Graphene: Quantum Transport via Evanescent Waves

Size: px
Start display at page:

Download "Graphene: Quantum Transport via Evanescent Waves"

Transcription

1 Graphene: Quantum Transport via Evanescent Waves Milan Holzäpfel 6 May 203 (slides from the talk with additional notes added in some places /7

2 Overview Quantum Transport: Landauer Formula Graphene: Introduction Eigenfunctions Transmission through a E = 0 'barrier' Conductivity Other Geometries Magnetic Field: Aharonov Bohm effect Summary and Literature 2/7

3 Landauer Formula ψ n,e : Eigenstate with energy E T: temperature, V: applied voltage, I: current I = e h de n T n (E[f L (E f R (E] Use T 0,V 0 : I = e ev T n (E F h I = GV G = e2 T n (E F h n multi-channel Landauer formula n T n (E = j out(ψ n,e j in (ψ n,e f L (E = f R (E ev Fano factor: n F = T n( T n n T n 3/7

4 2D: Conductance and Conductivity G: conductance, σ: conductivity 3D: G = σ A L A: cross section area, L: length 2D: G = σ W L W: width, L: length 2D: one complex variable z = x+iy instead of two real variables x, y ψ(z := ψ(rez,imz with wave function ψ(x,y 4/7

5 Graphene Castro Neto 2009, Rev Mod Phys 8 09, arxiv: B A δ3 δ δ2 a a 2 What is G(E = 0 Low energy limit, valley K only: H K ( r = v F 0 p x ip y p x +ip y 0 p = i n(e E ψ = ψ A ψ B v F 0 6 m s 5/7

6 Schrödinger p = i Dirac 2D H = v F p σ Hamiltonian: ( 0 px ip = v y H = p2 F p x +ip y 0 2m Eigenstates: ( ψ( r = exp(i k r ψ( r = exp(i k r sexp(iφ k E = 2 2 k Eigenvalues: 2m E = s v F k s {,} Probability current: (= valley K of graphene, used from here on j( r = Re(ψ p m ψ = 2mi (ψ ψ ψ ψ j( r = ψ v F σψ 6/7

7 Dirac 2D Zero Energy Modes H = v F p σ = i v F ( 0 x i y x +i y 0 r R 2 (infinite plane and E 0: ψ( r = ( sexp(iφ k E = s v F k exp(i k r s {,} E = 0 : H ( ψ ψ 2 = 0 ( x +i y ψ = 0 ( x i y ψ 2 = 0 Solutions: ψ (x,y = ψ (x+iy ψ 2 (x,y = ψ 2 (x iy c.c. analytic analytic 7/7

8 Transport: Piecewise Wave Function Wide graphene stripe L Potential C Periodic boundary conditions R Fermi energy ψ L = [( e e ik x x iφ +r ( ] e e e ik x x ik yy iφ ψ C = ( ψ C ψ C 2 analytic c.c. analytic ψ R = t ( e iφ e ik x x+ik y y ψ L (x = 0,y = ψ C (x = 0,y ψ C (x,y = c e ik yy+k y x ψ C 2 (x,y = c 2 e ik yy k y x k v F = E = V 0 Evanescent waves ψ L (x = 0 = ψ C (x = 0 ψ C (x = L x = ψ R (x = L x 4 equations for t, r, c, c 2 8/7

9 Transport: Transmission Probability For the conductance, we want the transmission probability T: T = j out j in T = t 2 Solving the linear system gives: T = cos 2 (φ cosh 2 (k y L x sin 2 (φ cosh 2 (k y L x V 0 = E = v F k k y L x k F L x Energy of the plane wave: Use: Assume: k F := k k F L x Use φ 0 and calculate T again: T = 4 ψ C (x = 0,y ψ C(x = L x,y + ψc 2 (x = 0,y ψ2 C(x = L x,y 2 9/7

10 Transport: Conductivity Periodic boundary conditions: ψ(y = 0 = ψ(y = L y k y = 2π L y n with n Z Total transmission: k y L x k F L x n 0 T = n= n 0 cosh 2 (k y L x Conductance: G = e2 h T = e2 Ly }{{} hπ L x n= σ this might be (conductivity cosh 2 (k y L x L y L x cosh 2 (x dx L y 2πL x } {{ } =2 F = 3 0/7

11 Transport: Conductivity Conductivity at the Dirac point: 2 spin and 2 valley states (neglected factor 4: Measurement: σ = e2 hπ σ = 4e2 hπ Novoselov et al. 2005, Nature 438 p. 97, arxiv:cond mat/ e 2 h Quantum transport through evanescent waves! Conductivity σ > 0 at Dirac point confirmed, order of magnitude agrees /7

12 The Missing Pi Theory: σ = 4e2 hπ Graphene on Silicon Oxide substrate σ = 20kΩ Graphene with Substrate Etched Away 2/7 4e 2 h Novoselov et al. 2005, Nature 438 p. 97, arxiv:cond mat/ Coupling to substrate Charge inhomogeneities Mayorov et al 202, Nano Letters 2 p. 4629, arxiv: E mev n 0 8 cm 2 = µm 2

13 Corbino Geometry ψ C = ( ψ C ψ C 2 analytic c.c. analytic ψ C (z analytic and w(z analytic ψ C (w(z analytic use w(z to map ( geometry: 2πz w(z = R exp L y with L x = ( L 2π ln R2 y R Wide graphene stripe L Potential Boundary conditions: [ ( ψ L = e e ik x x iφ +r ( ψ ] L (x = 0,y = ( +r +r e e ik x x iφ e ik yy ψ R = t ( e iφ e ik x x+ik y y φ 0 current ψ R (x = L x,y = ( t te ik yy C Periodic boundary conditions R Fermi energy e ik y y 3/7

14 Corbino Geometry: Conductance ( 2πz w(z = R exp L y with L x = ( L 2π ln R2 y R T n = cosh 2 (k y L x = cosh 2 (n ln(r 2 /R current k y = 2π L y n with n+ 2 Z R 2 R R : G 2e2 h F 3 ln(r 2 /R R R 2 : G 8e2 h R R 2 F G h 8e 2 ψ(y = 0 = ψ(y = L y Berry s phase 4/7

15 Magnetic field B = ( 00 B z (x,y see ch. 2.3 from Katsnelson, 202 B = 0 B z = 2 current φ(x,y ψ,2 C = exp( qφ ψ,2 C ( 2πz w(z = R exp flux Φ L y ( H(Bψ C = 0 R2 φ(r 2 φ(r = Φ ln H(B = 0 ψ C R = 0 Boundary Conditions: 0 R ψ L (x = 0,y = ( +r ik e y y ψ R (x = L x,y = ( t te ik yy ψ C (x,y = e qφ(r e ikyy e k yx T = 4 ψ C (x = 0,y ψ C(x = L x,y + ψc 2 2 (x = 0,y ψ2 C(x = L x,y φ 0 e q(φ(r φ(r 2 e k yl x +r B 0 5/7

16 Aharonov Bohm effect ( 2πz w(z = R exp L y φ(r 2 φ(r = Φ ln ( R2 R T = 4 ψ C (x = 0,y ψ C(x = L x,y + ψc 2 (x = 0,y ψ2 C(x = L x,y 2 B = 0 current B 0 flux Φ e q(φ(r φ(r 2 e k yl x Final result: G = e2 h [ f (R 2 /R cos F = ( eφ 3 +f 2(R 2 /R cos ( eφ ] R 2 /R = 5: Effects of 5% and 42% 6/7

17 Summary Minimal conducitivity at E = 0 is σ = 4e2 hπ Analytic functions (= conformal maps for σ(e = 0 in different geometries Aharonov-Bohm effect in a Magnetic field at E = 0 predicted Literature This talk: Katsnelson: Graphene (202, Cambridge University Press (ch. 2.3 and 3 Landauer formula: Cuevas, Scheer: Molecular Electronics (200, World Scientific Publishing (ch. 4 Datta: Electronic Transport in Mesoscopic Systems, (995, Cambridge University Press Berry's Phase: Böhm: The Geometric Phase in Quantum Systems (2003, Springer (esp. ch. 2 together with ch. 2.4 from Katsnelson, 202; ch. 2 7/7 see ch. 3. of Katsnelson, 202 for 'intrinsic disorder' related to zitterbewegung (no (external disorder or scattering at impurities

Spin Filtering: how to write and read quantum information on mobile qubits

Spin Filtering: how to write and read quantum information on mobile qubits Spin Filtering: how to write and read quantum information on mobile qubits Amnon Aharony Physics Department and Ilse Katz Nano institute Ora Entin-Wohlman (BGU), Guy Cohen (BGU) Yasuhiro Tokura (NTT) Shingo

More information

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab Nanoscience, MCC026 2nd quarter, fall 2012 Quantum Transport, Lecture 1/2 Tomas Löfwander Applied Quantum Physics Lab Quantum Transport Nanoscience: Quantum transport: control and making of useful things

More information

Nanoscience quantum transport

Nanoscience quantum transport Nanoscience quantum transport Janine Splettstößer Applied Quantum Physics, MC2, Chalmers University of Technology Chalmers, November 2 10 Plan/Outline 4 Lectures (1) Introduction to quantum transport (2)

More information

Quantum Physics 2: Homework #6

Quantum Physics 2: Homework #6 Quantum Physics : Homework #6 [Total 10 points] Due: 014.1.1(Mon) 1:30pm Exercises: 014.11.5(Tue)/11.6(Wed) 6:30 pm; 56-105 Questions for problems: 민홍기 hmin@snu.ac.kr Questions for grading: 모도영 modori518@snu.ac.kr

More information

Quantum transport in nanoscale solids

Quantum transport in nanoscale solids Quantum transport in nanoscale solids The Landauer approach Dietmar Weinmann Institut de Physique et Chimie des Matériaux de Strasbourg Strasbourg, ESC 2012 p. 1 Quantum effects in electron transport R.

More information

We do not derive F = ma; we conclude F = ma by induction from. a large series of observations. We use it as long as its predictions agree

We do not derive F = ma; we conclude F = ma by induction from. a large series of observations. We use it as long as its predictions agree THE SCHRÖDINGER EQUATION (A REVIEW) We do not derive F = ma; we conclude F = ma by induction from a large series of observations. We use it as long as its predictions agree with our experiments. As with

More information

Topological Insulator Surface States and Electrical Transport. Alexander Pearce Intro to Topological Insulators: Week 11 February 2, / 21

Topological Insulator Surface States and Electrical Transport. Alexander Pearce Intro to Topological Insulators: Week 11 February 2, / 21 Topological Insulator Surface States and Electrical Transport Alexander Pearce Intro to Topological Insulators: Week 11 February 2, 2017 1 / 21 This notes are predominately based on: J.K. Asbóth, L. Oroszlány

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

Quantum Size Effect of Two Couple Quantum Dots

Quantum Size Effect of Two Couple Quantum Dots EJTP 5, No. 19 2008) 33 42 Electronic Journal of Theoretical Physics Quantum Size Effect of Two Couple Quantum Dots Gihan H. Zaki 1), Adel H. Phillips 2) and Ayman S. Atallah 3) 1) Faculty of Science,

More information

Physics 741 Graduate Quantum Mechanics 1 Solutions to Midterm Exam, Fall x i x dx i x i x x i x dx

Physics 741 Graduate Quantum Mechanics 1 Solutions to Midterm Exam, Fall x i x dx i x i x x i x dx Physics 74 Graduate Quantum Mechanics Solutions to Midterm Exam, Fall 4. [ points] Consider the wave function x Nexp x ix (a) [6] What is the correct normaliation N? The normaliation condition is. exp,

More information

arxiv: v1 [cond-mat.mes-hall] 26 Jun 2009

arxiv: v1 [cond-mat.mes-hall] 26 Jun 2009 S-Matrix Formulation of Mesoscopic Systems and Evanescent Modes Sheelan Sengupta Chowdhury 1, P. Singha Deo 1, A. M. Jayannavar 2 and M. Manninen 3 arxiv:0906.4921v1 [cond-mat.mes-hall] 26 Jun 2009 1 Unit

More information

Plasmon Generation through Electron Tunneling in Graphene SUPPORTING INFORMATION

Plasmon Generation through Electron Tunneling in Graphene SUPPORTING INFORMATION Plasmon Generation through Electron Tunneling in Graphene SUPPORTING INFORMATION Sandra de Vega 1 and F. Javier García de Abajo 1, 2 1 ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science

More information

Giant magneto-conductance in twisted carbon nanotubes

Giant magneto-conductance in twisted carbon nanotubes EUROPHYSICS LETTERS 1 July 2002 Europhys. Lett., 59 (1), pp. 75 80 (2002) Giant magneto-conductance in twisted carbon nanotubes S. W. D. Bailey 1,D.Tománek 2, Y.-K. Kwon 2 ( )andc. J. Lambert 1 1 Department

More information

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0.

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0. Problem #1 A. A projectile of mass m is shot vertically in the gravitational field. Its initial velocity is v o. Assuming there is no air resistance, how high does m go? B. Now assume the projectile is

More information

2.4 Quantum confined electrons

2.4 Quantum confined electrons 2.4. Quantum confined electrons 5 2.4 Quantum confined electrons We will now focus our attention on the electron charge densities in case of one, two and three-dimensional confinement. All the relations

More information

arxiv: v1 [cond-mat.mes-hall] 26 Sep 2013

arxiv: v1 [cond-mat.mes-hall] 26 Sep 2013 Berry phase and the unconventional quantum Hall effect in graphene Jiamin Xue Microelectronic Research Center, The University arxiv:1309.6714v1 [cond-mat.mes-hall] 26 Sep 2013 of Texas at Austin, Austin,

More information

arxiv: v1 [cond-mat.mes-hall] 1 Nov 2011

arxiv: v1 [cond-mat.mes-hall] 1 Nov 2011 V The next nearest neighbor effect on the D materials properties Maher Ahmed Department of Physics and Astronomy, University of Western Ontario, London ON N6A K7, Canada and arxiv:.v [cond-mat.mes-hall]

More information

3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 Recitation 3 Notes

3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 Recitation 3 Notes 3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 Outline 1. Schr dinger: Eigenfunction Problems & Operator Properties 2. Piecewise Function/Continuity Review -Scattering from

More information

Topological insulator (TI)

Topological insulator (TI) Topological insulator (TI) Haldane model: QHE without Landau level Quantized spin Hall effect: 2D topological insulators: Kane-Mele model for graphene HgTe quantum well InAs/GaSb quantum well 3D topological

More information

Luttinger Liquid at the Edge of a Graphene Vacuum

Luttinger Liquid at the Edge of a Graphene Vacuum Luttinger Liquid at the Edge of a Graphene Vacuum H.A. Fertig, Indiana University Luis Brey, CSIC, Madrid I. Introduction: Graphene Edge States (Non-Interacting) II. III. Quantum Hall Ferromagnetism and

More information

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets!

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets! Qualifying Exam Aug. 2015 Part II Please use blank paper for your work do not write on problems sheets! Solve only one problem from each of the four sections Mechanics, Quantum Mechanics, Statistical Physics

More information

Graphene and Planar Dirac Equation

Graphene and Planar Dirac Equation Graphene and Planar Dirac Equation Marina de la Torre Mayado 2016 Marina de la Torre Mayado Graphene and Planar Dirac Equation June 2016 1 / 48 Outline 1 Introduction 2 The Dirac Model Tight-binding model

More information

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES D. RACOLTA, C. ANDRONACHE, D. TODORAN, R. TODORAN Technical University of Cluj Napoca, North University Center of

More information

Low Bias Transport in Graphene: An Introduction

Low Bias Transport in Graphene: An Introduction Lecture Notes on Low Bias Transport in Graphene: An Introduction Dionisis Berdebes, Tony Low, and Mark Lundstrom Network for Computational Nanotechnology Birck Nanotechnology Center Purdue University West

More information

Quantum Phenomena & Nanotechnology (4B5)

Quantum Phenomena & Nanotechnology (4B5) Quantum Phenomena & Nanotechnology (4B5) The 2-dimensional electron gas (2DEG), Resonant Tunneling diodes, Hot electron transistors Lecture 11 In this lecture, we are going to look at 2-dimensional electron

More information

QUANTUM INTERFERENCE IN SEMICONDUCTOR RINGS

QUANTUM INTERFERENCE IN SEMICONDUCTOR RINGS QUANTUM INTERFERENCE IN SEMICONDUCTOR RINGS PhD theses Orsolya Kálmán Supervisors: Dr. Mihály Benedict Dr. Péter Földi University of Szeged Faculty of Science and Informatics Doctoral School in Physics

More information

Lecture 6. Four postulates of quantum mechanics. The eigenvalue equation. Momentum and energy operators. Dirac delta function. Expectation values

Lecture 6. Four postulates of quantum mechanics. The eigenvalue equation. Momentum and energy operators. Dirac delta function. Expectation values Lecture 6 Four postulates of quantum mechanics The eigenvalue equation Momentum and energy operators Dirac delta function Expectation values Objectives Learn about eigenvalue equations and operators. Learn

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

(a) What is the origin of the weak localization effect?

(a) What is the origin of the weak localization effect? 1 Problem 1: Weak Localization a) Wat is te origin of te weak localization effect? Weak localization arises from constructive quantum interference in a disordered solid. Tis gives rise to a quantum mecanical

More information

Quantum transport through graphene nanostructures

Quantum transport through graphene nanostructures Quantum transport through graphene nanostructures S. Rotter, F. Libisch, L. Wirtz, C. Stampfer, F. Aigner, I. Březinová, and J. Burgdörfer Institute for Theoretical Physics/E136 December 9, 2009 Graphene

More information

Tight binding and emergence of "Dirac" equation in graphene.

Tight binding and emergence of Dirac equation in graphene. Tight binding and emergence of "Dirac" equation in graphene. A. A. Kozhevnikov 1 1 Laboratory of Theoretical Physics, S. L. Sobolev Institute for Mathematics, and Novosibirsk State University April 22,

More information

The Semiconductor in Equilibrium

The Semiconductor in Equilibrium Lecture 6 Semiconductor physics IV The Semiconductor in Equilibrium Equilibrium, or thermal equilibrium No external forces such as voltages, electric fields. Magnetic fields, or temperature gradients are

More information

Graphite, graphene and relativistic electrons

Graphite, graphene and relativistic electrons Graphite, graphene and relativistic electrons Introduction Physics of E. graphene Y. Andrei Experiments Rutgers University Transport electric field effect Quantum Hall Effect chiral fermions STM Dirac

More information

PHYS-454 The position and momentum representations

PHYS-454 The position and momentum representations PHYS-454 The position and momentum representations 1 Τhe continuous spectrum-a n So far we have seen problems where the involved operators have a discrete spectrum of eigenfunctions and eigenvalues.! n

More information

Adiabatic Approximation

Adiabatic Approximation Adiabatic Approximation The reaction of a system to a time-dependent perturbation depends in detail on the time scale of the perturbation. Consider, for example, an ideal pendulum, with no friction or

More information

Transport properties through double-magnetic-barrier structures in graphene

Transport properties through double-magnetic-barrier structures in graphene Chin. Phys. B Vol. 20, No. 7 (20) 077305 Transport properties through double-magnetic-barrier structures in graphene Wang Su-Xin( ) a)b), Li Zhi-Wen( ) a)b), Liu Jian-Jun( ) c), and Li Yu-Xian( ) c) a)

More information

Part II - Electronic Properties of Solids Lecture 12: The Electron Gas (Kittel Ch. 6) Physics 460 F 2006 Lect 12 1

Part II - Electronic Properties of Solids Lecture 12: The Electron Gas (Kittel Ch. 6) Physics 460 F 2006 Lect 12 1 Part II - Electronic Properties of Solids Lecture 12: The Electron Gas (Kittel Ch. 6) Physics 460 F 2006 Lect 12 1 Outline Overview - role of electrons in solids The starting point for understanding electrons

More information

Open quantum systems

Open quantum systems Open quantum systems Wikipedia: An open quantum system is a quantum system which is found to be in interaction with an external quantum system, the environment. The open quantum system can be viewed as

More information

Local currents in a two-dimensional topological insulator

Local currents in a two-dimensional topological insulator Local currents in a two-dimensional topological insulator Xiaoqian Dang, J. D. Burton and Evgeny Y. Tsymbal Department of Physics and Astronomy Nebraska Center for Materials and Nanoscience University

More information

Electronic properties of graphene. Jean-Noël Fuchs Laboratoire de Physique des Solides Université Paris-Sud (Orsay)

Electronic properties of graphene. Jean-Noël Fuchs Laboratoire de Physique des Solides Université Paris-Sud (Orsay) Electronic properties of graphene Jean-Noël Fuchs Laboratoire de Physique des Solides Université Paris-Sud (Orsay) Cargèse, September 2012 3 one-hour lectures in 2 x 1,5h on electronic properties of graphene

More information

ADIABATIC PHASES IN QUANTUM MECHANICS

ADIABATIC PHASES IN QUANTUM MECHANICS ADIABATIC PHASES IN QUANTUM MECHANICS Hauptseminar: Geometric phases Prof. Dr. Michael Keyl Ana Šerjanc, 05. June 2014 Conditions in adiabatic process are changing gradually and therefore the infinitely

More information

Electronic properties of Graphene and 2-D materials

Electronic properties of Graphene and 2-D materials Electronic properties of Graphene and 2-D materials 2D materials background Carbon allotropes Graphene Structure and Band structure Electronic properties Electrons in a magnetic field Onsager relation

More information

KAVLI v F. Curved graphene revisited. María A. H. Vozmediano. Instituto de Ciencia de Materiales de Madrid CSIC

KAVLI v F. Curved graphene revisited. María A. H. Vozmediano. Instituto de Ciencia de Materiales de Madrid CSIC KAVLI 2012 v F Curved graphene revisited María A. H. Vozmediano Instituto de Ciencia de Materiales de Madrid CSIC Collaborators ICMM(Graphene group) http://www.icmm.csic.es/gtg/ A. Cano E. V. Castro J.

More information

Problem 1: Step Potential (10 points)

Problem 1: Step Potential (10 points) Problem 1: Step Potential (10 points) 1 Consider the potential V (x). V (x) = { 0, x 0 V, x > 0 A particle of mass m and kinetic energy E approaches the step from x < 0. a) Write the solution to Schrodinger

More information

Scattering theory of thermoelectric transport. Markus Büttiker University of Geneva

Scattering theory of thermoelectric transport. Markus Büttiker University of Geneva Scattering theory of thermoelectric transport Markus Büttiker University of Geneva Summer School "Energy harvesting at micro and nanoscales, Workshop "Energy harvesting: models and applications, Erice,

More information

Math Questions for the 2011 PhD Qualifier Exam 1. Evaluate the following definite integral 3" 4 where! ( x) is the Dirac! - function. # " 4 [ ( )] dx x 2! cos x 2. Consider the differential equation dx

More information

Graphene A One-Atom-Thick Material for Microwave Devices

Graphene A One-Atom-Thick Material for Microwave Devices ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 11, Number 1, 2008, 29 35 Graphene A One-Atom-Thick Material for Microwave Devices D. DRAGOMAN 1, M. DRAGOMAN 2, A. A. MÜLLER3 1 University

More information

Topological Work and the Laws of Thermodynamics

Topological Work and the Laws of Thermodynamics Topological Work and the Laws of Thermodynamics Yiheng Xu, 1 Ferdinand Evers, 2 and Charles A. Stafford 1 1 Department of Physics, University of Ariona, 1118 East Fourth Street, Tucson, AZ 85721 2 Institut

More information

Precise electronic and valleytronic nanodevices based on strain engineering in graphene and carbon nanotubes

Precise electronic and valleytronic nanodevices based on strain engineering in graphene and carbon nanotubes Precise electronic and valleytronic nanodevices based on strain engineering in graphene and carbon nanotubes European Graphene Forum 2017, Paris Nikodem Szpak Fakultät für Physik Universität Duisburg-Essen

More information

Quantum Mechanics Exercises and solutions

Quantum Mechanics Exercises and solutions Quantum Mechanics Exercises and solutions P.J. Mulders Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam De Boelelaan 181, 181 HV Amsterdam, the Netherlands email:

More information

1D quantum rings and persistent currents

1D quantum rings and persistent currents Lehrstuhl für Theoretische Festkörperphysik Institut für Theoretische Physik IV Universität Erlangen-Nürnberg March 9, 2007 Motivation In the last decades there was a growing interest for such microscopic

More information

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer Franz Schwabl QUANTUM MECHANICS Translated by Ronald Kates Second Revised Edition With 122Figures, 16Tables, Numerous Worked Examples, and 126 Problems ff Springer Contents 1. Historical and Experimental

More information

The Aharonov-Bohm Effect

The Aharonov-Bohm Effect Michael Florian Wondrak The Aharonov-Bohm Effect 1 The Aharonov-Bohm Effect Michael Florian Wondrak wondrak@fias.uni-frankfurt.de Frankfurt Institute (FIAS) Institut für Theoretische Physik Goethe-Universität

More information

Berry s phase in Hall Effects and Topological Insulators

Berry s phase in Hall Effects and Topological Insulators Lecture 6 Berry s phase in Hall Effects and Topological Insulators Given the analogs between Berry s phase and vector potentials, it is not surprising that Berry s phase can be important in the Hall effect.

More information

Graphene: : CERN on the desk. Mikhail Katsnelson

Graphene: : CERN on the desk. Mikhail Katsnelson Graphene: : CERN on the desk Mikhail Katsnelson Instead of epigraph You can get much further with a kind word and a gun than you can with a kind word alone (Al Capone) You can get much further with an

More information

Graphene: massless electrons in flatland.

Graphene: massless electrons in flatland. Graphene: massless electrons in flatland. Enrico Rossi Work supported by: University of Chile. Oct. 24th 2008 Collaorators CMTC, University of Maryland Sankar Das Sarma Shaffique Adam Euyuong Hwang Roman

More information

Spin-orbit proximity effects in graphene on TMDCs. Jaroslav Fabian

Spin-orbit proximity effects in graphene on TMDCs. Jaroslav Fabian Hvar, 4.10.2017 Spin-orbit proximity effects in graphene on TMDCs Jaroslav Fabian Institute for Theoretical Physics University of Regensburg SFB1277 GRK TI SPP 1666 SFB689 GRK1570 SPP 1538 Arbeitsgruppe

More information

arxiv: v1 [cond-mat.mes-hall] 17 Dec 2018

arxiv: v1 [cond-mat.mes-hall] 17 Dec 2018 Comment on Effective of the q-deformed pseudoscalar magnetic field on the charge carriers in graphene arxiv:181.08138v1 [cond-mat.mes-hall] 17 Dec 018 Angel E. Obispo, 1, Gisele B. Freitas,, and Luis B.

More information

Self-consistent analysis of the IV characteristics of resonant tunnelling diodes

Self-consistent analysis of the IV characteristics of resonant tunnelling diodes Terahert Science and Technology, ISSN 1941-7411 Vol.5, No.4, December 01 Self-consistent analysis of the IV characteristics of resonant tunnelling diodes Jue Wang * and Edward Wasige School of Engineering,

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 19 Oct 2001

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 19 Oct 2001 Quantum Transport in Nonuniform Magnetic Fields: Aharonov-Bohm Ring as a Spin Switch arxiv:cond-mat/47v [cond-mat.mes-hall] 9 Oct Diego Frustaglia a, Martina Hentschel a, and Klaus Richter a,b a Max-Planck-Institut

More information

Landau levels and SdH oscillations in monolayer transition metal dichalcogenide semiconductors

Landau levels and SdH oscillations in monolayer transition metal dichalcogenide semiconductors Landau levels and SdH oscillations in monolayer transition metal dichalcogenide semiconductors MTA-BME CONDENSED MATTER RESEARCH GROUP, BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS Collaborators: Andor

More information

Physics of Semiconductors (Problems for report)

Physics of Semiconductors (Problems for report) Physics of Semiconductors (Problems for report) Shingo Katsumoto Institute for Solid State Physics, University of Tokyo July, 0 Choose two from the following eight problems and solve them. I. Fundamentals

More information

Basis 4 ] = Integration of s(t) has been performed numerically by an adaptive quadrature algorithm. Discretization in the ɛ space

Basis 4 ] = Integration of s(t) has been performed numerically by an adaptive quadrature algorithm. Discretization in the ɛ space 1 [NPHYS-007-06-00643] SUPPLEMENTARY MATERIAL for Spinons and triplons in spatially anisotropic frustrated antiferromagnets by Masanori Kohno, Oleg A. Starykh, and Leon Balents Basis The two-spinon states

More information

Graphene and Quantum Hall (2+1)D Physics

Graphene and Quantum Hall (2+1)D Physics The 4 th QMMRC-IPCMS Winter School 8 Feb 2011, ECC, Seoul, Korea Outline 2 Graphene and Quantum Hall (2+1)D Physics Lecture 1. Electronic structures of graphene and bilayer graphene Lecture 2. Electrons

More information

Final Examination. Tuesday December 15, :30 am 12:30 pm. particles that are in the same spin state 1 2, + 1 2

Final Examination. Tuesday December 15, :30 am 12:30 pm. particles that are in the same spin state 1 2, + 1 2 Department of Physics Quantum Mechanics I, Physics 57 Temple University Instructor: Z.-E. Meziani Final Examination Tuesday December 5, 5 :3 am :3 pm Problem. pts) Consider a system of three non interacting,

More information

Various Facets of Chalker- Coddington network model

Various Facets of Chalker- Coddington network model Various Facets of Chalker- Coddington network model V. Kagalovsky Sami Shamoon College of Engineering Beer-Sheva Israel Context Integer quantum Hall effect Semiclassical picture Chalker-Coddington Coddington

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Trilayer graphene is a semimetal with a gate-tuneable band overlap M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo and S. Tarucha

More information

Quantum transport through graphene nanostructures

Quantum transport through graphene nanostructures Quantum transport through graphene nanostructures F. Libisch, S. Rotter, and J. Burgdörfer Institute for Theoretical Physics/E136, January 14, 2011 Graphene [1, 2], the rst true two-dimensional (2D) solid,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Dirac cones reshaped by interaction effects in suspended graphene D. C. Elias et al #1. Experimental devices Graphene monolayers were obtained by micromechanical cleavage of graphite on top of an oxidized

More information

LECTURES ON QUANTUM MECHANICS

LECTURES ON QUANTUM MECHANICS LECTURES ON QUANTUM MECHANICS GORDON BAYM Unitsersity of Illinois A II I' Advanced Bock Progrant A Member of the Perseus Books Group CONTENTS Preface v Chapter 1 Photon Polarization 1 Transformation of

More information

Operating Principles of Vertical Transistors Based on Monolayer Two-Dimensional Semiconductor Heterojunctions

Operating Principles of Vertical Transistors Based on Monolayer Two-Dimensional Semiconductor Heterojunctions Operating Principles of Vertical Transistors Based on Monolayer Two-Dimensional Semiconductor Heterojunctions Kai Tak Lam, Gyungseon Seol and Jing Guo Department of Electrical and Computer Engineering,

More information

What is Quantum Transport?

What is Quantum Transport? What is Quantum Transport? Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. http://www.physics.udel.edu/~bnikolic Semiclassical Transport (is boring!) Bloch-Boltzmann

More information

Berry Phase Effects on Electronic Properties

Berry Phase Effects on Electronic Properties Berry Phase Effects on Electronic Properties Qian Niu University of Texas at Austin Collaborators: D. Xiao, W. Yao, C.P. Chuu, D. Culcer, J.R.Shi, Y.G. Yao, G. Sundaram, M.C. Chang, T. Jungwirth, A.H.MacDonald,

More information

STM spectra of graphene

STM spectra of graphene STM spectra of graphene K. Sengupta Theoretical Physics Division, IACS, Kolkata. Collaborators G. Baskaran, I.M.Sc Chennai, K. Saha, IACS Kolkata I. Paul, Grenoble France H. Manoharan, Stanford USA Refs:

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 6 Aug 2002

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 6 Aug 2002 Floquet scattering in parametric electron pumps Sang Wook Kim Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str 38, D-1187 Dresden, Germany (June 2, 217) arxiv:cond-mat/2899v1 [cond-matmes-hall]

More information

Quantum Theory. Thornton and Rex, Ch. 6

Quantum Theory. Thornton and Rex, Ch. 6 Quantum Theory Thornton and Rex, Ch. 6 Matter can behave like waves. 1) What is the wave equation? 2) How do we interpret the wave function y(x,t)? Light Waves Plane wave: y(x,t) = A cos(kx-wt) wave (w,k)

More information

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 14 Aug 2006

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 14 Aug 2006 Chiral tunneling and the Klein paradox in graphene arxiv:cond-mat/0604323v2 [cond-mat.mes-hall] 14 Aug 2006 M. I. Katsnelson, 1 K. S. Novoselov, 2 and A. K. Geim 2 1 Institute for Molecules and Materials,

More information

Collection of formulae Quantum mechanics. Basic Formulas Division of Material Science Hans Weber. Operators

Collection of formulae Quantum mechanics. Basic Formulas Division of Material Science Hans Weber. Operators Basic Formulas 17-1-1 Division of Material Science Hans Weer The de Broglie wave length λ = h p The Schrödinger equation Hψr,t = i h t ψr,t Stationary states Hψr,t = Eψr,t Collection of formulae Quantum

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Wednesday, January 12, 2011 1:00PM to 3:00PM Modern Physics Section 3. Quantum Mechanics Two hours are permitted for the completion of this

More information

Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method

Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method Journal of Optoelectronical anostructures Islamic Azad University Summer 016 / Vol. 1, o. Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method Marjan

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

Physics 215 Quantum Mechanics I Assignment 8

Physics 215 Quantum Mechanics I Assignment 8 Physics 15 Quantum Mechanics I Assignment 8 Logan A. Morrison March, 016 Problem 1 Let J be an angular momentum operator. Part (a) Using the usual angular momentum commutation relations, prove that J =

More information

Current flow paths in deformed graphene and carbon nanotubes

Current flow paths in deformed graphene and carbon nanotubes Current flow paths in deformed graphene and carbon nanotubes Cuernavaca, September 2017 Nikodem Szpak Erik Kleinherbers Ralf Schützhold Fakultät für Physik Universität Duisburg-Essen Thomas Stegmann Instituto

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

Andreev Reflection. Fabrizio Dolcini Scuola Normale Superiore di Pisa, NEST (Italy) Dipartimento di Fisica del Politecnico di Torino (Italy)

Andreev Reflection. Fabrizio Dolcini Scuola Normale Superiore di Pisa, NEST (Italy) Dipartimento di Fisica del Politecnico di Torino (Italy) Andreev Reflection Fabrizio Dolcini Scuola Normale Superiore di Pisa, NEST (Italy) Dipartimento di Fisica del Politecnico di Torino (Italy) Lecture Notes for XXIII Physics GradDays, Heidelberg, 5-9 October

More information

Angular Momentum - set 1

Angular Momentum - set 1 Angular Momentum - set PH0 - QM II August 6, 07 First of all, let us practise evaluating commutators. Consider these as warm up problems. Problem : Show the following commutation relations ˆx, ˆL x ] =

More information

Resonating Valence Bond point of view in Graphene

Resonating Valence Bond point of view in Graphene Resonating Valence Bond point of view in Graphene S. A. Jafari Isfahan Univ. of Technology, Isfahan 8456, Iran Nov. 29, Kolkata S. A. Jafari, Isfahan Univ of Tech. RVB view point in graphene /2 OUTLINE

More information

& Dirac Fermion confinement Zahra Khatibi

& Dirac Fermion confinement Zahra Khatibi Graphene & Dirac Fermion confinement Zahra Khatibi 1 Outline: What is so special about Graphene? applications What is Graphene? Structure Transport properties Dirac fermions confinement Necessity External

More information

QMI PRELIM Problem 1. All problems have the same point value. If a problem is divided in parts, each part has equal value. Show all your work.

QMI PRELIM Problem 1. All problems have the same point value. If a problem is divided in parts, each part has equal value. Show all your work. QMI PRELIM 013 All problems have the same point value. If a problem is divided in parts, each part has equal value. Show all your work. Problem 1 L = r p, p = i h ( ) (a) Show that L z = i h y x ; (cyclic

More information

Impact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study

Impact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study JNS 2 (2013) 477-483 Impact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study Z. Ahangari *a, M. Fathipour b a Department of Electrical

More information

IS THERE ANY KLEIN PARADOX? LOOK AT GRAPHENE! D. Dragoman Univ. Bucharest, Physics Dept., P.O. Box MG-11, Bucharest,

IS THERE ANY KLEIN PARADOX? LOOK AT GRAPHENE! D. Dragoman Univ. Bucharest, Physics Dept., P.O. Box MG-11, Bucharest, 1 IS THERE ANY KLEIN PARADOX? LOOK AT GRAPHENE! D. Dragoman Univ. Bucharest, Physics Dept., P.O. Box MG-11, 077125 Bucharest, Romania, e-mail: danieladragoman@yahoo.com Abstract It is demonstrated that

More information

Spin-resolved Hall effect driven by spin-orbit coupling. Physical Review B - Condensed Matter And Materials Physics, 2005, v. 71 n.

Spin-resolved Hall effect driven by spin-orbit coupling. Physical Review B - Condensed Matter And Materials Physics, 2005, v. 71 n. Title Spin-resolved Hall effect driven by spin-orbit coupling Author(s) Li, J; Hu, L; Shen, SQ Citation Physical Review B - Condensed Matter And Materials Physics, 2005, v. 71 n. 24 Issued Date 2005 URL

More information

Semiclassical formulation

Semiclassical formulation The story so far: Transport coefficients relate current densities and electric fields (currents and voltages). Can define differential transport coefficients + mobility. Drude picture: treat electrons

More information

Topology and Fractionalization in 2D Electron Systems

Topology and Fractionalization in 2D Electron Systems Lectures on Mesoscopic Physics and Quantum Transport, June 1, 018 Topology and Fractionalization in D Electron Systems Xin Wan Zhejiang University xinwan@zju.edu.cn Outline Two-dimensional Electron Systems

More information

Electron Transport in Graphene-Based Double-Barrier Structure under a Time Periodic Field

Electron Transport in Graphene-Based Double-Barrier Structure under a Time Periodic Field Commun. Theor. Phys. 56 (2011) 163 167 Vol. 56, No. 1, July 15, 2011 Electron Transport in Graphene-Based Double-Barrier Structure under a Time Periodic Field LU Wei-Tao ( å ) 1, and WANG Shun-Jin ( )

More information

But what happens when free (i.e. unbound) charged particles experience a magnetic field which influences orbital motion? e.g. electrons in a metal.

But what happens when free (i.e. unbound) charged particles experience a magnetic field which influences orbital motion? e.g. electrons in a metal. Lecture 5: continued But what happens when free (i.e. unbound charged particles experience a magnetic field which influences orbital motion? e.g. electrons in a metal. Ĥ = 1 2m (ˆp qa(x, t2 + qϕ(x, t,

More information

Suspended graphene: a bridge to the Dirac point.

Suspended graphene: a bridge to the Dirac point. Suspended graphene: a bridge to the Dirac point. Xu Du, Ivan Skachko, Anthony Barker, Eva Y. Andrei Department of Physics & Astronomy, Rutgers the State University of New Jersey The recent discovery of

More information

Neutron interferometry. Hofer Joachim

Neutron interferometry. Hofer Joachim 20.01.2011 Contents 1 Introduction 2 1.1 Foundations of neutron optics...................................... 2 1.2 Fundamental techniques......................................... 2 1.2.1 Superposition

More information

A New Class of Adiabatic Cyclic States and Geometric Phases for Non-Hermitian Hamiltonians

A New Class of Adiabatic Cyclic States and Geometric Phases for Non-Hermitian Hamiltonians A New Class of Adiabatic Cyclic States and Geometric Phases for Non-Hermitian Hamiltonians Ali Mostafazadeh Department of Mathematics, Koç University, Istinye 886, Istanbul, TURKEY Abstract For a T -periodic

More information

Quantum physics in quantum dots

Quantum physics in quantum dots Quantum physics in quantum dots Klaus Ensslin Solid State Physics Zürich AFM nanolithography Multi-terminal tunneling Rings and dots Time-resolved charge detection Moore s Law Transistors per chip 10 9

More information