Bayesian Reconstruction of the WIMP Velocity Distribution with a Non-Negligible Threshold Energy

Size: px
Start display at page:

Download "Bayesian Reconstruction of the WIMP Velocity Distribution with a Non-Negligible Threshold Energy"

Transcription

1 Bayesian Reconstruction of the WIMP Velocity Distribution with a Non-Negligible Threshold Energy Chung-Lin Shan Xinjiang Astronomical Observatory Chinese Academy of Sciences National Center for Theoretical Sciences, National Taiwan University June 8, 2015 Based on arxiv: and JCAP

2 Outline Motivation With a non-negligible threshold energy Summary C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 1

3 Motivation Motivation Differential event rate for elastic WIMP-nucleus scattering dr vmax [ ] f1(v) dq = AF 2 (Q) dv v min (Q) v Here v min (Q) = α Astrophysics Q is the minimal incoming velocity of incident WIMPs that can deposit the recoil energy Q in the detector, A ρ0σ0 mn α m 2m χmr,n 2 2mr,N 2 r,n = mχm N 2 m χ + m N Particle physics ρ 0 : WIMP density near the Earth σ 0 : total cross section ignoring the form factor suppression F (Q): elastic nuclear form factor f 1 (v): one-dimensional velocity distribution of halo WIMPs C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 2

4 Motivation Motivation Differential event rate for elastic WIMP-nucleus scattering dr vmax [ ] f1(v) dq = AF 2 (Q) dv v min (Q) v Here v min (Q) = α Q is the minimal incoming velocity of incident WIMPs that can deposit the recoil energy Q in the detector, ρ0σ0 A 2m χmr,n 2 α mn 2m 2 r,n m r,n = mχm N m χ + m N ρ 0 : WIMP density near the Earth σ 0 : total cross section ignoring the form factor suppression F (Q): elastic nuclear form factor f 1 (v): one-dimensional velocity distribution of halo WIMPs C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 3

5 Motivation Reconstruction of the WIMP velocity distribution Normalized one-dimensional WIMP velocity distribution function { [ ( )]} d 1 dr f 1 (v) = N 2Q dq F 2 (Q) dq N = 2 { [ 1 1 α 0 Q F 2 (Q) ( )] } dr 1 dq dq Q=v 2 /α 2 Moments of the velocity distribution function ( α v n n+1 = N (Q thre ) 2 N (Q thre ) = 2 α [ 2Q 1/2 thre F 2 (Q thre ) [ I n(q thre ) = Q (n 1)/2 Q thre ) [ 2Q (n+1)/2 thre F 2 (Q thre ) ( ) dr dq ( ) dr + I 0 (Q thre ) dq Q=Q thre 1 F 2 (Q) ( )] dr dq dq + (n + 1)I n(q thre ) Q=Q thre ] 1 [M. Drees and CLS, JCAP 0706, 011 (2007)] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 4 ]

6 Motivation Reconstruction of the WIMP velocity distribution Ansatz: the measured recoil spectrum in the nth Q-bin ( ) dr r n e kn(q Qs,n) r n Nn dq expt, Q Q n b n Logarithmic slope and shifted point in the nth Q-bin Q Q n n 1 N n ( ) bn (Q n,i Q n) = coth N n 2 i=1 Q s,n = Q n + 1 [ ] sinh(knbn/2) ln k n k nb n/2 ( knb n 2 ) 1 k n Reconstructing the one-dimensional WIMP velocity distribution [ ] [ 2Qs,nrn d ] f 1 (v s,n) = N F 2 (Q s,n) dq ln F 2 (Q) k n Q=Qs,n [ ] N = v s,n = α Q s,n α Qa F 2 (Q a) a [M. Drees and CLS, JCAP 0706, 011 (2007)] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 5

7 Motivation Reconstruction of the WIMP velocity distribution Reconstructed f 1,rec (v s,n ) ( 76 Ge, 500 events, 5 bins, up to 3 bins per window) [M. Drees and CLS, JCAP 0706, 011 (2007)] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 6

8 With a non-negligible threshold energy Problem! Reconstructed f 1,rec (v s,n ) with a non-negligible threshold energy ( 76 Ge, 2-50 kev, 500 events, m χ = 25 GeV) [CLS, arxiv: ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 7

9 With a non-negligible threshold energy Modification of the estimator for the normalization constant N Consider the non-zero minimal cut-off velocity where N 2 α [ 2Q 1/2 min F 2 (Q min ) ( ) ] 1 dr + I 0 (Q min, Qmax dq ) expt, Q=Q min ( ) dr = r 1 e k 1(Q min Q s,1) r(q min ) dq expt, Q=Q min I n(q min, Q max ) = Q max Q min [ Q (n 1)/2 1 F 2 (Q) ( Qmax min Q max, Q max,kin = v max 2 ) α 2 ( )] dr dq dq [CLS, arxiv: ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 8

10 With a non-negligible threshold energy Modification of the estimator for the normalization constant N Reconstructed f 1,rec (v s,n ) with the input WIMP mass ( 76 Ge, 2-50 kev, 500 events, m χ = 25 GeV) [CLS, arxiv: ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 9

11 With a non-negligible threshold energy Modification of the estimator for the normalization constant N Height of the velocity distribution at the non-zero minimal cut-off velocity [ ] [ ] f 1,rec (vmin ) = N 2Q min r(q min ) d F 2 (Q min ) dq ln F 2 (Q) k 1 N f 1,rec (vmin ) Q=Qmin Consider the contribution below the non-zero minimal cut-off velocity N = 2 α [ f 1,rec (vmin ) Q1/2 min + 2Q1/2 min F 2 (Q min ) ( ) ] 1 dr + I 0 (Q min, Qmax dq ) expt, Q=Q min [CLS, arxiv: ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 10

12 With a non-negligible threshold energy Modification of the estimator for the normalization constant N Reconstructed f 1,rec (v s,n ) with the input WIMP mass ( 76 Ge, 2-50 kev, 500 events, m χ = 25 GeV) [CLS, arxiv: ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 11

13 With a non-negligible threshold energy Modification of the estimator for the normalization constant N Reconstructed f 1,rec (v s,n ) with the input WIMP mass ( 76 Ge, 5-50 kev, 500 events, m χ = 25 GeV) [CLS, arxiv: ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 12

14 With a non-negligible threshold energy Modification of the estimator for the normalization constant N Reconstructed f 1,rec (v s,n ) with the input WIMP mass ( 76 Ge, 5-50 kev, 500 events, m χ = 25 GeV) [CLS, arxiv: ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 13

15 With a non-negligible threshold energy Modification of the estimator for the normalization constant N Reconstructed f 1,rec (v s,n ) with the input WIMP mass ( 28 Si, 5-50 kev, 500 events, m χ = 25 GeV) [CLS, arxiv: ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 14

16 With a non-negligible threshold energy Modification of the estimator for the normalization constant N Reconstructed f 1,rec (v s,n ) with the input WIMP mass ( 28 Si, 5-50 kev, 500 events, m χ = 25 GeV) [CLS, arxiv: ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 15

17 With a non-negligible threshold energy Theoretical bias estimate [ v min 0 ] v min f 0 1 (v) dv / v max f 0 1 (v) dv [CLS, arxiv: ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 16

18 Bayesian reconstruction of the WIMP velocity distribution C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 17

19 Formalism Formalism Bayesian analysis p(θ data) = p(data Θ) p(θ) p(data) Θ: { a 1, a 2,, a NBayesian }, a specified (combination of the) value(s) of the fitting parameter(s) p(θ): prior probability, our degree of belief about Θ being the true value(s) of fitting parameter(s), often given in form of the (multiplication of the) probability distribution(s) of the fitting parameter(s) p(data): evidence, the total probability of obtaining the particular set of data p(data Θ): the probability of the observed result, once the specified (combination of the) value(s) of the fitting parameter(s) happens, usually be described by the likelihood function of Θ, L(Θ). p(θ data): posterior probability density function for Θ, the probability of that the specified (combination of the) value(s) of the fitting parameter(s) happens, given the observed result C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 18

20 Formalism Formalism Probability distribution functions for p(θ) Without prior knowledge about the fitting parameter Flat-distributed p i (a i ) = 1 for a i,min a i a i,max With prior knowledge about the fitting parameter Around a theoretical predicted/estimated or experimental measured value µ a,i With (statistical) uncertainties σ a,i Gaussian-distributed p i (a i ; µ a,i, σ a,i ) = 1 2π σa,i e (a i µ a,i ) 2 /2σ 2 a,i [CLS, JCAP ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 19

21 Formalism Formalism Likelihood function for p(data Θ) with Theoretical one-dimensional WIMP velocity distribution function: f 1,th (v; a 1, a 2,, a NBayesian ) Assuming that the reconstructed data points are Gaussian-distributed around the theoretical predictions ) L (f 1,rec(v s,µ), µ = 1, 2,, W ; a i, i = 1, 2,, N Bayesian W ) Gau (v s,µ, f 1,rec(v s,µ), σ f1,s,µ; a 1, a 2,, a NBayesian µ=1 ) Gau (v s,µ, f 1,rec(v s,µ), σ f1,s,µ; a 1, a 2,, a NBayesian [ ] 1 2 / e f 1,rec (v s,µ) f 1,th (v s,µ;a 1,a 2,,a NBayesian ) 2σf 2 1,s,µ 2π σf1,s,µ [CLS, JCAP ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 20

22 Input and fitting one-dimensional WIMP velocity distribution functions One-parameter shifted Maxwellian velocity distribution f 1,sh,v0 (v) = 1 ( ) v [ ] e (v ve)2 /v0 2 e (v+ve)2 /v0 2 v e = 1.05 v 0 π v 0 v e Shifted Maxwellian velocity distribution f 1,sh (v) = 1 ( ) v [ ] e (v ve)2 /v0 2 e (v+ve)2 /v0 2 π v 0 v e Variated shifted Maxwellian velocity distribution f 1,sh, v (v) = 1 [ ] { } v e [v (v 0+ v)] 2 /v0 2 e [v+(v 0+ v)] 2 /v0 2 π v 0 (v 0 + v) Simple Maxwellian velocity distribution f 1,Gau (v) = 4 ( v 2 ) π v0 3 e v 2 /v0 2 Modified simple Maxwellian velocity distribution f 1,Gau,k (v) = v 2 ( ) e v 2 /kv0 2 e v max 2 /kv 2 k 0 for v v max N f,k C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 21

23 Reconstructed f 1,Bayesian (v) with the input WIMP mass ( 76 Ge, kev, 500 events, m χ = 100 GeV, f 1,sh,v0 (v) f 1,sh,v0 (v), flat-dist.) [CLS, JCAP ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 22

24 Distribution of the reconstructed v 0 ( 76 Ge, kev, 500 events, m χ = 100 GeV, f 1,sh,v0 (v) f 1,sh,v0 (v), flat-dist.) [CLS, JCAP ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 23

25 Reconstructed f 1,Bayesian (v) with the input WIMP mass ( 76 Ge, kev, 500 events, m χ = 100 GeV, f 1,sh,v0 (v) f 1,sh,v0 (v), Gaussian-dist.) [CLS, JCAP ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 24

26 Distribution of the reconstructed v 0 ( 76 Ge, kev, 500 events, m χ = 100 GeV, f 1,sh,v0 (v) f 1,sh,v0 (v), Gaussian-dist.) [CLS, JCAP ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 25

27 Reconstructed f 1,Bayesian (v) with the input WIMP mass ( 76 Ge, kev, 500 events, m χ = 100 GeV, f 1,sh,v0 (v) f 1,sh (v), Gaussian-dist.) [CLS, JCAP ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 26

28 Distribution of the reconstructed v 0 v e ( 76 Ge, kev, 500 events, m χ = 100 GeV, f 1,sh,v0 (v) f 1,sh (v), Gaussian-dist.) [CLS, JCAP ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 27

29 Distribution of the reconstructed v 0 ( 76 Ge, kev, 500 events, m χ = 100 GeV, f 1,sh,v0 (v) f 1,sh (v), Gaussian-dist.) [CLS, JCAP ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 28

30 Distribution of the reconstructed v e ( 76 Ge, kev, 500 events, m χ = 100 GeV, f 1,sh,v0 (v) f 1,sh (v), Gaussian-dist.) [CLS, JCAP ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 29

31 Reconstructed f 1,Bayesian (v) with the input WIMP mass ( 76 Ge, kev, 500 events, m χ = 100 GeV, f 1,sh,v0 (v) f 1,sh, v (v), Gaussian-dist.) [CLS, JCAP ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 30

32 Distribution of the reconstructed v 0 v ( 76 Ge, kev, 500 events, m χ = 100 GeV, f 1,sh,v0 (v) f 1,sh, v (v), Gaussian-dist.) [CLS, JCAP ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 31

33 Distribution of the reconstructed v 0 ( 76 Ge, kev, 500 events, m χ = 100 GeV, f 1,sh,v0 (v) f 1,sh, v (v), Gaussian-dist.) [CLS, JCAP ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 32

34 Distribution of the reconstructed v ( 76 Ge, kev, 500 events, m χ = 100 GeV, f 1,sh,v0 (v) f 1,sh, v (v), Gaussian-dist.) [CLS, JCAP ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 33

35 function Reconstructed f 1,Bayesian (v) with the input WIMP mass ( 76 Ge, 2-50 kev, 500 events, m χ = 25 GeV, f 1,sh,v0 (v) f 1,sh,v0 (v), flat-dist.) [CLS, arxiv: ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 34

36 function Reconstructed f 1,Bayesian (v) with the input WIMP mass ( 76 Ge, 5-50 kev, 500 events, m χ = 25 GeV, f 1,sh,v0 (v) f 1,sh,v0 (v), flat-dist.) [CLS, arxiv: ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 35

37 function Reconstructed f 1,Bayesian (v) with the input WIMP mass ( 28 Si, 2-50 kev, 500 events, m χ = 25 GeV, f 1,sh,v0 (v) f 1,sh,v0 (v), flat-dist.) [CLS, arxiv: ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 36

38 function Reconstructed f 1,Bayesian (v) with the input WIMP mass ( 28 Si, 5-50 kev, 500 events, m χ = 25 GeV, f 1,sh,v0 (v) f 1,sh,v0 (v), flat-dist.) [CLS, arxiv: ] C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 37

39 Summary Summary C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 38

40 Summary Summary We derived the expression for estimating v max v min =α Q min f 1 (v) dv. We suggested the simple model-independent triangular estimator v min 0 = f 1,rec (vmin ) v min /2 for approximating to v min f 0 1 (v) dv. By adopting the most commonly used shifted Maxiwellian velocity distribution (or another well motivated one), one can estimate the difference: v min 0 v min f 0 1 (v) dv. For vmin O(200) km/s, we could provide precise reconstructed velocity distribution points to match the true WIMP velocity distribution with a < 10% bias. Thank you very much for your attention! C.-L. Shan (XAO-CAS) NCTS, NTU, June 8, 2015 p. 39

Extracting Astrophysical Information about Galactic Dark Matter with and without Astrophysical Prior Knowledge

Extracting Astrophysical Information about Galactic Dark Matter with and without Astrophysical Prior Knowledge Extracting Astrophysical Information about Galactic Dark Matter with and without Astrophysical Prior Knowledge Chung-Lin Shan Xinjiang Astronomical Observatory Chinese Academy of Sciences FCPPL 2016 Workshop,

More information

Determining WIMP Properties with the AMIDAS Package

Determining WIMP Properties with the AMIDAS Package Determining WIMP Properties with the AMIDAS Package Chung-Lin Shan Xinjiang Astronomical Observatory Chinese Academy of Sciences Center for Future High Energy Physics, Chinese Academy of Sciences August

More information

Bayesian Reconstruction of the WIMP Velocity Distribution Function from Direct Dark Matter Detection Data

Bayesian Reconstruction of the WIMP Velocity Distribution Function from Direct Dark Matter Detection Data Bayesian Reconstruction of the WIMP Velocity Distribution Function from Direct Dark Matter Detection Data Chung-Lin Shan National Center for Theoretical Sciences National Tsing Hua University April 18,

More information

Progress of the AMIDAS Package for Reconstructing WIMP Properties

Progress of the AMIDAS Package for Reconstructing WIMP Properties Progress of the AMIDAS Package for Reconstructing WIMP Properties Chung-Lin Shan Xinjiang Astronomical Observatory Chinese Academy of Sciences 4th International Workshop on Dark Matter, Dark Energy, and

More information

Distinguishing Dark Matter Candidates from Direct Detection Experiments

Distinguishing Dark Matter Candidates from Direct Detection Experiments Distinguishing Dark Matter Candidates from Direct Detection Experiments Chung-Lin Shan Department of Physics, National Cheng Kung University International Workshop on DM, DE and Matter-Antimatter Asymmetry

More information

arxiv: v2 [astro-ph.he] 7 Aug 2015

arxiv: v2 [astro-ph.he] 7 Aug 2015 Reconstructing the WIMP Velocity Distribution from Direct Dark Matter Detection Data with a Non Negligible Threshold Energy March 215 arxiv:153.493v2 [astro-ph.he] 7 Aug 215 Chung-Lin Shan Xinjiang Astronomical

More information

Introduction to Direct Dark Matter Detection Experiments

Introduction to Direct Dark Matter Detection Experiments Introduction to Direct Dark Matter Detection Experiments Chung-Lin Shan Xinjiang Astronomical Observatory Chinese Academy of Sciences School of Physics and Engineering, Sun Yat-Sen University September

More information

WIMP Velocity Distribution and Mass from Direct Detection Experiments

WIMP Velocity Distribution and Mass from Direct Detection Experiments WIMP Velocity Distribution and Mass from Direct Detection Experiments Manuel Drees Bonn University WIMP Distribution and Mass p. 1/33 Contents 1 Introduction WIMP Distribution and Mass p. 2/33 Contents

More information

Analyzing direct dark matter detection data with unrejected background events by the AMIDAS website

Analyzing direct dark matter detection data with unrejected background events by the AMIDAS website Journal of Physics: Conference Series Analyzing direct dark matter detection data with unrejected background events by the AMIDAS website To cite this article: Chung-Lin Shan 2012 J. Phys.: Conf. Ser.

More information

Learning from WIMPs. Manuel Drees. Bonn University. Learning from WIMPs p. 1/29

Learning from WIMPs. Manuel Drees. Bonn University. Learning from WIMPs p. 1/29 Learning from WIMPs Manuel Drees Bonn University Learning from WIMPs p. 1/29 Contents 1 Introduction Learning from WIMPs p. 2/29 Contents 1 Introduction 2 Learning about the early Universe Learning from

More information

arxiv: v2 [astro-ph.im] 13 Nov 2014

arxiv: v2 [astro-ph.im] 13 Nov 2014 March 2014 AMIDAS-II: Upgrade of the AMIDAS Package and Website for Direct Dark Matter Detection Experiments and Phenomenology Chung-Lin Shan Physics Division, National Center for Theoretical Sciences

More information

What is the probability that direct detection experiments have observed Dark Matter?

What is the probability that direct detection experiments have observed Dark Matter? Prepared for submission to JCAP arxiv:1410.6160v2 [astro-ph.co] 17 Nov 2014 What is the probability that direct detection experiments have observed Dark Matter? Nassim Bozorgnia a,b and Thomas Schwetz

More information

Background and sensitivity predictions for XENON1T

Background and sensitivity predictions for XENON1T Background and sensitivity predictions for XENON1T Marco Selvi INFN - Sezione di Bologna (on behalf of the XENON collaboration) Feb 19 th 016, UCLA Dark Matter 016 1 Outline Description of the detector;

More information

Introduction to Direct Dark Matter Detection Phenomenology

Introduction to Direct Dark Matter Detection Phenomenology Introduction to Direct Dark Matter Detection Phenomenology Chung-Lin Shan Institute of Physics, Academia Sinica College of Applied Sciences, Beijing University of Technology Beijing, China September 19,

More information

Search for Inelastic Dark Matter with the CDMS experiment. Sebastian Arrenberg Universität Zürich Doktorierendenseminar 2010 Zürich,

Search for Inelastic Dark Matter with the CDMS experiment. Sebastian Arrenberg Universität Zürich Doktorierendenseminar 2010 Zürich, Search for Inelastic Dark Matter with the CDMS experiment Sebastian Arrenberg Universität Zürich Doktorierendenseminar 2010 Zürich, 30.08.2010 The CDMS experiment - 19 Ge and 11 Si semiconductor detectors

More information

Can the DAMA annual modulation be explained by Dark Matter?

Can the DAMA annual modulation be explained by Dark Matter? Can the DAMA annual modulation be explained by Dark Matter? Thomas Schwetz-Mangold MPIK, Heidelberg based on M. Fairbairn and T. Schwetz, arxiv:0808.0704 T. Schwetz, MPIK, 24 Nov 2008 p. 1 Outline Introduction

More information

Direct detection calculations. Riccardo Catena. Chalmers University

Direct detection calculations. Riccardo Catena. Chalmers University Direct detection calculations Riccardo Catena Chalmers University September 11, 2017 Outline Basics of dark matter direct detection (DD) DD Astrophysics DD Particle Physics DD Nuclear Physics Summary Direct

More information

Daniel Gazda. Chalmers University of Technology. Progress in Ab Initio Techniques in Nuclear Physics TRIUMF, Feb 28 Mar 3, 2017

Daniel Gazda. Chalmers University of Technology. Progress in Ab Initio Techniques in Nuclear Physics TRIUMF, Feb 28 Mar 3, 2017 Ab initio nuclear response functions for dark matter searches Daniel Gazda Chalmers University of Technology Progress in Ab Initio Techniques in Nuclear Physics TRIUMF, Feb 28 Mar 3, 2017 Collaborators:

More information

Effective theory of dark matter direct detection. Riccardo Catena. Chalmers University of Technology

Effective theory of dark matter direct detection. Riccardo Catena. Chalmers University of Technology Effective theory of dark matter direct detection Riccardo Catena Chalmers University of Technology March 16, 216 Outline Introduction Dark matter direct detection Effective theory of dark matter-nucleon

More information

arxiv: v1 [physics.ins-det] 4 Nov 2017

arxiv: v1 [physics.ins-det] 4 Nov 2017 arxiv:1711.01488v1 [physics.ins-det] 4 Nov 017 Current status and projected sensitivity of COSINE-0 WG Thompson, on behalf of the COSINE-0 Collaboration Department of Physics, Yale University, New Haven,

More information

Inert Doublet Model and DAMA:

Inert Doublet Model and DAMA: Inert Doublet Model and DAMA: elastic and/or inelastic Dark Matter candidates C.A., FS. Ling, M.H.G. Tytgat arxiv:0907.0430 Chiara Arina TAUP 2009 - July 1/5 Service de Physique Theorique 1 Universite

More information

arxiv: v1 [astro-ph.co] 7 Nov 2012

arxiv: v1 [astro-ph.co] 7 Nov 2012 arxiv:1211.15v1 [astro-ph.co] 7 Nov 212 Mirror dark matter explanation of the DAMA, CoGeNT and CRESST-II data ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, University

More information

No combined analysis of all experiments available

No combined analysis of all experiments available Compatibility between DAMA-CDMS CDMS-Edelweiss-Xenon10 - KIMS? No combined analysis of all experiments available However, some trivial considerations: * for m χ 25 GeV capture on DAMA is dominated by the

More information

DM direct detection predictions from hydrodynamic simulations

DM direct detection predictions from hydrodynamic simulations DM direct detection predictions from hydrodynamic simulations Nassim Bozorgnia GRAPPA Institute University of Amsterdam Based on work done with F. Calore, M. Lovell, G. Bertone, and the EAGLE team arxiv:

More information

Non-Standard Interaction of Solar Neutrinos in Dark Matter Detectors

Non-Standard Interaction of Solar Neutrinos in Dark Matter Detectors Non-Standard Interaction of Solar Neutrinos in Dark Matter Detectors Texas A&M University Collaboration with: J. Dent, B. Dutta, J. Newstead, L. Strigari and J. Walker Outline Motivation 1 Motivation Non-standard

More information

DARK MATTER INTERACTIONS

DARK MATTER INTERACTIONS DARK MATTER INTERACTIONS Jonathan H. Davis Institut d Astrophysique de Paris jonathan.h.m.davis@gmail.com LDMA 2015 Based on J.H.Davis & J.Silk, Phys. Rev. Lett. 114, 051303 and J.H.Davis, JCAP 03(2015)012

More information

DARWIN. Marc Schumann. U Freiburg PATRAS 2017 Thessaloniki, May 19,

DARWIN. Marc Schumann. U Freiburg PATRAS 2017 Thessaloniki, May 19, DARWIN Marc Schumann U Freiburg PATRAS 2017 Thessaloniki, May 19, 2017 marc.schumann@physik.uni-freiburg.de www.app.uni-freiburg.de 1 Dark Matter Searches: Status spin-independent WIMP-nucleon interactions

More information

Coherency in Neutrino-Nucleus Elastic Scattering

Coherency in Neutrino-Nucleus Elastic Scattering Coherency in Neutrino-Nucleus Elastic Scattering S. Kerman, V. Sharma, M. Deniz, H. T. Wong, J.-W. Chen, H. B. Li, S. T. Lin, C.-P. Liu and Q. Yue (TEXONO Collaboration) Institute of Physics, Academia

More information

Lecture 12. Dark Matter. Part II What it could be and what it could do

Lecture 12. Dark Matter. Part II What it could be and what it could do Dark Matter Part II What it could be and what it could do Theories of Dark Matter What makes a good dark matter candidate? Charge/color neutral (doesn't have to be though) Heavy We know KE ~ kev CDM ~

More information

E. Santovetti lesson 4 Maximum likelihood Interval estimation

E. Santovetti lesson 4 Maximum likelihood Interval estimation E. Santovetti lesson 4 Maximum likelihood Interval estimation 1 Extended Maximum Likelihood Sometimes the number of total events measurements of the experiment n is not fixed, but, for example, is a Poisson

More information

Solar and atmospheric neutrinos as background for direct dark matter searches

Solar and atmospheric neutrinos as background for direct dark matter searches Solar and atmospheric neutrinos as background for direct dark matter searches Achim Gütlein TU-München Joined seminar on neutrinos and dark matter.0.0 utline Direct Dark Matter Search eutrinos as background

More information

COLUMNAR RECOMBINATION JIN LI INSTITUTE FOR BASIC SCIENCE CYGNUS2015 CONFERENCE JUN.3, 2015

COLUMNAR RECOMBINATION JIN LI INSTITUTE FOR BASIC SCIENCE CYGNUS2015 CONFERENCE JUN.3, 2015 COLUMNAR RECOMBINATION JIN LI INSTITUTE FOR BASIC SCIENCE CYGNUS2015 CONFERENCE JUN.3, 2015 1 The dark matter in the Universe Dark Matter is stable, non-baryonic, nonrelavistic, and interactes gravitationally

More information

A halo-independent lower bound on the DM capture rate in the Sun from a DD signal

A halo-independent lower bound on the DM capture rate in the Sun from a DD signal A halo-independent lower bound on the DM capture rate in the Sun from a DD signal Juan Herrero-García Royal Institute of Technology (KTH), Stockholm JCAP 1505 (2015) 05, 036, arxiv [hep-ph]: 1502.03342

More information

DARWIN. Marc Schumann. U Freiburg LAUNCH 17 Heidelberg, September 15,

DARWIN. Marc Schumann. U Freiburg LAUNCH 17 Heidelberg, September 15, DARWIN Marc Schumann U Freiburg LAUNCH 17 Heidelberg, September 15, 2017 marc.schumann@physik.uni-freiburg.de www.app.uni-freiburg.de 1 Marc Schumann U Freiburg LAUNCH 17 Heidelberg, September 15, 2017

More information

Systematic uncertainties in statistical data analysis for particle physics. DESY Seminar Hamburg, 31 March, 2009

Systematic uncertainties in statistical data analysis for particle physics. DESY Seminar Hamburg, 31 March, 2009 Systematic uncertainties in statistical data analysis for particle physics DESY Seminar Hamburg, 31 March, 2009 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

CHANNELING IN DIRECT DARK MATTER DETECTION

CHANNELING IN DIRECT DARK MATTER DETECTION CHANNELING IN DIRECT DARK MATTER DETECTION Nassim Bozorgnia UCLA Based on work in progress with G. Gelmini and P. Gondolo SNOWPAC 2010 Outline Channeling and blocking in crystals Channeling effect in direct

More information

Earth WIMP search with IceCube. Jan Kunnen for the IceCube Collaboration

Earth WIMP search with IceCube. Jan Kunnen for the IceCube Collaboration Earth WIMP search with IceCube Jan Kunnen for the IceCube Collaboration 1 Outline 1. Indirect Earth WIMP detection with neutrinos I. how, II. status, III. theoretical predictions 2. The IceCube Neutrino

More information

Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS

Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS D. Markoff (NC Central University, Triangle Universities Nuclear Laboratory) For the COHERENT Collaboration

More information

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST Esperimenti bolometrici al Gran Sasso: CUORE e CRESST Marco Vignati 24 Ottobre 2011 0νDBD in Theory Nuclear process: (A,Z) (A,Z+2) + 2 e - Can only happen if lepton number is not conserved. The decay probability

More information

Two-particle Correlations in pp and Pb-Pb Collisions with ALICE

Two-particle Correlations in pp and Pb-Pb Collisions with ALICE wo-particle Correlations in pp and Pb-Pb Collisions with ALICE Xiangrong Zhu, Ruina Dang (for the ALICE Collaboration) Institute Of Particle Physics, Central China Normal University he 9th Chinese Physical

More information

COLD DARK MATTER DETECTION VIA THE LSP-NUCLEUS ELASTIC SCATTERING 1

COLD DARK MATTER DETECTION VIA THE LSP-NUCLEUS ELASTIC SCATTERING 1 COLD DARK MATTER DETECTION VIA THE LSP-NUCLEUS ELASTIC SCATTERING 1 J.D. VERGADOS and T.S. KOSMAS Theoretical Physics Section, University of Ioannina, GR 451 1, Greece Abstract The momentum transfer dependence

More information

Physics 403. Segev BenZvi. Propagation of Uncertainties. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Propagation of Uncertainties. Department of Physics and Astronomy University of Rochester Physics 403 Propagation of Uncertainties Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Maximum Likelihood and Minimum Least Squares Uncertainty Intervals

More information

WIMP Recoil Rates and Exclusion Plots Brian, April 2007

WIMP Recoil Rates and Exclusion Plots Brian, April 2007 WIMP Recoil Rates and Exclusion Plots Brian, April 2007 Section 1. Topics discussed in this note 1. Event rate calculation. What are the total and differential recoil rates from WIMPs with mass m χ and

More information

Statistical Data Analysis Stat 3: p-values, parameter estimation

Statistical Data Analysis Stat 3: p-values, parameter estimation Statistical Data Analysis Stat 3: p-values, parameter estimation London Postgraduate Lectures on Particle Physics; University of London MSci course PH4515 Glen Cowan Physics Department Royal Holloway,

More information

Characterization of low energy ionization signals from Compton scattering in a CCD Dark Matter detector

Characterization of low energy ionization signals from Compton scattering in a CCD Dark Matter detector Characterization of low energy ionization signals from Compton scattering in a CCD Dark Matter detector Karthik Ramanathan University of Chicago arxiv:1706.06053 (Accepted PRD) TeVPA 2017/08/07 1 Motivation

More information

Search for Low Energy Events with CUORE-0 and CUORE

Search for Low Energy Events with CUORE-0 and CUORE Search for Low Energy Events with CUORE-0 and CUORE Kyungeun E. Lim (on behalf of the CUORE collaboration) Oct. 30. 015, APS Division of Nuclear Physics meeting, Santa Fe, NM The CUORE Experiment CUORE

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 11 January 7, 2013 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline How to communicate the statistical uncertainty

More information

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

Germanium-phobic exothermic Dark Matter and the CDMS-II Silicon excess

Germanium-phobic exothermic Dark Matter and the CDMS-II Silicon excess Germanium-phobic exothermic Dark Matter and the CDMS-II Silicon excess Stefano Scopel Based on work done in collaboration with K. Yoon (JCAP 1408, 060 (2014)) and J.H. Yoon (arxiv:1411.3683, accepted on

More information

TWO-PHASE DETECTORS USING THE NOBLE LIQUID XENON. Henrique Araújo Imperial College London

TWO-PHASE DETECTORS USING THE NOBLE LIQUID XENON. Henrique Araújo Imperial College London TWO-PHASE DETECTORS USING THE NOBLE LIQUID XENON Henrique Araújo Imperial College London Oxford University 18 th October 2016 OUTLINE Two-phase xenon for (dark) radiation detection Instrumenting a liquid

More information

PandaX Dark Matter Search

PandaX Dark Matter Search PandaX Dark Matter Search Xiangdong Ji Shanghai Jiao Tong University University of Maryland On Behalf of the PandaX Collaboration 2017/8/7 1 Outline Introduction to WIMP search and liquid xenon experiments

More information

Results from 730 kg days of the CRESST-II Dark Matter Search

Results from 730 kg days of the CRESST-II Dark Matter Search Results from 730 kg days of the CRESST-II Dark Matter Search Federica Petricca on behalf of the CRESST collaboration: Max-Planck-Institut für Physik, München TU München University of Oxford Universität

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

arxiv: v1 [hep-ex] 30 Nov 2009

arxiv: v1 [hep-ex] 30 Nov 2009 On extraction of oscillation parameters Jan Sobczyk and Jakub Zmuda Institute of Theoretical Physics, University of Wroclaw, plac Maxa Borna 9, 50-204 Wroclaw, Poland (Dated: November 28, 2017) arxiv:0912.0021v1

More information

Oak Ridge National Laboratory, TN. K. Scholberg, Duke University On behalf of the COHERENT collaboration August 2, 2017 DPF 2017, Fermilab

Oak Ridge National Laboratory, TN. K. Scholberg, Duke University On behalf of the COHERENT collaboration August 2, 2017 DPF 2017, Fermilab Oak Ridge National Laboratory, TN K. Scholberg, Duke University On behalf of the COHERENT collaboration August 2, 2017 DPF 2017, Fermilab Coherent elastic neutrino-nucleus scattering (CEvNS) n + A n +

More information

XENON100. Marc Schumann. Physik Institut, Universität Zürich. IDM 2010, Montpellier, July 26 th,

XENON100. Marc Schumann. Physik Institut, Universität Zürich. IDM 2010, Montpellier, July 26 th, XENON100 Marc Schumann Physik Institut, Universität Zürich IDM 2010, Montpellier, July 26 th, 2010 www.physik.uzh.ch/groups/groupbaudis/xenon/ Why WIMP search with Xenon? efficient, fast scintillator (178nm)

More information

arxiv: v1 [astro-ph.im] 28 Sep 2010

arxiv: v1 [astro-ph.im] 28 Sep 2010 arxiv:9.5568v1 [astro-ph.im] 28 Sep 2 Identification of Dark Matter with directional detection, F. Mayet, D. Santos Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier Grenoble

More information

Supernova Neutrino Physics with XENON1T and Beyond

Supernova Neutrino Physics with XENON1T and Beyond Supernova Neutrino Physics with XENON1T and Beyond Shayne Reichard* University of Zurich nueclipse 2017 August 22 R. F. Lang*, C. McCabe, M. Selvi*, and I. Tamborra Phys. Rev. D94, arxiv:1606.09243 *Members

More information

Hadron Spectroscopy at COMPASS

Hadron Spectroscopy at COMPASS Hadron Spectroscopy at Overview and Analysis Methods Boris Grube for the Collaboration Physik-Department E18 Technische Universität München, Garching, Germany Future Directions in Spectroscopy Analysis

More information

Neutrino bounds on dark matter. Alejandro Ibarra Technische Universität München

Neutrino bounds on dark matter. Alejandro Ibarra Technische Universität München Neutrino bounds on dark matter Alejandro Ibarra Technische Universität München NOW 2012 10 September 2012 Introduction Many pieces of evidence for particle dark matter. However, very little is known about

More information

STUDY ON THE ENERGY RESPONSE OF PLASTIC SCINTILLATION DETECTOR TO MEV NEUTRONS ABSTRACT

STUDY ON THE ENERGY RESPONSE OF PLASTIC SCINTILLATION DETECTOR TO MEV NEUTRONS ABSTRACT STUDY ON THE ENERGY RESPONSE OF PLASTIC SCINTILLATION DETECTOR TO 0.75-14.75 MEV NEUTRONS Jianfu Zhang 1, 2, Xiaoping Ouyang 1, 2, Suizheng Qiu 1, Xichao Ruan 3, Jinlu Ruan 2 1 School of Nuclear Science

More information

light dm in the light of cresst-ii

light dm in the light of cresst-ii light dm in the light of cresst-ii Jure Zupan U. of Cincinnati based on T. Schwetz, JZ 1106.6241; J. Kopp, T. Schwetz, JZ 1110.2721 1 the question CoGeNT, DAMA, CRESST claim signals Is it (can it be) dark

More information

Nuclear Recoil Scintillation and Ionization Yields in Liquid Xenon

Nuclear Recoil Scintillation and Ionization Yields in Liquid Xenon Nuclear Recoil Scintillation and Ionization Yields in Liquid Xenon Dan McKinsey Yale University Physics Department February, 011 Indirect and Direct Detection of Dark Matter Aspen Center of Physics Energy

More information

Statistical Tools and Techniques for Solar Astronomers

Statistical Tools and Techniques for Solar Astronomers Statistical Tools and Techniques for Solar Astronomers Alexander W Blocker Nathan Stein SolarStat 2012 Outline Outline 1 Introduction & Objectives 2 Statistical issues with astronomical data 3 Example:

More information

Cryodetectors, CRESST and Background

Cryodetectors, CRESST and Background Cryodetectors, CRESST and Background A cryogenic detector for Dark Matter with heat (phonon) readout and light (scintillation) readout MPI, TUM, Oxford, Tübingen, LNGS What we re looking for: M W imp =

More information

Recent results from PandaX- II and status of PandaX-4T

Recent results from PandaX- II and status of PandaX-4T Recent results from PandaX- II and status of PandaX-4T Jingkai Xia (Shanghai Jiao Tong University) On behalf of PandaX Collaboration August 2-5, Mini-Workshop@SJTU 2018/8/4 1 Outline Dark Matter direct

More information

Enectalí Figueroa-Feliciano

Enectalí Figueroa-Feliciano School and Workshop on Dark Matter and Neutrino Detection Dark Matter Direct Detection Lecture 3 Enectalí Figueroa-Feliciano!113 Outline Lecture 1: The dark matter problem WIMP and WIMP-like DM detection

More information

Closing the window on GeV Dark Matter with moderate ( µb) interaction with nucleons

Closing the window on GeV Dark Matter with moderate ( µb) interaction with nucleons Prepared for submission to JCAP arxiv:1709.00430v2 [hep-ph] 14 Nov 2017 Closing the window on GeV Dark Matter with moderate ( µb) interaction with nucleons M. Shafi Mahdawi and Glennys R. Farrar Center

More information

In collaboration w/ G. Giudice, D. Kim, JCP, S. Shin arxiv: Jong-Chul Park. 2 nd IBS-KIAS Joint High1 January 08 (2018)

In collaboration w/ G. Giudice, D. Kim, JCP, S. Shin arxiv: Jong-Chul Park. 2 nd IBS-KIAS Joint High1 January 08 (2018) In collaboration w/ G. Giudice, D. Kim, JCP, S. Shin arxiv: 1712.07126 Jong-Chul Park 2 nd IBS-KIAS Joint Workshop @ High1 January 08 (2018) (Mainly) focusing on Non-relativistic weakly interacting massive

More information

Latest results of EDELWEISS II

Latest results of EDELWEISS II Latest results of EDELWEISS II Ana Torrentó CEA/IRFU/SPP Saclay Rencontres de Moriond 2011 «EW and Unified Theories» WIMP search Motivated by the «WIMP miracle» Very small rate of WIMPnucleus scattering

More information

Supernova Neutrinos in Future Liquid-Scintillator Detectors

Supernova Neutrinos in Future Liquid-Scintillator Detectors Supernova Neutrinos in Future Liquid-Scintillator Detectors Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 9, China E-mail: liyufeng@ihep.ac.cn A high-statistics measurement of

More information

A survey of recent dark matter direct detection results

A survey of recent dark matter direct detection results A survey of recent dark matter direct detection results I where we stand II recent results (CDMS, XENON10, etc) III DAMA results IV a bit about modulation V issues with DAMA results VI what to look for

More information

Precision Measurement Of Nuclear Recoil Ionization Yields For Low Mass Wimp Searches

Precision Measurement Of Nuclear Recoil Ionization Yields For Low Mass Wimp Searches Precision Measurement Of Nuclear Recoil Ionization Yields For Low Mass Wimp Searches Tarek Saab University of Florida Tali Figueroa Northwestern University Calibration of Low Energy Particle Detectors

More information

Chapter V: Interactions of neutrons with matter

Chapter V: Interactions of neutrons with matter Chapter V: Interactions of neutrons with matter 1 Content of the chapter Introduction Interaction processes Interaction cross sections Moderation and neutrons path For more details see «Physique des Réacteurs

More information

Whither WIMP Dark Matter Search? Pijushpani Bhattacharjee AstroParticle Physics & Cosmology Division Saha Institute of Nuclear Physics Kolkata

Whither WIMP Dark Matter Search? Pijushpani Bhattacharjee AstroParticle Physics & Cosmology Division Saha Institute of Nuclear Physics Kolkata Whither WIMP Dark Matter Search? AstroParticle Physics & Cosmology Division Saha Institute of Nuclear Physics Kolkata 1/51 2/51 Planck 2015 Parameters of the Universe 3/51 Discovery of Dark Matter Fritz

More information

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012 Background Characterization and Rejection in the LZ Detector David Malling Brown University IDM 2012 July 25, 2012 LZ Construction 2 Background Sources Ti cryostats 1500 kg

More information

Search for double electron capture on 124 Xe with the XMASS-I detector

Search for double electron capture on 124 Xe with the XMASS-I detector Search for double electron capture on 124 Xe with the XMASS-I detector KATSUKI HIRAIDE (ICRR, THE UNIVERSITY OF TOKYO) SEPTEMBER 7 TH, 2015 TAUP2015 1 124 Xe 2n double electron capture Natural xenon contains

More information

Global SUSY Fits with IceCube

Global SUSY Fits with IceCube Global SUSY Fits with IceCube Chris Savage * Oskar Klein Centre for Cosmoparticle Physics Stockholm University For the IceCube Collaboration * associate member Overview All processes depend on WIMP mass

More information

Update on Light WIMP Limits: LUX, lite and Light

Update on Light WIMP Limits: LUX, lite and Light Prepared for submission to JCAP arxiv:1311.4247v2 [hep-ph] 4 Feb 2014 Update on Light WIMP Limits:, lite and Light Eugenio Del Nobile, a Graciela B. Gelmini, a Paolo Gondolo, b and Ji-Haeng Huh a a Department

More information

Measurement of inclusive charged jet production in pp and Pb-Pb

Measurement of inclusive charged jet production in pp and Pb-Pb Measurement of inclusive charged jet production in pp and Pb-Pb collisions at S NN 5. 02TeV with ALICE Run2 Data Yan Li for the ALICE collaboration Central China Normal University CLHCP 2016 18/12/2016

More information

Primordial and Doppler modulations with Planck Antony Lewis On behalf of the Planck collaboration

Primordial and Doppler modulations with Planck Antony Lewis On behalf of the Planck collaboration Primordial and Doppler modulations with Planck Antony Lewis On behalf of the Planck collaboration http://cosmologist.info/ Outline Primordial modulations and power asymmetry τ NL trispectrum Kinematic

More information

Use of the likelihood principle in physics. Statistics II

Use of the likelihood principle in physics. Statistics II Use of the likelihood principle in physics Statistics II 1 2 3 + Bayesians vs Frequentists 4 Why ML does work? hypothesis observation 5 6 7 8 9 10 11 ) 12 13 14 15 16 Fit of Histograms corresponds This

More information

Model independent extraction of the axial mass parameter in CCQE anti neutrino-nucleon scattering

Model independent extraction of the axial mass parameter in CCQE anti neutrino-nucleon scattering Model independent extraction of the axial mass parameter in CCQE anti neutrino-nucleon scattering Jerold Eugene Young III Department of Physics, Western Illinois University dvisor Dr. Gil Paz Wayne State

More information

Measurements of the total and inelastic pp cross section with the ATLAS detector at 8 and 13 TeV

Measurements of the total and inelastic pp cross section with the ATLAS detector at 8 and 13 TeV Measurements of the total and inelastic pp cross section with the ATLAS detector at 8 and 13 TeV Motivation Measurements of the total and inelastic cross sections and their energy evolution probe the non-perturbative

More information

The limitations of Lindhard theory to predict the ionization produced by nuclear recoils at the lowest energies

The limitations of Lindhard theory to predict the ionization produced by nuclear recoils at the lowest energies The limitations of Lindhard theory to predict the ionization produced by nuclear recoils at the lowest energies model energy given to electrons = ionization + scintillation in e.g. liquid nobles see also

More information

Energy loss during Dark Matter propagation in an overburden

Energy loss during Dark Matter propagation in an overburden Prepared for submission to JCAP Energy loss during Dark Matter propagation in an overburden arxiv:1712.01170v1 [hep-ph] 4 Dec 2017 M. Shafi Mahdawi and Glennys R. Farrar Center for Cosmology and Particle

More information

Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold Jingke Xu, Princeton (now @LLNL) Sept 24, 2015 2015 LowECal Workshop, Chicago, IL Outline 1. Overview

More information

Dynamics of solar system bound WIMPs

Dynamics of solar system bound WIMPs Dynamics of solar system bound WIMPs Christopher M. Savage Fine Theoretical Physics Institute University of Minnesota 6/6/07 DSU 07 - Dynamics of solar system bound WIMPs 1 Overview Indirect detection

More information

Dark Matter in 3D. Stanford University, Stanford, CA (Dated: April 26, 2012)

Dark Matter in 3D. Stanford University, Stanford, CA (Dated: April 26, 2012) FERMILAB-PUB-1-108-A SLAC-PUB-156 Dark Matter in 3D Daniele S. M. Alves, 1 Sonia El Hedri,, 3 and Jay G. Wacker, 3 1 Fermi National Accelerator Laboratory, Batavia, IL 60510 SLAC National Accelerator Laboratory,

More information

Quenchings in crystals!

Quenchings in crystals! Quenchings in crystals! Why are they important? Some Models Light Quenching (few comments) Ionization Quenching Measurements Jules Gascon! (IPNLyon, Université Lyon 1 + CNRS/IN2P3)! Quenching! Background

More information

Revisiting the escape speed impact on dark matter direct detection

Revisiting the escape speed impact on dark matter direct detection Revisiting the escape speed impact on dark matter direct detection Laboratoir Univers et Particules de Montpellier, UMR-5299, Montpellier, France E-mail: stefano.magni@univ-montp2.fr Julien Lavalle Laboratoir

More information

SuperCDMS: Recent Results for low-mass WIMPS

SuperCDMS: Recent Results for low-mass WIMPS SuperCDMS: Recent Results for low-mass WIMPS David G. Cerdeño Institute for Theoretical Physics Universidad Autónoma de Madrid for the SuperCDMS Collaboration Hints for low-mass WIMPs in direct detection

More information

arxiv: v2 [hep-ph] 9 Jun 2016

arxiv: v2 [hep-ph] 9 Jun 2016 NCTS-ECP/53 Coherency in Neutrino-Nucleus Elastic Scattering arxiv:63.76v hep-ph] 9 Jun 6 S. Kerman,, V. Sharma,, 3 M. Deniz,, H.T. Wong,, J.-W. Chen, 4 H.B. Li, S.T. Lin, 5 C.-P. Liu, 6 and Q. Yue 7 4

More information

Measurement of the e + e - π 0 γ cross section at SND

Measurement of the e + e - π 0 γ cross section at SND Measurement of the e + e - π 0 γ cross section at SND L.Kardapoltsev (for SND collaboration) Budker Institute of Nuclear Physics, Novosibirsk state university PhiPsi 2017, Mainz, Germany June 2017 Outline

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 4 - Detectors Binding Energy Nuclear mass MN less than sum of nucleon masses Shows nucleus is a bound (lower energy) state for this configuration

More information

The Neutron/WIMP Acceptance In XENON100

The Neutron/WIMP Acceptance In XENON100 The Neutron/WIMP Acceptance In XENON100 Symmetries and Fundamental Interactions 01 05 September 2014 Chiemsee Fraueninsel Boris Bauermeister on behalf of the XENON collaboration Boris.Bauermeister@uni-mainz.de

More information

Primer on statistics:

Primer on statistics: Primer on statistics: MLE, Confidence Intervals, and Hypothesis Testing ryan.reece@gmail.com http://rreece.github.io/ Insight Data Science - AI Fellows Workshop Feb 16, 018 Outline 1. Maximum likelihood

More information

Lecture 3. G. Cowan. Lecture 3 page 1. Lectures on Statistical Data Analysis

Lecture 3. G. Cowan. Lecture 3 page 1. Lectures on Statistical Data Analysis Lecture 3 1 Probability (90 min.) Definition, Bayes theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests (90 min.) general concepts, test statistics,

More information

The XENON Project. M. Selvi The XENON project

The XENON Project. M. Selvi The XENON project The XENON Project M. Selvi Assemblea di Sezione 2011 Dark matter in the Universe Dark matter properties: what we know Direct WIMP search Direct WIMP search Direct WIMP detection Why Xenon? A double-phase

More information

Statistical Methods for Discovery and Limits in HEP Experiments Day 3: Exclusion Limits

Statistical Methods for Discovery and Limits in HEP Experiments Day 3: Exclusion Limits Statistical Methods for Discovery and Limits in HEP Experiments Day 3: Exclusion Limits www.pp.rhul.ac.uk/~cowan/stat_freiburg.html Vorlesungen des GK Physik an Hadron-Beschleunigern, Freiburg, 27-29 June,

More information