from Elasticit Theor Statistical Homogeneit, Representative Volume Element, Composite Material Effective Stress-

### Bending Load & Calibration Module

Bending Load & Calibration Module Objectives After completing this module, students shall be able to: 1) Conduct laboratory work to validate beam bending stress equations. 2) Develop an understanding of

### Reference material Reference books: Y.C. Fung, "Foundations of Solid Mechanics", Prentice Hall R. Hill, "The mathematical theory of plasticity",

Reference material Reference books: Y.C. Fung, "Foundations of Solid Mechanics", Prentice Hall R. Hill, "The mathematical theory of plasticity", Oxford University Press, Oxford. J. Lubliner, "Plasticity

### Stress, Strain, Mohr s Circle

Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected

### Basic Concepts of Strain and Tilt. Evelyn Roeloffs, USGS June 2008

Basic Concepts of Strain and Tilt Evelyn Roeloffs, USGS June 2008 1 Coordinates Right-handed coordinate system, with positions along the three axes specified by x,y,z. x,y will usually be horizontal, and

### Module 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains

Introduction In this lecture we are going to introduce a new micromechanics model to determine the fibrous composite effective properties in terms of properties of its individual phases. In this model

### Macroscopic theory Rock as 'elastic continuum'

Elasticity and Seismic Waves Macroscopic theory Rock as 'elastic continuum' Elastic body is deformed in response to stress Two types of deformation: Change in volume and shape Equations of motion Wave

### Symmetric Bending of Beams

Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications

### PES Institute of Technology

PES Institute of Technology Bangalore south campus, Bangalore-5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject

### Lab Exercise #5: Tension and Bending with Strain Gages

Lab Exercise #5: Tension and Bending with Strain Gages Pre-lab assignment: Yes No Goals: 1. To evaluate tension and bending stress models and Hooke s Law. a. σ = Mc/I and σ = P/A 2. To determine material

### STANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius

MATERIAL PROPERTIES TENSILE MEASUREMENT F l l 0 A 0 F STANDARD SAMPLE Reduced section 2 " 1 4 0.505" Diameter 3 4 " Diameter 2" Gauge length 3 8 " Radius TYPICAL APPARATUS Load cell Extensometer Specimen

### ME 176 Final Exam, Fall 1995

ME 176 Final Exam, Fall 1995 Saturday, December 16, 12:30 3:30 PM, 1995. Answer all questions. Please write all answers in the space provided. If you need additional space, write on the back sides. Indicate

### Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

### 1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor.

Elasticity Homework Problems 2014 Section 1. The Strain Tensor. 1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor. 2. Given a steel bar compressed with a deformation

### MECHANICS OF MATERIALS

Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

### Exercise solutions: concepts from chapter 5

1) Stud the oöids depicted in Figure 1a and 1b. a) Assume that the thin sections of Figure 1 lie in a principal plane of the deformation. Measure and record the lengths and orientations of the principal

### ANALYSIS OF STRAINS CONCEPT OF STRAIN

ANALYSIS OF STRAINS CONCEPT OF STRAIN Concept of strain : if a bar is subjected to a direct load, and hence a stress the bar will change in length. If the bar has an original length L and changes by an

### Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)

Geology 229 Engineering Geology Lecture 5 Engineering Properties of Rocks (West, Ch. 6) Common mechanic properties: Density; Elastic properties: - elastic modulii Outline of this Lecture 1. Uniaxial rock

### NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

CAVITY INSPECTION NDT&E Methods: UT VJ Technologies NDT&E Methods: UT 6. NDT&E: Introduction to Methods 6.1. Ultrasonic Testing: Basics of Elasto-Dynamics 6.2. Principles of Measurement 6.3. The Pulse-Echo

### 202 Index. failure, 26 field equation, 122 force, 1

Index acceleration, 12, 161 admissible function, 155 admissible stress, 32 Airy's stress function, 122, 124 d'alembert's principle, 165, 167, 177 amplitude, 171 analogy, 76 anisotropic material, 20 aperiodic

### Variational principles in mechanics

CHAPTER Variational principles in mechanics.1 Linear Elasticity n D Figure.1: A domain and its boundary = D [. Consider a domain Ω R 3 with its boundary = D [ of normal n (see Figure.1). The problem of

### EFFECT OF ELLIPTIC OR CIRCULAR HOLES ON THE STRESS DISTRIBUTION IN PLATES

EFFECT OF ELLIPTIC OR CIRCULAR HOLES ON THE STRESS DISTRIBUTION IN PLATES OF WOOD OR PLYWOOD CONSIDERED AS ORTHOTROPIC MATERIALS Information Revied and Reaffirmed March 1956 No. 1510 EFFECT OF ELLIPTIC

### STRESS, STRAIN AND DEFORMATION OF SOLIDS

VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI 625009 DEPARTMENT OF CIVIL ENGINEERING CE8301 STRENGTH OF MATERIALS I -------------------------------------------------------------------------------------------------------------------------------

### Theory at a Glance (for IES, GATE, PSU)

1. Stress and Strain Theory at a Glance (for IES, GATE, PSU) 1.1 Stress () When a material is subjected to an external force, a resisting force is set up within the component. The internal resistance force

### MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY SUBJECT CODE: COMRMC MODERATOR: H YILMAZ EXAMINATION DATE: OCTOBER 2017 TIME:

MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY EXAMINER: WM BESTER SUBJECT CODE: COMRMC EXAMINATION DATE: OCTOBER 2017 TIME: MODERATOR: H YILMAZ TOTAL MARKS: [100] PASS MARK: (60%)

### The University of Melbourne Engineering Mechanics

The University of Melbourne 436-291 Engineering Mechanics Tutorial Four Poisson s Ratio and Axial Loading Part A (Introductory) 1. (Problem 9-22 from Hibbeler - Statics and Mechanics of Materials) A short

### A short review of continuum mechanics

A short review of continuum mechanics Professor Anette M. Karlsson, Department of Mechanical ngineering, UD September, 006 This is a short and arbitrary review of continuum mechanics. Most of this material

### CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR:

MECHANICS OF STRUCTURES- ASSIGNMENT NO 1 SEMESTER: V 1) Find the least moment of Inertia about the centroidal axes X-X and Y-Y of an unequal angle section 125 mm 75 mm 10 mm as shown in figure 2) Determine

### Basic Equations of Elasticity

A Basic Equations of Elasticity A.1 STRESS The state of stress at any point in a loaded bo is defined completely in terms of the nine components of stress: σ xx,σ yy,σ zz,σ xy,σ yx,σ yz,σ zy,σ zx,andσ

### Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004

Elements of Continuum Elasticity David M. Parks Mechanics and Materials II 2.002 February 25, 2004 Solid Mechanics in 3 Dimensions: stress/equilibrium, strain/displacement, and intro to linear elastic

### Sub. Code:

Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written by candidate may

### Chapter 7. Highlights:

Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

### Chapter Two: Mechanical Properties of materials

Chapter Two: Mechanical Properties of materials Time : 16 Hours An important consideration in the choice of a material is the way it behave when subjected to force. The mechanical properties of a material

### Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23

1 Lecture contents Stress and strain Deformation potential Few concepts from linear elasticity theory : Stress and Strain 6 independent components 2 Stress = force/area ( 3x3 symmetric tensor! ) ij ji

### PEAT SEISMOLOGY Lecture 2: Continuum mechanics

PEAT8002 - SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a

### Structural behaviour of traditional mortise-and-tenon timber joints

Structural behaviour of traditional mortise-and-tenon timber joints Artur O. Feio 1, Paulo B. Lourenço 2 and José S. Machado 3 1 CCR Construtora S.A., Portugal University Lusíada, Portugal 2 University

### Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige

Chapter 6: Mechanical Properties of Metals Dr. Feras Fraige Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility Toughness

### Exercise: concepts from chapter 7

Reading: Fundamentals of Structural Geology, Ch 7 1) In the following exercise we consider some of the physical quantities used in a study of particle dynamics (Figure 1) and review their relationships

### 3.22 Mechanical Properties of Materials Spring 2008

MIT OpenCourseWare http://ocw.mit.edu 3.22 Mechanical Properties of Materials Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Quiz #1 Example

### Exercise: concepts from chapter 10

Reading:, Ch 10 1) The flow of magma with a viscosity as great as 10 10 Pa s, let alone that of rock with a viscosity of 10 20 Pa s, is difficult to comprehend because our common eperience is with s like

### UNIT I SIMPLE STRESSES AND STRAINS

Subject with Code : SM-1(15A01303) Year & Sem: II-B.Tech & I-Sem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES

### QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

### Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected

### Homework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. Fall 2004

Homework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. 1. A beam is loaded as shown. The dimensions of the cross section appear in the insert. the figure. Draw a complete free body diagram showing an equivalent

### Constitutive Equations (Linear Elasticity)

Constitutive quations (Linear lasticity) quations that characterize the physical properties of the material of a system are called constitutive equations. It is possible to find the applied stresses knowing

### 9 MECHANICAL PROPERTIES OF SOLIDS

9 MECHANICAL PROPERTIES OF SOLIDS Deforming force Deforming force is the force which changes the shape or size of a body. Restoring force Restoring force is the internal force developed inside the body

### Lecture 15 Strain and stress in beams

Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME