Section 3.5 Recovery Systems: Parachutes 101

Size: px
Start display at page:

Download "Section 3.5 Recovery Systems: Parachutes 101"

Transcription

1 Section 3.5 Recovery Systems: Parachutes 101 Material taken from: Parachutes for Planetary Entry Systems Juan R. Cruz Exploration Systems Engineering Branch NASA Langley Research Center Also, Images from: Knacke, T. W.: Parachute Recovery Systems Design Manual, Para Publishing, Santa Barbara, CA, and Ewing, E. G., Bixby, H.W., and Knacke, T.W.: Recovery System Design Guide, AFFDL-TR ,

2 Basic Terminology 2

3 Basic Terminology (2) For our purposed conical and elliptical parachutes are same thing 3

4 Basic Terminology (3) F drag F drag = q C D S 0 q = 1 2 ρ V 2 "incompressible dynamic pressure" C D = "drag coefficient" C D S 0 = "drag area" V 4

5 Basic Terminology (4) In general, under parachute, 2-DOF equations of motion are. (ignore centrifugal & Coriolis forces) V V 2 r + V ν 2 ( F ) drag parachute + ( F ) drag vehicle V r V ν = ( F ) drag parachute + F drag m ( ) vehicle ( F ) drag parachute + ( F ) drag vehicle m sinγ g cosγ Vehicle decelerates very rapidly in horizontal direction 5

6 Basic Terminology (4) Terminal Velocity.. Equilibrium velocity where parachute + vehicle are no longer accelerating V r V ν 0 0 γ 90 ( F ) drag parachute + F drag D 0 parachute = cm ( ) vehicle = m g 1 2 ρ V 2 terminal C S D 2 V terminal = ( ) parachute 0 + ( CD S) ref 2M vehicle g ρ ( C D S) parachute 0 + ( CD S) vehicle ref vehicle = M vehicle g 6

7 Parachute Types We ll be using solid parachutes 7

8 Parachute Shapes Hemispherical parachute: - Deployed canopy takes on the shape of a hemisphere. - Three dimensional hemispherical shape divided into a number of 2-D panels, called gores Angle subtended on the left hand side of the pattern is 60 degrees When all six gores are joined they complete the 360 degree circle. 8

9 Parachute Shapes (2) Conical Parachute - 2-D Canopy shape in form of a triangle 9

10 Parachute Shapes (3) Conical Parachute Gore Shape - 2-D Canopy shape in form of a triangle Higher drag coefficient than hemispherical parachutes, but also less stability 10

11 Parachute Shapes (4) Elliptical parachute: - Parachute where vertical axis is smaller than horizontal axis - A parachute with an elliptical canopy has essentially the same CD as a hemispherical parachute, but with less surface material h r Canopy profile for different height / radius ratios 11

12 Parachute Shapes (5) Comparison of gore shapes for different height : radius ratios 12

13 Parachute Types (2) 13

14 Parachute Types (3) 14

15 Example Calculation: Drogue Chute Terminal Velocity h apogee = h agl + h launch = site ( ) meters 1850 meters ρ apogee = kg m g = µ km 3 r = sec 2 = ( ) 2 m km 2 sec 2 Maximum mass at apogee : m apogee = m launch m fuel = ( ) = kg m apogee g = = Nt 15

16 Example Calculation: Drogue Chute Terminal Velocity (2) Descent rate under drogue, ft/sec Go with minimum value ~ m/sec (50 ft/sec) Vehicle Drag Area.. Rocket is broken into two pieces ( C D S 0 ) vehicle 2 C D ( ) rocket A ref ( ) rocket Double up nominal rocket drag area = ( ) m 2 16

17 Example Calculation: Drogue Chute Terminal Velocity (3) Parachute Drag Coefficient Elliptical Parachute.. Take median value ( C ) 0.76 ± D chute 17

18 Example Calculation: Drogue Chute Terminal Velocity (4) Calculate required chute area: 2 V terminal = V terminal ( S ) 0 parachute = 2 m 2M g vehicle g ρ C D S 0 C ρ D S ( ) parachute + ( C D S ) ( ) parachute 0 vehicle 0 + ( CD S) vehicle ref m g 1 2 ρ V 2 terminal ( C D S ) 0 vehicle = ( C ) D parachute m 2 D 0 = 4 ( S 0 ) parachute π π 12 = = 4.28 ft 18

19 Example Calculation: Drogue Chute Terminal Velocity (5) Drag Chute Areas Versus Terminal Velocity 19

20 Example Calculation: Drogue Chute Terminal Velocity (5) Drag Chute Diameter Versus Terminal Velocity 20

21 Parachute Opening Loads Largest Tensile Load on Vehicle often the Ultimate Design Load Driver Design Tool Verification Tool (Direct Simulation) 21

22 Parachute Opening Loads (2) 22

23 Parachute Opening Loads (3) t inf = n D 0 V 1 k n = canopy fill constant k = decceleration exponent 23

24 Parachute Opening Loads (4) 24

25 Infinite-Mass Inflation Parachute Opening Loads (5) 25

26 Finite-Mass Inflation Parachute Opening Loads (6) 26

27 Pflanz' (1942): Pflanz s Method -introduced analytical functions for the drag area (finite mass inflation approximation) Simple, frst-order, design book type method -Requires least knowledge of the system compared to other methods fight -Assumes no gravity acceleration limits application to shallow path angles at parachute deployment - Neglects entry vehicle drag - Yields only peak opening load - Allows for finite mass approximation Doherr (2003) extended method to account for gravity and arbitrary fight path angles 27

28 F peak = q 1 ( C D S) 0 C x X 1 X r = f ( A,η) Pflanz s Method (2) (finite mass inflation approximation) q 1 Dynamic Deployment C x Shock Load Factor X 1 Opening Force Reduction Factor ( C D S) 0 Nominal Drag Full Inflation η Inflation Curve Exponent A Ballistic Parameter 2 M A = V ( C D S) 0 ρ 1 V 1 τ infl η M V ρ 1 τ infl (See Later Description) 28

29 Pflanz s Method (3) A = 2 M V ( C D S) 0 ρ 1 V 1 τ infl Ribbon/Ringslot à h=1 Solid, Elliptical, Flat àh=2 Extended Skirt, Reefed àh=1/2 τ infl = n D 0 V 1 k n Canopy Fill Constant k = Decelleration Exponent Solid, Elliptical Chute n 4 k 0.85 h= 1 h =2 h = 1/2 29

30 Pflanz s Method (4) η = 2 Load Reduction Factor, X 1 η =1 η =1/ 2 η =1/ 2 η =1 η =1/ 2 η = 2 η =1 η = 2 A = 2 M V ( C D S) 0 ρ 1 V 1 τ infl 30

31 Pflanz s Method Example Drogue deploy 31

32 Pflanz s Method Example (2) Desired Terminal Velocity = m/sec Get Nominal Parachute Size V terminal = S 0 parachute = 2M vehicle g ρ parachute vehicle ( C D S) 0 + ( CD S) ref M vehicle g 1 2 ρ V 2 terminal vehicle ( C D S) ref C D0 parachute 0.85 X = = M 2 D 0 parachute = cm 32

33 Subsonic Inflation time Pflanz s Method Example (3) τ infl = n D 0 V 1 k n Canopy Fill Constant k = Decelleration Exponent D 0 parachute = cm Solid, Elliptical Chute n 4 k 0.85 V 1 = m/sec τ infl = = sec A = 2 M V ( C D S) 0 ρ 1 V 1 τ infl = =

34 Pflanz s Method Example (5) η = 2 = η =1 η =1/ 2 η =1/ 2 η =1 η =1/ 2 η = 2 η =1 η = 2 A = 2 M V ( C D S) 0 ρ 1 V 1 τ infl = X 1 =

35 F peak = q 1 ( C D S) 0 C x X 1 Pflanz s Method Example (5) Pa q 1 Dynamic Deployment 1.8 C x Shock Load Factor X 1 Opening Force Reduction Factor ( C D S) 0 Nominal Drag Full Inflation m 2 = = N X 1 = Near infinite mass 35

36 Pflanz s Method Example 2 (2) 36

37 F P = q C (t tsi ) ( S D 0 ) C x Inflation Curve Methods Ignores parachute mass (conservative) t t si t inf τ infl t si η n Since direct Sim accounts for deceleration No X 1 used in this method Direct Simulation Verification Tool τ infl η M V M V 37

38 Inflation Curve Method (2) Inflation Data from Doherr Ribbon/Ringslot à h=1 Solid, Elliptical, Flat àh=2 Extended Skirt, Reefed àh=1/2 ( C D S 0 ) t ( C D S 0 ) steady η =1/ 2 η =1 t t si t inf t si τ infl 38

39 Inflation Curve Method (3)

40 Inflation Curve Method (4) Direct Simulation Response, compare peak load to Pflanz Method = N

41 Questions?? 41

Differential Equations and the Parachute Problem

Differential Equations and the Parachute Problem Differential Equations and the Parachute Problem Ronald Phoebus and Cole Reilly May 10, 2004 Abstract The parachute problem is a classical first semester differential equations problem often introduced

More information

MARS DROP. Matthew A. Eby Mechanical Systems Department. Vehicle Systems Division/ETG The Aerospace Corporation May 25, 2013

MARS DROP. Matthew A. Eby Mechanical Systems Department. Vehicle Systems Division/ETG The Aerospace Corporation May 25, 2013 MARS DROP Matthew A. Eby Mechanical Systems Department Vehicle Systems Division/ETG The Aerospace Corporation May 25, 2013 The Aerospace Corporation 2013 The Aerospace Corporation (Aerospace), a California

More information

Planetary entry environment

Planetary entry environment AE4870B - Re-entry - Summary Chapter 1 Planetary entry environment 1.1 Planetary shapes Even though the shape of, for instance, the Earth is determined by many factors, an approximation, which is adequate

More information

Axisymmetric Parachute Shape Study

Axisymmetric Parachute Shape Study 2th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar 4-7 May 29, Seattle, Washington AIAA 29-2944 Axisymmetric Parachute Shape Study Vladimir S. Drozd 1 Airborne Systems North

More information

Rocket Science 102 : Energy Analysis, Available vs Required

Rocket Science 102 : Energy Analysis, Available vs Required Rocket Science 102 : Energy Analysis, Available vs Required ΔV Not in Taylor 1 Available Ignoring Aerodynamic Drag. The available Delta V for a Given rocket burn/propellant load is ( ) V = g I ln 1+ P

More information

Ballistic Atmospheric Entry (Part II)

Ballistic Atmospheric Entry (Part II) Ballistic Atmospheric Entry (Part II) News updates Straight-line (no gravity) ballistic entry based on altitude, rather than density Planetary entries (at least a start) 1 2010 David L. Akin - All rights

More information

Ballistic Atmospheric Entry

Ballistic Atmospheric Entry Ballistic Atmospheric Entry Standard atmospheres Orbital decay due to atmospheric drag Straight-line (no gravity) ballistic entry based on atmospheric density 1 2010 David L. Akin - All rights reserved

More information

Performance Characterization of Supersonic Retropropulsion for Application to High-Mass Mars Entry, Descent, and Landing

Performance Characterization of Supersonic Retropropulsion for Application to High-Mass Mars Entry, Descent, and Landing Performance Characterization of Supersonic Retropropulsion for Application to High-Mass Mars Entry, Descent, and Landing Ashley M. Korzun 1 and Robert D. Braun 2 Georgia Institute of Technology, Atlanta,

More information

Large Supersonic Ballutes: Testing and Applications FISO Telecon

Large Supersonic Ballutes: Testing and Applications FISO Telecon Large Supersonic Ballutes: Testing and Applications FISO Telecon 6-29-216 Dr. Ian Clark, LDSD Principal Investigator Erich Brandeau, Entry Descent and Landing Engineer Overview Ballute history Parachute

More information

FLIGHT RECONSTRUCTION OF THE MARS PATHFINDER DISK-GAP-BAND PARACHUTE DRAG COEFFICIENT

FLIGHT RECONSTRUCTION OF THE MARS PATHFINDER DISK-GAP-BAND PARACHUTE DRAG COEFFICIENT 17 th AIAA Aerodynamic Decelerator Systems AIAA-2003-2126 Technology Conference and Seminar Monterey, CA, 19-22 May 2003 FLIGHT RECONSTRUCTION OF THE MARS PATHFINDER DISK-GAP-BAND PARACHUTE DRAG COEFFICIENT

More information

Fin design mission. Team Members

Fin design mission. Team Members Fin design mission Team Members Mission: Your team will determine the best fin design for a model rocket. You will compare highest altitude, flight characteristics, and weathercocking. You will report

More information

High-Power Rocketry. Calculating the motion of a rocket for purely vertical flight.

High-Power Rocketry. Calculating the motion of a rocket for purely vertical flight. High-Power Rocketry Calculating the motion of a rocket for purely vertical flight. Phase I Boost phase: motor firing (rocket losing mass), going upwards faster and faster (accelerating upwards) Phase II

More information

Rocket Performance MARYLAND U N I V E R S I T Y O F. Ballistic Entry ENAE Launch and Entry Vehicle Design

Rocket Performance MARYLAND U N I V E R S I T Y O F. Ballistic Entry ENAE Launch and Entry Vehicle Design Rocket Performance Parallel staging Modular staging Standard atmospheres Orbital decay due to drag Straight-line (no gravity) entry based on atmospheric density 1 2014 David L. Akin - All rights reserved

More information

Small Entry Probe Trajectories for Mars

Small Entry Probe Trajectories for Mars CubeSat (re-)entry can mean burning up in the atmosphere Here, we discuss surviving atmospheric entry We must model & understand flight dynamics, aerodynamics, heating Motivation for CubeSat entry Support

More information

Extension of Circular Motion & Newton s Laws. Chapter 6 Mrs. Warren Kings High School

Extension of Circular Motion & Newton s Laws. Chapter 6 Mrs. Warren Kings High School Extension of Circular Motion & Newton s Laws Chapter 6 Mrs. Warren Kings High chool Review from Chapter 4 Uniform Circular Motion Centripetal Acceleration Uniform Circular Motion, Force F r A force is

More information

Advisors: Ihor Luhach, Mathematics and Statistics Scott Campbell, Chemical and Biomedical Engineering. Problem Suggested By: Scott Campbell

Advisors: Ihor Luhach, Mathematics and Statistics Scott Campbell, Chemical and Biomedical Engineering. Problem Suggested By: Scott Campbell Undergraduate Journal of Mathematical Modeling: One + Two Volume 6 2014 Fall Issue 1 Article 2 Rocket Flight Path Jamie Waters University of South Florida Advisors: Ihor Luhach, Mathematics and Statistics

More information

Numerical Simulations of the Mars Science! Laboratory Supersonic Parachute!

Numerical Simulations of the Mars Science! Laboratory Supersonic Parachute! Numerical Simulations of the Mars Science! Laboratory Supersonic Parachute! Graham V. Candler! Vladimyr Gidzak! William L. Garrard! University of Minnesota! Keith Stein! Bethel University! Supported by

More information

Dynamics II: rotation L. Talley SIO 210 Fall, 2011

Dynamics II: rotation L. Talley SIO 210 Fall, 2011 Dynamics II: rotation L. Talley SIO 210 Fall, 2011 DATES: Oct. 24: second problem due Oct. 24: short info about your project topic Oct. 31: mid-term Nov. 14: project due Rotation definitions Centrifugal

More information

Mars Entry, Descent, and Landing Parametric Sizing and Design Space Visualization Trades

Mars Entry, Descent, and Landing Parametric Sizing and Design Space Visualization Trades Mars Entry, Descent, and Landing Parametric Sizing and Design Space Visualization Trades Kristina Alemany 1, Grant Wells 1, John Theisinger 1, Ian Clark 1, Dr. Robert Braun 2 Space Systems Design Laboratory

More information

Guided Entry Performance of Low Ballistic Coefficient Vehicles at Mars

Guided Entry Performance of Low Ballistic Coefficient Vehicles at Mars Guided Entry Performance of Low Ballistic Coefficient Vehicles at Mars AE8900 MS Special Problems Report Space Systems Design Lab (SSDL) Guggenheim School of Aerospace Engineering Georgia Institute of

More information

Aeromaneuvering/Entry, Descent, Landing

Aeromaneuvering/Entry, Descent, Landing Aeromaneuvering/Entry, Descent, Landing Aeromaneuvering Case study: Mars EDL Case study: Mars Exploration Rovers Case study: Mars Science Laboratory U N I V E R S I T Y O F MARYLAND 2012 David L. Akin

More information

SUPERSONIC PARACHUTE AERODYNAMIC TESTING AND FLUID STRUCTURE INTERACTION SIMULATION

SUPERSONIC PARACHUTE AERODYNAMIC TESTING AND FLUID STRUCTURE INTERACTION SIMULATION SUPERSONIC PARACHUTE AERODYNAMIC TESTING AND FLUID STRUCTURE INTERACTION SIMULATION J. Stephen Lingard (1), John C. Underwood (1), Matt Darley (1), Arrun Saunders (1), Lionel Marraffa (2), Luca Ferracina

More information

Spring 2010 Physics 141 Practice Exam II Phy141_mt1b.pdf

Spring 2010 Physics 141 Practice Exam II Phy141_mt1b.pdf 1. (15 points) You are given two vectors: A has length 10. and an angle of 60. o (with respect to the +x axis). B has length 10. and an angle of 200. o (with respect to the +x axis). a) Calculate the components

More information

Abstract. Fig.1. Space Shuttle "Atlantic". Fig.2. The outside of the Shuttle heats to over 1,550 C during reentry.

Abstract. Fig.1. Space Shuttle Atlantic. Fig.2. The outside of the Shuttle heats to over 1,550 C during reentry. Article Reentry Shuttle after Cath 6 30 06 AIAA-2006-6985 A New Method of Atmospheric Reentry for Space Ships* Alexander Bolonkin C&R 30 Avenue R #F-6 Brooklyn NY 229 USA T/F 78-339-4563 abolonkin@juno.com

More information

Ballistic Atmospheric Entry

Ballistic Atmospheric Entry Ballistic Atmosperic Entry Straigt-line (no gravity) ballistic entry based on density and altitude Planetary entries (at least a start) Basic equations of planar motion 206 David L. Akin - All rigts reserved

More information

Math3A Exam #02 Solution Fall 2017

Math3A Exam #02 Solution Fall 2017 Math3A Exam #02 Solution Fall 2017 1. Use the limit definition of the derivative to find f (x) given f ( x) x. 3 2. Use the local linear approximation for f x x at x0 8 to approximate 3 8.1 and write your

More information

Kinematics 2. What equation relates the known quantities to what is being asked?

Kinematics 2. What equation relates the known quantities to what is being asked? Physics R Date: 1. A cheetah goes from rest to 60 miles per hour (26.8 m/s) in 3 seconds. Calculate the acceleration of the cheetah. Kinematics Equations Kinematics 2 How to solve a Physics problem: List

More information

PROBLEM SCORE Problem 1 (30 Pts) Problem 2 (30 Pts) Choose Problem #2 or #3! Problem 4 (40 Pts) TOTAL (100 Pts)

PROBLEM SCORE Problem 1 (30 Pts) Problem 2 (30 Pts) Choose Problem #2 or #3! Problem 4 (40 Pts) TOTAL (100 Pts) AAE 439 Exam #1 October 20, 2008 4:30 pm 6:00 pm ARMS B71 or ARMS 1109 NAME: SOLUTIONS Read all problems carefully before attempting to solve them. Your work must be legible, and the organization must

More information

Parachute Drag Area Using Added Mass as Related to Canopy Geometry

Parachute Drag Area Using Added Mass as Related to Canopy Geometry th I erodynamic Decelerator Systems Technology Conference and Seminar 4-7 May 9, Seattle, Washington I 9-94 Parachute Drag rea Using dded Mass as Related to Canopy Geometry Brook. Kidane * irborne

More information

High Altitude Free Fall: Theoretical Analysis of G-Forces Impacting Human Subjects

High Altitude Free Fall: Theoretical Analysis of G-Forces Impacting Human Subjects High Altitude Free Fall: Theoretical Analysis of G-Forces Impacting Human Subjects Vadim Y. Rygalov 1 and John M. Jurist 2 University of North Dakota, Grand Forks, Nd, 58202 Sarah Ford 3 University of

More information

Report Team /09/2012

Report Team /09/2012 Report 3082 Next month Felix Baumgartner plans on breaking the world record for high altitude skydiving. He will make his jump from a capsule suspended beneath a balloon, at the edge of space. After Felix

More information

Parachute Research, from Computer Simulations to Uses in the Field

Parachute Research, from Computer Simulations to Uses in the Field Parachute Research, from Computer Simulations to Uses in the Field Gary Peek & Jean Potvin Parks College Parachute Research Group www.pcprg.com Contact: peek@industrologic.com 800-435-1975 potvinj@slu.edu

More information

Entry, Descent and Landing Technology Advancement

Entry, Descent and Landing Technology Advancement Entry, Descent and Landing Technology Advancement Dr. Robert D. Braun May 2, 2017 EDL Technology Investments Have Enabled Seven Increasingly-Complex Successful U.S. Landings on Mars Sojourner: 25 kg, 1997

More information

Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes.

Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes. 13.012 Marine Hydrodynamics for Ocean Engineers Fall 2004 Quiz #2 Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes. For the problems in Section A, fill

More information

empirical expressions. The most commonly used expression is F

empirical expressions. The most commonly used expression is F Air resistance or drag is a very common type of friction experienced in many situations, a leaf falling from a tree, riding your bicycle or a jet flying through the air. It is often impossible to ignore

More information

Initial Trajectory and Atmospheric Effects

Initial Trajectory and Atmospheric Effects Initial Trajectory and Atmospheric Effects G. Flanagan Alna Space Program July 13, 2011 Introduction A major consideration for an earth-based accelerator is atmospheric drag. Drag loses mean that the gun

More information

ENAE 483: Principles of Space System Design Loads, Structures, and Mechanisms

ENAE 483: Principles of Space System Design Loads, Structures, and Mechanisms ENAE 483: Principles of Space System Design Loads, Structures, and Mechanisms Team: Vera Klimchenko Kevin Lee Kenneth Murphy Brendan Smyth October 29 th, 2012 Presentation Overview Project Overview Mission

More information

Chapter Six News! DO NOT FORGET We ARE doing Chapter 4 Sections 4 & 5

Chapter Six News! DO NOT FORGET We ARE doing Chapter 4 Sections 4 & 5 Chapter Six News! DO NOT FORGET We ARE doing Chapter 4 Sections 4 & 5 CH 4: Uniform Circular Motion The velocity vector is tangent to the path The change in velocity vector is due to the change in direction.

More information

10.2

10.2 10.1 10.2 10.3 10.4 10.5 10.6 d = ½ g t 2 d = 5 m g = 10 m/s 2 t = sqrt (2d/g) t = sqrt (1) t = 1 second Time to hit ground = 1 second In that 1 second, horizontal distance travelled = 20m Horizontal speed

More information

LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING

LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING YOUR MISSION: I. Learn some of the physics (potential energy, kinetic energy, velocity, and gravity) that will affect the success of your spacecraft. II. Explore

More information

Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments

Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments The lifting surfaces of a vehicle generally include the wings, the horizontal and vertical tail, and other surfaces such

More information

OPEN THALES ALENIA SPACE

OPEN THALES ALENIA SPACE ISSUE : 01 Page : 2/11 CHANGE RECORDS ISSUE DATE CHANGE RECORDS AUTHOR 01 First Issue F. Cogo ISSUE : 01 Page : 3/11 TABLE OF CONTENTS 1. INTRODUCTION...4 2. RADFLIGHT MISSION OVERVIEW...5 3. INSTRUMENTATION

More information

Parachute systems for the atmospheric reentry of launcher upper stages

Parachute systems for the atmospheric reentry of launcher upper stages Parachute systems for the atmospheric reentry of launcher upper stages Bogdan DOBRESCU*,1, Radu BLIDERAN 1, Adrian CHELARU 1 *Corresponding author 1 INCAS National Institute for Aerospace Research Elie

More information

Model Rocketry. The Science Behind the Fun

Model Rocketry. The Science Behind the Fun Model Rocketry The Science Behind the Fun Topics History of Rockets Sir Isaac Newton Laws of Motion Rocket Principles Flight of a Model Rocket Rocket Propulsion Forces at Work History Rockets and rocket

More information

Motion Graphs Practice

Motion Graphs Practice Name Motion Graphs Practice d vs. t Graphs d vs. t Graphs d vs. t Graphs 1. The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line. 3. The

More information

AC : A DESIGN-BY-ANALYSIS PROJECT FOR INTRODUC- TORY STUDENTS IN AEROSPACE ENGINEERING

AC : A DESIGN-BY-ANALYSIS PROJECT FOR INTRODUC- TORY STUDENTS IN AEROSPACE ENGINEERING AC 2012-4116: A DESIGN-BY-ANALYSIS PROJECT FOR INTRODUC- TORY STUDENTS IN AEROSPACE ENGINEERING Dr. Mark Anderson, University of California, San Diego c American Society for Engineering Education, 2012

More information

16.07 Dynamics. Problem Set 3

16.07 Dynamics. Problem Set 3 NAME :..................... Massachusetts Institute of Technology 16.07 Dynamics Problem Set 3 Out date: Sept 17, 2007 Due date: Sept 26, 2007 Problem 1 Problem 2 Problem 3 Problem 4 Study Time Time Spent

More information

CONCEPTUAL DESIGN OF AN AERODYNAMIC BRAKE FOR HYPERSONIC RECOVERY

CONCEPTUAL DESIGN OF AN AERODYNAMIC BRAKE FOR HYPERSONIC RECOVERY CONCEPTUAL DESIGN OF AN AERODYNAMIC BRAKE FOR HYPERSONIC RECOVERY Jesse R. 1 University of Virginia, Charlottesville, Virginia 22904 Dr. Christopher P. Goyne, Advisor 2 Supersonic combustible ramjet (scramjet)

More information

OPTIMIZATION OF EARTH FLIGHT TEST TRAJECTORIES TO QUALIFY PARACHUTES FOR USE ON MARS

OPTIMIZATION OF EARTH FLIGHT TEST TRAJECTORIES TO QUALIFY PARACHUTES FOR USE ON MARS OPTIMIZATION OF EARTH FLIGHT TEST TRAJECTORIES TO QUALIFY PARACHUTES FOR USE ON MARS Christoher L. Tanner (1) (1) Sace Systems Design Laboratory, Daniel Guggenheim School of Aerosace Engineering Georgia

More information

AP Physics C Textbook Problems

AP Physics C Textbook Problems AP Physics C Textbook Problems Chapter 13 Pages 412 416 HW-16: 03. A 200-kg object and a 500-kg object are separated by 0.400 m. Find the net gravitational force exerted by these objects on a 50.0-kg object

More information

Chapter 8: Newton s Laws Applied to Circular Motion

Chapter 8: Newton s Laws Applied to Circular Motion Chapter 8: Newton s Laws Applied to Circular Motion Centrifugal Force is Fictitious? F actual = Centripetal Force F fictitious = Centrifugal Force Center FLEEing Centrifugal Force is Fictitious? Center

More information

= 40 N. Q = 60 O m s,k

= 40 N. Q = 60 O m s,k Sample Exam #2 Technical Physics Multiple Choice ( 6 Points Each ): F app = 40 N 20 kg Q = 60 O = 0 1. A 20 kg box is pulled along a frictionless floor with an applied force of 40 N. The applied force

More information

PHYS 1111L - Introductory Physics Laboratory I

PHYS 1111L - Introductory Physics Laboratory I PHYS 1111L - Introductory Physics Laboratory I Laboratory Advanced Sheet Projectile Motion Laboratory 1. Objective. The objective of this laboratory is to predict the range of a projectile set in motion

More information

Chapter 6. Circular Motion and Other Applications of Newton s Laws

Chapter 6. Circular Motion and Other Applications of Newton s Laws Chapter 6 Circular Motion and Other Applications of Newton s Laws Circular Motion Two analysis models using Newton s Laws of Motion have been developed. The models have been applied to linear motion. Newton

More information

2.4 Differences Between Linear and Nonlinear Equations 75

2.4 Differences Between Linear and Nonlinear Equations 75 .4 Differences Between Linear and Nonlinear Equations 75 fying regions of the ty-plane where solutions exhibit interesting features that merit more detailed analytical or numerical investigation. Graphical

More information

Rancho Bernardo High School/Math Department Honors Pre-Calculus Exit Exam

Rancho Bernardo High School/Math Department Honors Pre-Calculus Exit Exam Rancho Bernardo High School/Math Department Honors Pre-Calculus Eit Eam You are about to take an eam that will test our knowledge of the RBHS Honors Pre-Calculus curriculum. You must demonstrate genuine

More information

IAC-11-A2.5.9 RE-ENTRY ANALYSIS OF RESEARCH ROCKET PAYLOADS

IAC-11-A2.5.9 RE-ENTRY ANALYSIS OF RESEARCH ROCKET PAYLOADS RE-ENTRY ANALYSIS OF RESEARCH ROCKET PAYLOADS Andreas Stamminger Deutsches Zentrum für Luft- und Raumfahrt (DLR), Mobile Rocket Base, Oberpfaffenhofen, 82234 Wessling, Germany, Tel.: 49-8153-28-1231, Email:

More information

Using North Korean Missile Development to Enhance Student Interest in Kinematics and Newtonian Mechanics

Using North Korean Missile Development to Enhance Student Interest in Kinematics and Newtonian Mechanics Using North Korean Missile Development to Enhance Student Interest in Kinematics and Newtonian Mechanics Kendall Mallory Aims Community College University of Northern Colorado Recent Events Missile Development

More information

A simplified trajectory analysis model for small satellite payload recovery from low Earth orbit

A simplified trajectory analysis model for small satellite payload recovery from low Earth orbit Aerospace Science and Technology 7 (2003) 231 237 www.elsevier.com/locate/aescte A simplified trajectory analysis model for small satellite payload recovery from low Earth orbit Frank K. Lu a,, Hyungwon

More information

21 JSTS Vol. 27, No. 2

21 JSTS Vol. 27, No. 2 21 JSTS Vol. 27, No. 2 Technical Challenges and Study on Guided Reentry Flight for Capsule Spacecraft Shuichi MATSUMOTO 1), Yoshinori KONDOH 1), Takane IMADA 1) and Naoki SATO 1) 1) Japan Aerospace Exploration

More information

SIO 210 Introduction to Physical Oceanography Mid-term examination Wednesday, November 2, :00 2:50 PM

SIO 210 Introduction to Physical Oceanography Mid-term examination Wednesday, November 2, :00 2:50 PM SIO 210 Introduction to Physical Oceanography Mid-term examination Wednesday, November 2, 2005 2:00 2:50 PM This is a closed book exam. Calculators are allowed. (101 total points.) MULTIPLE CHOICE (3 points

More information

Facts Largest Moon of Saturn. Has an atmosphere containing mostly Nitrogen and methane. 1 gram on Earth would weigh 0.14g on Titan. Only know moon in

Facts Largest Moon of Saturn. Has an atmosphere containing mostly Nitrogen and methane. 1 gram on Earth would weigh 0.14g on Titan. Only know moon in Titan Martin E Facts Largest Moon of Saturn. Has an atmosphere containing mostly Nitrogen and methane. 1 gram on Earth would weigh 0.14g on Titan. Only know moon in our solar system to have a dense atmosphere.

More information

Mechanics Questions. (Throughout this document take the acceleration under gravity to be g = 9.81ms 2 ).

Mechanics Questions. (Throughout this document take the acceleration under gravity to be g = 9.81ms 2 ). Mechanics Questions (Throughout this document take the acceleration under gravity to be g = 9.81ms 2 ). 1. A block of mass m = 10kg is resting on a rough plane inclined at θ = 30 to the horizontal. A light,

More information

Robotic Mobility Atmospheric Flight

Robotic Mobility Atmospheric Flight Robotic Mobility Atmospheric Flight Gaseous planetary environments (Mars, Venus, Titan)! Lighter-than- air (balloons, dirigibles)! Heavier-than- air (aircraft, rotorcraft) 1 2014 David L. Akin - All rights

More information

Undamped Free Vibrations (Simple Harmonic Motion; SHM also called Simple Harmonic Oscillator)

Undamped Free Vibrations (Simple Harmonic Motion; SHM also called Simple Harmonic Oscillator) Section 3. 7 Mass-Spring Systems (no damping) Key Terms/ Ideas: Hooke s Law of Springs Undamped Free Vibrations (Simple Harmonic Motion; SHM also called Simple Harmonic Oscillator) Amplitude Natural Frequency

More information

REENTRY OF SPACE CRAFT TO EARTH ATMOSPHERE. By Alexander Bolonkin

REENTRY OF SPACE CRAFT TO EARTH ATMOSPHERE. By Alexander Bolonkin REENTRY OF SPACE CRAFT TO EARTH ATMOSPHERE By Alexander Bolonkin New York 01 1 Article Reentry of Space Ship after Shmuel 11 4 1 REENTRY OF SPACE CRAFT TO EARTH ATMOSPHERE By Alexander Bolonkin C&R abolonkin@juno.com

More information

NATIONAL TRANSPORTATION SAFETY BOARD WASHINGTON, D.C.

NATIONAL TRANSPORTATION SAFETY BOARD WASHINGTON, D.C. DOCKET NO. SA-516 EXHIBIT NO. 22A NATIONAL TRANSPORTATION SAFETY BOARD WASHINGTON, D.C. TRAJECTORY STUDY (16 Pages) NATIONAL TRANSPORTATION SAFETY BOARD Office of Research and Engineering Washington, DC

More information

EXTREMAL ANALYTICAL CONTROL AND GUIDANCE SOLUTIONS FOR POWERED DESCENT AND PRECISION LANDING. Dilmurat Azimov

EXTREMAL ANALYTICAL CONTROL AND GUIDANCE SOLUTIONS FOR POWERED DESCENT AND PRECISION LANDING. Dilmurat Azimov EXTREMAL ANALYTICAL CONTROL AND GUIDANCE SOLUTIONS FOR POWERED DESCENT AND PRECISION LANDING Dilmurat Azimov University of Hawaii at Manoa 254 Dole Street, Holmes 22A Phone: (88)-956-2863, E-mail: azimov@hawaii.edu

More information

Robotic Mobility Atmospheric Flight

Robotic Mobility Atmospheric Flight Robotic Mobility Atmospheric Flight Gaseous planetary environments (Mars, Venus, Titan) Lighter-than- air (balloons, dirigibles) Heavier-than- air (aircraft, rotorcraft) 1 2014 David L. Akin - All rights

More information

CURRENT ELECTRICITY. Q1. Plot a graph showing variation of current versus voltage for a material.

CURRENT ELECTRICITY. Q1. Plot a graph showing variation of current versus voltage for a material. CURRENT ELECTRICITY QUESTION OF ONE MARK (VERY SHORT ANSWER) Q. Plot a graph showing variation of current versus voltage for a material. Ans. Q. The graph shown in the figure represents a plot of current

More information

Design of a High Altitude Balloon Drop Test for SPORE (Small Probes for Orbital Return of Experiments)

Design of a High Altitude Balloon Drop Test for SPORE (Small Probes for Orbital Return of Experiments) Design of a High Altitude Balloon Drop Test for SPORE (Small Probes for Orbital Return of Experiments) Jessica Juneau School of Aerospace Engineering AE 8900 Spring/2012 Advisor: Prof. David A. Spencer

More information

Question 8.1: the following: (a) You can shield a charge from electrical forces by putting it inside a hollow conductor. Can you shield a body from the gravitational influence of nearby matter by putting

More information

The Cambridge Rocketry Simulator User Guide

The Cambridge Rocketry Simulator User Guide The Cambridge Rocketry Simulator User Guide Willem Eerland last updated: October 4, 2016 1 Contents 1 Introduction 3 2 Designing a rocket 3 2.1 Nose cone................................. 3 2.2 Body tube.................................

More information

Chapter Four Holt Physics. Forces and the Laws of Motion

Chapter Four Holt Physics. Forces and the Laws of Motion Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces - a. Force - a push or a pull. It can change the motion of an object; start or stop movement; and,

More information

Time (s) Velocity (m/s)

Time (s) Velocity (m/s) Physics 02_16 Remediation Packet Name A toy rocket was launched into the air from ground height. After the rocket reached its maximum height, it fell back to Earth. As it was falling, data was recorded

More information

Unit 1 Parent Guide: Kinematics

Unit 1 Parent Guide: Kinematics Unit 1 Parent Guide: Kinematics Kinematics is the study of the motion of objects. Scientists can represent this information in the following ways: written and verbal descriptions, mathematically (with

More information

Kinematics A train accelerates from rest at a rate of 2 m/(s*s), for a time of 20 seconds. How much distance does the train cover?

Kinematics A train accelerates from rest at a rate of 2 m/(s*s), for a time of 20 seconds. How much distance does the train cover? Physics R Date: 1. A cheetah goes from rest to 60 miles per hour (26.8 m/s) in 3 seconds. Calculate the acceleration of the cheetah. Kinematics Equations Kinematics 2 How to solve a Physics problem: 1.

More information

Accl g Motion graph prac

Accl g Motion graph prac Accl g Motion graph prac 1. An object starts from rest and falls freely. What is the velocity of the object at the end of 3.00 seconds? A) 9.81 m/s B) 19.6 m/s C) 29.4 m/s D) 88.2 m/s 2. An object is dropped

More information

2 Navier-Stokes Equations

2 Navier-Stokes Equations 1 Integral analysis 1. Water enters a pipe bend horizontally with a uniform velocity, u 1 = 5 m/s. The pipe is bended at 90 so that the water leaves it vertically downwards. The input diameter d 1 = 0.1

More information

This chapter covers all kinds of problems having to do with work in physics terms. Work

This chapter covers all kinds of problems having to do with work in physics terms. Work Chapter 7 Working the Physics Way In This Chapter Understanding work Working with net force Calculating kinetic energy Handling potential energy Relating kinetic energy to work This chapter covers all

More information

Mars 2020 Atmospheric Modeling for Flight Mechanics Simulations

Mars 2020 Atmospheric Modeling for Flight Mechanics Simulations Mars 2020 Atmospheric Modeling for Flight Mechanics Simulations Soumyo Dutta, David Way, and Carlie Zumwalt NASA Langley Research Center Gregorio Villar Jet Propulsion Laboratory International Planetary

More information

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the co-efficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1

More information

PHY218 SPRING 2016 Review for Exam#2: Week 9 Review: Newton s Laws, Work, Energy, and Power

PHY218 SPRING 2016 Review for Exam#2: Week 9 Review: Newton s Laws, Work, Energy, and Power Review: Newton s Laws, Work, Energy, and Power These are selected problems that you are to solve independently or in a team of 2-3 in order to better prepare for your Exam#2 1 Problem 1: Inclined Plane

More information

34.3. Resisted Motion. Introduction. Prerequisites. Learning Outcomes

34.3. Resisted Motion. Introduction. Prerequisites. Learning Outcomes Resisted Motion 34.3 Introduction This Section returns to the simple models of projectiles considered in Section 34.1. It explores the magnitude of air resistance effects and the effects of including simple

More information

Flight and Orbital Mechanics

Flight and Orbital Mechanics Flight and Orbital Mechanics Lecture slides Challenge the future 1 Flight and Orbital Mechanics Lecture hours 3, 4 Minimum time to climb Mark Voskuijl Semester 1-2012 Delft University of Technology Challenge

More information

ASTRIUM. Interplanetary Path Early Design Tools at ASTRIUM Space Transportation. Nathalie DELATTRE ASTRIUM Space Transportation.

ASTRIUM. Interplanetary Path Early Design Tools at ASTRIUM Space Transportation. Nathalie DELATTRE ASTRIUM Space Transportation. Interplanetary Path Early Design Tools at Space Transportation Nathalie DELATTRE Space Transportation Page 1 Interplanetary missions Prime approach: -ST has developed tools for all phases Launch from Earth

More information

Preliminary Design Review: Loads, Structures, and Mechanisms. Michael Cunningham, Shimon Gewirtz, Rajesh Yalamanchili, Thomas Noyes

Preliminary Design Review: Loads, Structures, and Mechanisms. Michael Cunningham, Shimon Gewirtz, Rajesh Yalamanchili, Thomas Noyes Preliminary Design Review: Loads, Structures, and Mechanisms Michael Cunningham, Shimon Gewirtz, Rajesh Yalamanchili, Thomas Noyes Crew Cabin Structure Height of ~3.7m from heat shield to top of the cone

More information

Final 1. (25) 2. (10) 3. (10) 4. (10) 5. (10) 6. (10) TOTAL = HW = % MIDTERM = % FINAL = % COURSE GRADE =

Final 1. (25) 2. (10) 3. (10) 4. (10) 5. (10) 6. (10) TOTAL = HW = % MIDTERM = % FINAL = % COURSE GRADE = MAE101B: Advanced Fluid Mechanics Winter Quarter 2017 http://web.eng.ucsd.edu/~sgls/mae101b_2017/ Name: Final This is a three hour open-book exam. Please put your name on the top sheet of the exam. Answer

More information

Kinetics of Particles

Kinetics of Particles Kinetics of Particles A- Force, Mass, and Acceleration Newton s Second Law of Motion: Kinetics is a branch of dynamics that deals with the relationship between the change in motion of a body and the forces

More information

Can you shield a body from the gravitational influence of nearby matter by putting it inside a hollow sphere or by some other means?

Can you shield a body from the gravitational influence of nearby matter by putting it inside a hollow sphere or by some other means? Question 8.1: the following: You can shield a charge from electrical forces by putting it inside a hollow conductor. Can you shield a body from the gravitational influence of nearby matter by putting it

More information

Study Guide Solutions

Study Guide Solutions Study Guide Solutions Table of Contents Chapter 1 A Physics Toolkit... 3 Vocabulary Review... 3 Section 1.1: Mathematics and Physics... 3 Section 1.2: Measurement... 3 Section 1.3: Graphing Data... 4 Chapter

More information

General Physical Science

General Physical Science General Physical Science Chapter 3 Force and Motion Force and Net Force Quantity capable of producing a change in motion (acceleration). Key word = capable Tug of War Balanced forces Unbalanced forces

More information

SUBSONIC AND TRANSONIC WIND TUNNEL TESTING OF TWO INFLATABLE AERODYNAMIC DECELERATORS

SUBSONIC AND TRANSONIC WIND TUNNEL TESTING OF TWO INFLATABLE AERODYNAMIC DECELERATORS SUBSONIC AND TRANSONIC WIND TUNNEL TESTING OF TWO INFLATABLE AERODYNAMIC DECELERATORS Christopher L. Tanner (1), Juan R. Cruz (2), Monica F. Hughes (3), Ian G. Clark (4), Robert D. Braun (5) (1) Georgia

More information

AP Physics Free Response Practice Kinematics

AP Physics Free Response Practice Kinematics AP Physics Free Response Practice Kinematics 1982B1. The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining

More information

2. KINEMATICS. By Liew Sau Poh

2. KINEMATICS. By Liew Sau Poh 2. KINEMATICS By Liew Sau Poh 1 OBJECTIVES 2.1 Linear motion 2.2 Projectiles 2.3 Free falls and air resistance 2 OUTCOMES Derive and use equations of motion with constant acceleration Sketch and use the

More information

FIRST MIDTERM - REVIEW PROBLEMS

FIRST MIDTERM - REVIEW PROBLEMS Physics 10 Spring 009 George Williams FIRST MIDTERM - REVIEW PROBLEMS A data sheet is provided at the end. Problems labeled [Ch. 4] are relevant to the second midterm. 1. Convert 747 m to feet. Convert

More information

Car Lab: Results. Were you able to plot: Position versus Time? Velocity versus Time? Copyright 2010 Pearson Education, Inc.

Car Lab: Results. Were you able to plot: Position versus Time? Velocity versus Time? Copyright 2010 Pearson Education, Inc. Car Lab: Results Were you able to plot: Position versus Time? Velocity versus Time? Chapter 2.2: Acceleration Acceleration Acceleration is the rate at which velocity changes with time. Average acceleration:

More information

JEE(Advanced) 2017 TEST PAPER WITH SOLUTION (HELD ON SUNDAY 21 st MAY, 2017)

JEE(Advanced) 2017 TEST PAPER WITH SOLUTION (HELD ON SUNDAY 21 st MAY, 2017) JEE(Advanced) 17/Paper-/Code-9 JEE(Advanced) 17 TEST PAPE WITH SOLUTION (HELD ON SUNDAY 1 st MAY, 17) PAT-I : PHYSICS SECTION I : (Maximum Marks : 1) This section contains SEVEN questions. Each question

More information

Semi-Numerical Derivation of the Opening Shock Factor and Inflation Time for Slider-Reefed Parafoils ##

Semi-Numerical Derivation of the Opening Shock Factor and Inflation Time for Slider-Reefed Parafoils ## AIAA-7-58 Semi-Numerical erivation of the Opening Shock actor and Inflation Time for Slider-Reefed Parafoils ## Jean Potvin Э and Benjamin Hurst epartment of Physics, Saint Louis University, St. Louis,

More information

PHYSICS 3300 Case Study - Falling through Jupiter

PHYSICS 3300 Case Study - Falling through Jupiter PHYSICS 3300 Case Study - Falling through Jupiter 1 Overview The atmosphere of Jupiter is a complex and dynamic place. The primary component is molecular hydrogen with fractional concentrations of helium

More information