OPIM 303, Managerial Statistics H Guy Williams, 2006

Size: px
Start display at page:

Download "OPIM 303, Managerial Statistics H Guy Williams, 2006"

Transcription

1 OPIM 303 Lecture 6 Page 1

2 The height of the uniform distribution is given by 1 b a Being a Continuous distribution the probability of an exact event is zero: 2 0 There is an infinite number of points in any continuous interval. For this reason we examine probabilities in a range including equal to or less than. Interval 2 P(160 lbs) = 0 P(159 weight 160) = 1.1% Whole Range 180 Keep in mind we are not counting, we are looking at continuous spans. The probability of a given interval is defined as the area under the curve. OPIM 303 Lecture 6 Page 2

3 OPIM 303 Lecture 6 Page 3

4 This tells us it is very unlikely to find an observation more than 3 standard deviations from the mean. Many things in nature, measured and a histogram created from the data, will exhibit a Normal or bell shape. OPIM 303 Lecture 6 Page 4

5 Sections 6.1, 6.2, 6.3 Bell shape implies that most values will occur around the mean. Mean = Median due to symmetrical shape. The shape of the distribution makes it extremely unlikely that very large or very small values will occur. Continuous distributions are measured whereas discrete distributions are counted. The probability that various values occur within certain ranges or intervals can be calculated. The EXACT probability of a particular value from a continuous distribution is zero. The probabilities, or portion of area under the entire curve, must add to 1. The normal distribution provides the basis for classical statistical inference because of its relationship to the central limit theorem. OPIM 303 Lecture 6 Page 5

6 Probability of the region a,b would be the integral of the f(x) eq above, but there is no known direct solution. Use the standardized table or Excel. Also, the area under the curve, in total, from positive to negative infinity, must equal 1. OPIM 303 Lecture 6 Page 6

7 The area under the curve, from positive to negative infinity, must equal 1. OPIM 303 Lecture 6 Page 7

8 Remember: the Standardized Normal Tables give the CUMULATIVE distribution. Second decimal digit irst decimal igit By standardizing the data using the below transformation formula probabilities for any data can be extracted from only one table. Any normal random variable X can be transformed to a standardized normal random variable Z. Ex. Use the standardized distribution table to find the probability that a value is greater than Z = gives cumulative distribution value of or 3.22%. Area under the curve is 1 so the blue area is given by = 96.78%. The Z value converted from X is known as the Z-Value. Note that the table only gives the area to the LEFT of the X value. OPIM 303 Lecture 6 Page 8

9 The Standardized Distribution always has mean of 0 and standard deviation of 1. We find the probability density function for the standardized normal distribution by substituting mean of 0 and standard deviation of 1 into the normal probability density function: Look for interval probability questions which involve a multiple of the standard deviation. P(-5 <= X <= 15) where the standard deviation is 10. The question is asking What is the probability of +/- 2? We know from the rules of normal data that the answer is 95.44%. OPIM 303 Lecture 6 Page 9

10 Always draw the bell curve of the problem for insight on how to solve. P(X)=54.78% Z =.12 In this example mean of 5 is transferred to mean of 0 and sigma of 10 to sigma of 1. Will have interval probabilities. Area =.4168 Area =.5832 In this case the sought shaded region is symmetrical about the mean. The mean is at.5 of the area. So could solve by 2*( ) = 16.64% OPIM 303 Lecture 6 Page 10

11 OPIM 303 Lecture 6 Page 11

12 The Excel function to solve these problems would be: = normdist(x, mean, std dev, cumulative) We will always use cumulative = True. (cumulative = False returns the f(x) value, density function) OPIM 303 Lecture 6 Page 12

13 In this example we have a distribution of peoples weights with mean 180 and standard deviation 20. Now we are asked what is the weight such that 99.9% of males will weigh less? (green) We can solve this by looking up in the body of the standardized table the percentage we want (99.9%), extract the Z value, and convert the Z to the X value we are seeking (?). From the standardized table 99.9% gives Z = convert to x 3.09* The x conversion procedure is called unstandardizing. OPIM 303 Lecture 6 Page 13

14 OPIM 303 Lecture 6 Page 14

15 Ex 6.7; OPIM 303 Lecture 6 Page 15

16 Therefore, 95% of the download times will be between 3.08 and seconds. OPIM 303 Lecture 6 Page 16

17 This returns the Standardized value. Mean is 0, std dev is 1. We will always use True = 1 P(weight < 185) = 1 normdist(185,180,20,t) (the above <= 165 should be >= 165) P(X <= 185) P(X <= 165) = =.38 OPIM 303 Lecture 6 Page 17

18 Normal / Standardized Examples: (These solutions come from the standard normal curve cumulative table.) Ex 6.1; P(X > 9) = 1 P(X < 9) = = Mu = 7, sigma = 2 (On Campus website) Ex. 6.2; Mu = 7, sigma = 2 9) = P(X < 9) P(7 < X) = = P(7 < X< Ex. 6.3; P(X < 7 OR X> 9) = = Mu = 7, sigma = 2 (This is the complement of Ex. 6.2 above.)using P(X < 9) = = Ex 6.4; P(X < 9) P(X < 5) = = Mu = 7, sigma = 2 P(5 < X < 9) = Ex 6.4a; P(3 < X 11) = P(X < 11) P(X < OPIM 303 Lecture 6 Page 18

19 3) = = Mu = 7, sigma = 2 Ex 6.4b; P(1 < X < 13) = P(X < 13) P(X < 1) = = Mu = 7, sigma = 2 Ex 6.5; P(X < 3.5) = P(X < 3.5) = Mu = 7, sigma = 2 OPIM 303 Lecture 6 Page 19

20 Ex 6.6; complete? How much time, in seconds, will elapse before 10% of the downloads are [In this case the area under the curve is the percentage ] OPIM 303 Lecture 6 Page 20

21 This returns the Standardized value. Mean is 0, std dev is 1. Always gives the probability to the left. Using the previous weight problem as an example: = norminv(.999, 180, 20) = GIVEN THE PROBABILITY, MEAN, AND STANDARD DEVIATION THE NORMINV FUNCTION RETURNS THE X VALUE AT WHICH THIS PROBABILITY OCCURES. OPIM 303 Lecture 6 Page 21

22 Examples from text. 6.7 pg 239 a) P( X <= 25 ) = normdist(25, 36.16, 10, True) =.1322 = 13.22% or solve using the standardized table z look up in table to find P( X <= 25 ) = 13.35% 10 b) P( X >= 50 ) = 1 P( X <= 50 ) = 1 normdist(50, 36.16, 10, True) = =8.3% z look up in table to find P( X <= 50 ) = Solve for 1 P( X <= 50 ) = = 8.38% c) P( X >= 75 ) = 1 P( X <= 75 ) = 1 normdist(75, 36.16, 10, True) = d) P( 30 <= X <= 40 ) = P( X <= 40 ) - P( X <= 30 ) = normdist(40, 36.16, 10, True) - normdist(30, 36.16, 10, True) = = 38% d) 99% spend less than (?) amount? X = norminv(99, 36, 10) = $59.42 x or from table z 2.33 solve for x $ f) 80% spend more than (?) amount? X = norminv(1-.80, 36.16, 10) = OPIM 303 Lecture 6 Page 22

23 (May have to trim outliers.) OPIM 303 Lecture 6 Page 23

Lecture 10: The Normal Distribution. So far all the random variables have been discrete.

Lecture 10: The Normal Distribution. So far all the random variables have been discrete. Lecture 10: The Normal Distribution 1. Continuous Random Variables So far all the random variables have been discrete. We need a different type of model (called a probability density function) for continuous

More information

4.2 The Normal Distribution. that is, a graph of the measurement looks like the familiar symmetrical, bell-shaped

4.2 The Normal Distribution. that is, a graph of the measurement looks like the familiar symmetrical, bell-shaped 4.2 The Normal Distribution Many physiological and psychological measurements are normality distributed; that is, a graph of the measurement looks like the familiar symmetrical, bell-shaped distribution

More information

CVE NORMAL DISTRIBUTION

CVE NORMAL DISTRIBUTION CVE 472 Assist. Prof. Dr. Bertuğ Akıntuğ Civil Engineering Program Middle East Technical University Northern Cyprus Campus CVE 472 Statistical Techniques in Hydrology. 1/47 Outline General Normal Distribution

More information

Essential Statistics Chapter 6

Essential Statistics Chapter 6 1 Essential Statistics Chapter 6 By Navidi and Monk Copyright 2016 Mark A. Thomas. All rights reserved. 2 Continuous Probability Distributions chapter 5 focused upon discrete probability distributions,

More information

Normal Curve in standard form: Answer each of the following questions

Normal Curve in standard form: Answer each of the following questions Basic Statistics Normal Curve in standard form: Answer each of the following questions What percent of the normal distribution lies between one and two standard deviations above the mean? What percent

More information

1 Probability Distributions

1 Probability Distributions 1 Probability Distributions In the chapter about descriptive statistics sample data were discussed, and tools introduced for describing the samples with numbers as well as with graphs. In this chapter

More information

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table.

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table. MA 1125 Lecture 15 - The Standard Normal Distribution Friday, October 6, 2017. Objectives: Introduce the standard normal distribution and table. 1. The Standard Normal Distribution We ve been looking at

More information

Continuous Probability Distributions

Continuous Probability Distributions Continuous Probability Distributions Called a Probability density function. The probability is interpreted as "area under the curve." 1) The random variable takes on an infinite # of values within a given

More information

Quiz 2 covered materials in Chapter 5 Chapter 6 Chapter 7. Normal Probability Distribution. Continuous Probability. distribution 11/9/2010.

Quiz 2 covered materials in Chapter 5 Chapter 6 Chapter 7. Normal Probability Distribution. Continuous Probability. distribution 11/9/2010. Quiz covered materials in Chapter 5 Chapter 6 Chapter 7 Normal Probability Distribution Chapter 6 Continuous Probability Distribution Normal Distribution Normal Distribution is symmetrical and bell shaped,

More information

Lecture 2. Quantitative variables. There are three main graphical methods for describing, summarizing, and detecting patterns in quantitative data:

Lecture 2. Quantitative variables. There are three main graphical methods for describing, summarizing, and detecting patterns in quantitative data: Lecture 2 Quantitative variables There are three main graphical methods for describing, summarizing, and detecting patterns in quantitative data: Stemplot (stem-and-leaf plot) Histogram Dot plot Stemplots

More information

Unit 4 Probability. Dr Mahmoud Alhussami

Unit 4 Probability. Dr Mahmoud Alhussami Unit 4 Probability Dr Mahmoud Alhussami Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping a coin, rolling a die or drawing a card from

More information

Chapter 2 Solutions Page 15 of 28

Chapter 2 Solutions Page 15 of 28 Chapter Solutions Page 15 of 8.50 a. The median is 55. The mean is about 105. b. The median is a more representative average" than the median here. Notice in the stem-and-leaf plot on p.3 of the text that

More information

are the objects described by a set of data. They may be people, animals or things.

are the objects described by a set of data. They may be people, animals or things. ( c ) E p s t e i n, C a r t e r a n d B o l l i n g e r 2016 C h a p t e r 5 : E x p l o r i n g D a t a : D i s t r i b u t i o n s P a g e 1 CHAPTER 5: EXPLORING DATA DISTRIBUTIONS 5.1 Creating Histograms

More information

EQ: What is a normal distribution?

EQ: What is a normal distribution? Unit 5 - Statistics What is the purpose EQ: What tools do we have to assess data? this unit? What vocab will I need? Vocabulary: normal distribution, standard, nonstandard, interquartile range, population

More information

Lecture 2. Descriptive Statistics: Measures of Center

Lecture 2. Descriptive Statistics: Measures of Center Lecture 2. Descriptive Statistics: Measures of Center Descriptive Statistics summarize or describe the important characteristics of a known set of data Inferential Statistics use sample data to make inferences

More information

Determining the Spread of a Distribution

Determining the Spread of a Distribution Determining the Spread of a Distribution 1.3-1.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Lecture 3-2311 Lecture 3-2311 1 / 58 Outline 1 Describing Quantitative

More information

8: Statistical Distributions

8: Statistical Distributions : Statistical Distributions The Uniform Distribution 1 The Normal Distribution The Student Distribution Sample Calculations The Central Limit Theory Calculations with Samples Histograms & the Normal Distribution

More information

Determining the Spread of a Distribution

Determining the Spread of a Distribution Determining the Spread of a Distribution 1.3-1.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Lecture 3-2311 Lecture 3-2311 1 / 58 Outline 1 Describing Quantitative

More information

DISCRETE RANDOM VARIABLES EXCEL LAB #3

DISCRETE RANDOM VARIABLES EXCEL LAB #3 DISCRETE RANDOM VARIABLES EXCEL LAB #3 ECON/BUSN 180: Quantitative Methods for Economics and Business Department of Economics and Business Lake Forest College Lake Forest, IL 60045 Copyright, 2011 Overview

More information

Calculating Normal Distribution Probabilities

Calculating Normal Distribution Probabilities Calculating Normal Distribution Probabilities Lecture 13 February 12, 2018 Four Stages of Statistics Data Collection Displaying and Summarizing Data Probability Basics of Probability Probability Distributions

More information

Business Statistics: Lecture 8: Introduction to Estimation & Hypothesis Testing

Business Statistics: Lecture 8: Introduction to Estimation & Hypothesis Testing Business Statistics: Lecture 8: Introduction to Estimation & Hypothesis Testing Agenda Introduction to Estimation Point estimation Interval estimation Introduction to Hypothesis Testing Concepts en terminology

More information

Line of symmetry Total area enclosed is 1

Line of symmetry Total area enclosed is 1 The Normal distribution The Normal distribution is a continuous theoretical probability distribution and, probably, the most important distribution in Statistics. Its name is justified by the fact that

More information

The Normal Distribution (Pt. 2)

The Normal Distribution (Pt. 2) Chapter 5 The Normal Distribution (Pt 2) 51 Finding Normal Percentiles Recall that the Nth percentile of a distribution is the value that marks off the bottom N% of the distribution For review, remember

More information

Density Curves and the Normal Distributions. Histogram: 10 groups

Density Curves and the Normal Distributions. Histogram: 10 groups Density Curves and the Normal Distributions MATH 2300 Chapter 6 Histogram: 10 groups 1 Histogram: 20 groups Histogram: 40 groups 2 Histogram: 80 groups Histogram: 160 groups 3 Density Curve Density Curves

More information

Algebra 2. Outliers. Measures of Central Tendency (Mean, Median, Mode) Standard Deviation Normal Distribution (Bell Curves)

Algebra 2. Outliers. Measures of Central Tendency (Mean, Median, Mode) Standard Deviation Normal Distribution (Bell Curves) Algebra 2 Outliers Measures of Central Tendency (Mean, Median, Mode) Standard Deviation Normal Distribution (Bell Curves) Algebra 2 Notes #1 Chp 12 Outliers In a set of numbers, sometimes there will be

More information

Normal distributions

Normal distributions Normal distributions Suppose a region has area A and a subregion has area A 1 : If a point is placed at random in the larger region, the probability that the point is in the subregion is p = A1 A : If

More information

9/2/2010. Wildlife Management is a very quantitative field of study. throughout this course and throughout your career.

9/2/2010. Wildlife Management is a very quantitative field of study. throughout this course and throughout your career. Introduction to Data and Analysis Wildlife Management is a very quantitative field of study Results from studies will be used throughout this course and throughout your career. Sampling design influences

More information

Chapter 1: Introduction. Material from Devore s book (Ed 8), and Cengagebrain.com

Chapter 1: Introduction. Material from Devore s book (Ed 8), and Cengagebrain.com 1 Chapter 1: Introduction Material from Devore s book (Ed 8), and Cengagebrain.com Populations and Samples An investigation of some characteristic of a population of interest. Example: Say you want to

More information

Section 6-1 Overview. Definition. Definition. Using Area to Find Probability. Area and Probability

Section 6-1 Overview. Definition. Definition. Using Area to Find Probability. Area and Probability Chapter focus is on: Continuous random variables Normal distributions Figure 6-1 Section 6-1 Overview ( -1 e 2 x-µ σ ) 2 f(x) = σ 2 π Formula 6-1 Slide 1 Section 6-2 The Standard Normal Distribution Key

More information

Lecture 8: Chapter 4, Section 4 Quantitative Variables (Normal)

Lecture 8: Chapter 4, Section 4 Quantitative Variables (Normal) Lecture 8: Chapter 4, Section 4 Quantitative Variables (Normal) 68-95-99.7 Rule Normal Curve z-scores Cengage Learning Elementary Statistics: Looking at the Big Picture 1 Looking Back: Review 4 Stages

More information

Some Statistics. V. Lindberg. May 16, 2007

Some Statistics. V. Lindberg. May 16, 2007 Some Statistics V. Lindberg May 16, 2007 1 Go here for full details An excellent reference written by physicists with sample programs available is Data Reduction and Error Analysis for the Physical Sciences,

More information

Calculus with Algebra and Trigonometry II Lecture 21 Probability applications

Calculus with Algebra and Trigonometry II Lecture 21 Probability applications Calculus with Algebra and Trigonometry II Lecture 21 Probability applications Apr 16, 215 Calculus with Algebra and Trigonometry II Lecture 21Probability Apr applications 16, 215 1 / 1 Histograms The distribution

More information

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency Math 1 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency The word average: is very ambiguous and can actually refer to the mean, median, mode or midrange. Notation:

More information

Chapter 5. Understanding and Comparing. Distributions

Chapter 5. Understanding and Comparing. Distributions STAT 141 Introduction to Statistics Chapter 5 Understanding and Comparing Distributions Bin Zou (bzou@ualberta.ca) STAT 141 University of Alberta Winter 2015 1 / 27 Boxplots How to create a boxplot? Assume

More information

Probability Distribution. Stat Camp for the MBA Program. Debbon Air Seat Release

Probability Distribution. Stat Camp for the MBA Program. Debbon Air Seat Release Stat Camp for the MBA Program Daniel Solow Lecture 3 Random Variables and Distributions 136 Probability Distribution Recall that a random variable is a quantity of interest whose value is uncertain and

More information

Ch. 7: Estimates and Sample Sizes

Ch. 7: Estimates and Sample Sizes Ch. 7: Estimates and Sample Sizes Section Title Notes Pages Introduction to the Chapter 2 2 Estimating p in the Binomial Distribution 2 5 3 Estimating a Population Mean: Sigma Known 6 9 4 Estimating a

More information

BIOSTATISTICS. Lecture 3 Continuous Probability Distributions. dr. Petr Nazarov

BIOSTATISTICS. Lecture 3 Continuous Probability Distributions. dr. Petr Nazarov Genomics Research Unit BIOSTATISTICS Lecture 3 Continuous Probability Distributions dr. Petr Nazarov 7-0-015 6-03-015 petr.nazarov@crp-sante.lu Lecture 3. Continuous probability distributions OUTLINE Lecture

More information

6 THE NORMAL DISTRIBUTION

6 THE NORMAL DISTRIBUTION CHAPTER 6 THE NORMAL DISTRIBUTION 341 6 THE NORMAL DISTRIBUTION Figure 6.1 If you ask enough people about their shoe size, you will find that your graphed data is shaped like a bell curve and can be described

More information

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS RECALL: VERTICAL ASYMPTOTES Remember that for a rational function, vertical asymptotes occur at values of x = a which have infinite its (either positive or

More information

The Empirical Rule, z-scores, and the Rare Event Approach

The Empirical Rule, z-scores, and the Rare Event Approach Overview The Empirical Rule, z-scores, and the Rare Event Approach Look at Chebyshev s Rule and the Empirical Rule Explore some applications of the Empirical Rule How to calculate and use z-scores Introducing

More information

Probability and Samples. Sampling. Point Estimates

Probability and Samples. Sampling. Point Estimates Probability and Samples Sampling We want the results from our sample to be true for the population and not just the sample But our sample may or may not be representative of the population Sampling error

More information

Example 1: Dear Abby. Stat Camp for the MBA Program

Example 1: Dear Abby. Stat Camp for the MBA Program Stat Camp for the MBA Program Daniel Solow Lecture 4 The Normal Distribution and the Central Limit Theorem 187 Example 1: Dear Abby You wrote that a woman is pregnant for 266 days. Who said so? I carried

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Stat 101 Exam 1 Important Formulas and Concepts 1

Stat 101 Exam 1 Important Formulas and Concepts 1 1 Chapter 1 1.1 Definitions Stat 101 Exam 1 Important Formulas and Concepts 1 1. Data Any collection of numbers, characters, images, or other items that provide information about something. 2. Categorical/Qualitative

More information

Chapter 6: SAMPLING DISTRIBUTIONS

Chapter 6: SAMPLING DISTRIBUTIONS Chapter 6: SAMPLING DISTRIBUTIONS Read Section 1.5 Graphical methods may not always be sufficient for describing data. Numerical measures can be created for both populations and samples. Definition A numerical

More information

1 Continuous Probability Distributions

1 Continuous Probability Distributions 1 Continuous Probability Distributions 1.1 Normal Distribution Function 1.1.1 Exercise 1 Suppose that the amount of time to assemble a computer is normally distributed with a mean = 50 minutes and a standard

More information

Objective A: Mean, Median and Mode Three measures of central of tendency: the mean, the median, and the mode.

Objective A: Mean, Median and Mode Three measures of central of tendency: the mean, the median, and the mode. Chapter 3 Numerically Summarizing Data Chapter 3.1 Measures of Central Tendency Objective A: Mean, Median and Mode Three measures of central of tendency: the mean, the median, and the mode. A1. Mean The

More information

Sampling, Frequency Distributions, and Graphs (12.1)

Sampling, Frequency Distributions, and Graphs (12.1) 1 Sampling, Frequency Distributions, and Graphs (1.1) Design: Plan how to obtain the data. What are typical Statistical Methods? Collect the data, which is then subjected to statistical analysis, which

More information

What are Continuous Random Variables? Continuous Random Variables and the Normal Distribution. Normal Distribution. When dealing with a PDF

What are Continuous Random Variables? Continuous Random Variables and the Normal Distribution. Normal Distribution. When dealing with a PDF Continuous Random Variables and the Normal Distribution Dr. Tom Ilvento FREC 408 What are Continuous Random Variables? Unlike Discrete Random Variables, Continuous Random Variables take on any point in

More information

Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions. Recall that a power function has the form f(x) = x r where r is a real number.

Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions. Recall that a power function has the form f(x) = x r where r is a real number. L7-1 Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions Recall that a power function has the form f(x) = x r where r is a real number. f(x) = x 1/2 f(x) = x 1/3 ex. Sketch the graph of

More information

Using Excel 2010 to Find Probabilities for the Normal and t Distributions

Using Excel 2010 to Find Probabilities for the Normal and t Distributions Using Excel 2010 to Find Probabilities for the Normal and t Distributions A TUTORIAL Using Excel with the Standard Normal, Normal, and t distributions Standard Normal ( Z ) Mean 0 Standard deviation 1

More information

chpt 1 Labs: Begin next week CHEMISTRY 121 What is Chemistry? Your responsibilities Instructor: Dr. McCullough

chpt 1 Labs: Begin next week CHEMISTRY 121 What is Chemistry? Your responsibilities Instructor: Dr. McCullough CHEMISTRY 121 Instructor: Dr. McCullough About this course Math is only prerequisite Chem 121 is a Natural Science Core course Labs: Begin next week Rules of civility NO: Talking in class/texting/cell

More information

MAT Mathematics in Today's World

MAT Mathematics in Today's World MAT 1000 Mathematics in Today's World Last Time 1. Three keys to summarize a collection of data: shape, center, spread. 2. Can measure spread with the fivenumber summary. 3. The five-number summary can

More information

Chapter 6. The Standard Deviation as a Ruler and the Normal Model 1 /67

Chapter 6. The Standard Deviation as a Ruler and the Normal Model 1 /67 Chapter 6 The Standard Deviation as a Ruler and the Normal Model 1 /67 Homework Read Chpt 6 Complete Reading Notes Do P129 1, 3, 5, 7, 15, 17, 23, 27, 29, 31, 37, 39, 43 2 /67 Objective Students calculate

More information

Chapter 5: Exploring Data: Distributions Lesson Plan

Chapter 5: Exploring Data: Distributions Lesson Plan Lesson Plan Exploring Data Displaying Distributions: Histograms Interpreting Histograms Displaying Distributions: Stemplots Describing Center: Mean and Median Describing Variability: The Quartiles The

More information

Chapter 3: The Normal Distributions

Chapter 3: The Normal Distributions Chapter 3: The Normal Distributions http://www.yorku.ca/nuri/econ2500/econ2500-online-course-materials.pdf graphs-normal.doc / histogram-density.txt / normal dist table / ch3-image Ch3 exercises: 3.2,

More information

FREQUENCY DISTRIBUTIONS AND PERCENTILES

FREQUENCY DISTRIBUTIONS AND PERCENTILES FREQUENCY DISTRIBUTIONS AND PERCENTILES New Statistical Notation Frequency (f): the number of times a score occurs N: sample size Simple Frequency Distributions Raw Scores The scores that we have directly

More information

) The cumulative probability distribution shows the probability

) The cumulative probability distribution shows the probability Problem Set ECONOMETRICS Prof Òscar Jordà Due Date: Thursday, April 0 STUDENT S NAME: Multiple Choice Questions [0 pts] Please provide your answers to this section below: 3 4 5 6 7 8 9 0 ) The cumulative

More information

CIVL 7012/8012. Collection and Analysis of Information

CIVL 7012/8012. Collection and Analysis of Information CIVL 7012/8012 Collection and Analysis of Information Uncertainty in Engineering Statistics deals with the collection and analysis of data to solve real-world problems. Uncertainty is inherent in all real

More information

CHAPTER 5: EXPLORING DATA DISTRIBUTIONS. Individuals are the objects described by a set of data. These individuals may be people, animals or things.

CHAPTER 5: EXPLORING DATA DISTRIBUTIONS. Individuals are the objects described by a set of data. These individuals may be people, animals or things. (c) Epstein 2013 Chapter 5: Exploring Data Distributions Page 1 CHAPTER 5: EXPLORING DATA DISTRIBUTIONS 5.1 Creating Histograms Individuals are the objects described by a set of data. These individuals

More information

Probability Distributions

Probability Distributions CONDENSED LESSON 13.1 Probability Distributions In this lesson, you Sketch the graph of the probability distribution for a continuous random variable Find probabilities by finding or approximating areas

More information

2/2/2015 GEOGRAPHY 204: STATISTICAL PROBLEM SOLVING IN GEOGRAPHY MEASURES OF CENTRAL TENDENCY CHAPTER 3: DESCRIPTIVE STATISTICS AND GRAPHICS

2/2/2015 GEOGRAPHY 204: STATISTICAL PROBLEM SOLVING IN GEOGRAPHY MEASURES OF CENTRAL TENDENCY CHAPTER 3: DESCRIPTIVE STATISTICS AND GRAPHICS Spring 2015: Lembo GEOGRAPHY 204: STATISTICAL PROBLEM SOLVING IN GEOGRAPHY CHAPTER 3: DESCRIPTIVE STATISTICS AND GRAPHICS Descriptive statistics concise and easily understood summary of data set characteristics

More information

Chapter 6 The Normal Distribution

Chapter 6 The Normal Distribution Chapter 6 The Normal PSY 395 Oswald Outline s and area The normal distribution The standard normal distribution Setting probable limits on a score/observation Measures related to 2 s and Area The idea

More information

1 Normal Distribution.

1 Normal Distribution. Normal Distribution.. Introduction A Bernoulli trial is simple random experiment that ends in success or failure. A Bernoulli trial can be used to make a new random experiment by repeating the Bernoulli

More information

Histograms allow a visual interpretation

Histograms allow a visual interpretation Chapter 4: Displaying and Summarizing i Quantitative Data s allow a visual interpretation of quantitative (numerical) data by indicating the number of data points that lie within a range of values, called

More information

Statistics Add Ins.notebook. November 22, Add ins

Statistics Add Ins.notebook. November 22, Add ins Add ins We have LOADS of things we need to know for the IGCSE that you haven't learnt as part of the Bavarian Curriculum. We are now going to shoehorn in some of those topics and ideas. Nov 12 11:50 Main

More information

Business Statistics. Chapter 6 Review of Normal Probability Distribution QMIS 220. Dr. Mohammad Zainal

Business Statistics. Chapter 6 Review of Normal Probability Distribution QMIS 220. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 6 Review of Normal Probability Distribution QMIS 220 Dr. Mohammad Zainal Chapter Goals After completing this chapter,

More information

1. AN INTRODUCTION TO DESCRIPTIVE STATISTICS. No great deed, private or public, has ever been undertaken in a bliss of certainty.

1. AN INTRODUCTION TO DESCRIPTIVE STATISTICS. No great deed, private or public, has ever been undertaken in a bliss of certainty. CIVL 3103 Approximation and Uncertainty J.W. Hurley, R.W. Meier 1. AN INTRODUCTION TO DESCRIPTIVE STATISTICS No great deed, private or public, has ever been undertaken in a bliss of certainty. - Leon Wieseltier

More information

Business Statistics. Lecture 3: Random Variables and the Normal Distribution

Business Statistics. Lecture 3: Random Variables and the Normal Distribution Business Statistics Lecture 3: Random Variables and the Normal Distribution 1 Goals for this Lecture A little bit of probability Random variables The normal distribution 2 Probability vs. Statistics Probability:

More information

Numbers and Operations Review

Numbers and Operations Review C H A P T E R 5 Numbers and Operations Review This chapter reviews key concepts of numbers and operations that you need to know for the SAT. Throughout the chapter are sample questions in the style of

More information

INF FALL NATURAL LANGUAGE PROCESSING. Jan Tore Lønning

INF FALL NATURAL LANGUAGE PROCESSING. Jan Tore Lønning 1 INF4080 2018 FALL NATURAL LANGUAGE PROCESSING Jan Tore Lønning 2 Probability distributions Lecture 5, 5 September Today 3 Recap: Bayes theorem Discrete random variable Probability distribution Discrete

More information

6.2 Normal Distribution. Ziad Zahreddine

6.2 Normal Distribution. Ziad Zahreddine 6.2 Normal Distribution Importance of Normal Distribution 1. Describes Many Random Processes or Continuous Phenomena 2. Can Be Used to Approximate Discrete Probability Distributions Example: Binomial 3.

More information

Standard Normal Calculations

Standard Normal Calculations Standard Normal Calculations Section 4.3 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 10-2311 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Slides 4: Continuous Random Variables

Slides 4: Continuous Random Variables Slides 4: Continuous Random Variables Continuous RVs Values, numerical, in a continuous range ( real ) Continuous transformations of RAND() Who needs them? What are the long run properties? What transform

More information

Descriptive Statistics Example

Descriptive Statistics Example Descriptive tatistics Example A manufacturer is investigating the operating life of laptop computer batteries. The following data are available. Life (min.) Life (min.) Life (min.) Life (min.) 130 145

More information

Chapter 1. The data we first collected was the diameter of all the different colored M&Ms we were given. The diameter is in cm.

Chapter 1. The data we first collected was the diameter of all the different colored M&Ms we were given. The diameter is in cm. + = M&M Experiment Introduction!! In order to achieve a better understanding of chapters 1-9 in our textbook, we have outlined experiments that address the main points present in each of the mentioned

More information

STAT 200 Chapter 1 Looking at Data - Distributions

STAT 200 Chapter 1 Looking at Data - Distributions STAT 200 Chapter 1 Looking at Data - Distributions What is Statistics? Statistics is a science that involves the design of studies, data collection, summarizing and analyzing the data, interpreting the

More information

What are the mean, median, and mode for the data set below? Step 1

What are the mean, median, and mode for the data set below? Step 1 Unit 11 Review Analyzing Data Name Per The mean is the average of the values. The median is the middle value(s) when the values are listed in order. The mode is the most common value(s). What are the mean,

More information

Lecture 3B: Chapter 4, Section 2 Quantitative Variables (Displays, Begin Summaries)

Lecture 3B: Chapter 4, Section 2 Quantitative Variables (Displays, Begin Summaries) Lecture 3B: Chapter 4, Section 2 Quantitative Variables (Displays, Begin Summaries) Summarize with Shape, Center, Spread Displays: Stemplots, Histograms Five Number Summary, Outliers, Boxplots Mean vs.

More information

Chapter 4. Displaying and Summarizing. Quantitative Data

Chapter 4. Displaying and Summarizing. Quantitative Data STAT 141 Introduction to Statistics Chapter 4 Displaying and Summarizing Quantitative Data Bin Zou (bzou@ualberta.ca) STAT 141 University of Alberta Winter 2015 1 / 31 4.1 Histograms 1 We divide the range

More information

Chapter 1: Introduction. Material from Devore s book (Ed 8), and Cengagebrain.com

Chapter 1: Introduction. Material from Devore s book (Ed 8), and Cengagebrain.com 1 Chapter 1: Introduction Material from Devore s book (Ed 8), and Cengagebrain.com Populations and Samples An investigation of some characteristic of a population of interest. Example: Say you want to

More information

MATH 2560 C F03 Elementary Statistics I Lecture 1: Displaying Distributions with Graphs. Outline.

MATH 2560 C F03 Elementary Statistics I Lecture 1: Displaying Distributions with Graphs. Outline. MATH 2560 C F03 Elementary Statistics I Lecture 1: Displaying Distributions with Graphs. Outline. data; variables: categorical & quantitative; distributions; bar graphs & pie charts: What Is Statistics?

More information

a table or a graph or an equation.

a table or a graph or an equation. Topic (8) POPULATION DISTRIBUTIONS 8-1 So far: Topic (8) POPULATION DISTRIBUTIONS We ve seen some ways to summarize a set of data, including numerical summaries. We ve heard a little about how to sample

More information

PHYSICS 30S/40S - GUIDE TO MEASUREMENT ERROR AND SIGNIFICANT FIGURES

PHYSICS 30S/40S - GUIDE TO MEASUREMENT ERROR AND SIGNIFICANT FIGURES PHYSICS 30S/40S - GUIDE TO MEASUREMENT ERROR AND SIGNIFICANT FIGURES ACCURACY AND PRECISION An important rule in science is that there is always some degree of uncertainty in measurement. The last digit

More information

Continuous random variables

Continuous random variables Continuous random variables Can take on an uncountably infinite number of values Any value within an interval over which the variable is definied has some probability of occuring This is different from

More information

Properties of Continuous Probability Distributions The graph of a continuous probability distribution is a curve. Probability is represented by area

Properties of Continuous Probability Distributions The graph of a continuous probability distribution is a curve. Probability is represented by area Properties of Continuous Probability Distributions The graph of a continuous probability distribution is a curve. Probability is represented by area under the curve. The curve is called the probability

More information

Lecture Topic 4: Chapter 7 Sampling and Sampling Distributions

Lecture Topic 4: Chapter 7 Sampling and Sampling Distributions Lecture Topic 4: Chapter 7 Sampling and Sampling Distributions Statistical Inference: The aim is to obtain information about a population from information contained in a sample. A population is the set

More information

Basic Statistics. 1. Gross error analyst makes a gross mistake (misread balance or entered wrong value into calculation).

Basic Statistics. 1. Gross error analyst makes a gross mistake (misread balance or entered wrong value into calculation). Basic Statistics There are three types of error: 1. Gross error analyst makes a gross mistake (misread balance or entered wrong value into calculation). 2. Systematic error - always too high or too low

More information

A constant is a value that is always the same. (This means that the value is constant / unchanging). o

A constant is a value that is always the same. (This means that the value is constant / unchanging). o Math 8 Unit 7 Algebra and Graphing Relations Solving Equations Using Models We will be using algebra tiles to help us solve equations. We will practice showing work appropriately symbolically and pictorially

More information

Probability Distribution for a normal random variable x:

Probability Distribution for a normal random variable x: Chapter5 Continuous Random Variables 5.3 The Normal Distribution Probability Distribution for a normal random variable x: 1. It is and about its mean µ. 2. (the that x falls in the interval a < x < b is

More information

Learning Objectives for Stat 225

Learning Objectives for Stat 225 Learning Objectives for Stat 225 08/20/12 Introduction to Probability: Get some general ideas about probability, and learn how to use sample space to compute the probability of a specific event. Set Theory:

More information

The Standard Deviation as a Ruler and the Normal Model

The Standard Deviation as a Ruler and the Normal Model The Standard Deviation as a Ruler and the Normal Model Al Nosedal University of Toronto Summer 2017 Al Nosedal University of Toronto The Standard Deviation as a Ruler and the Normal Model Summer 2017 1

More information

Chapter 1 Review of Equations and Inequalities

Chapter 1 Review of Equations and Inequalities Chapter 1 Review of Equations and Inequalities Part I Review of Basic Equations Recall that an equation is an expression with an equal sign in the middle. Also recall that, if a question asks you to solve

More information

Lecture #13 Tuesday, October 4, 2016 Textbook: Sections 7.3, 7.4, 8.1, 8.2, 8.3

Lecture #13 Tuesday, October 4, 2016 Textbook: Sections 7.3, 7.4, 8.1, 8.2, 8.3 STATISTICS 200 Lecture #13 Tuesday, October 4, 2016 Textbook: Sections 7.3, 7.4, 8.1, 8.2, 8.3 Objectives: Identify, and resist the temptation to fall for, the gambler s fallacy Define random variable

More information

The MidTerm Next Weak Until the end of Discrete Probability Distribution (Ch 5)

The MidTerm Next Weak Until the end of Discrete Probability Distribution (Ch 5) The MidTerm Next Weak Until the end of Discrete Probability Distribution (Ch 5) 1 1 Chapter 6. Continuous Random Variables Reminder: Continuous random variable takes infinite values Those values can be

More information

MALLOY PSYCH 3000 MEAN & VARIANCE PAGE 1 STATISTICS MEASURES OF CENTRAL TENDENCY. In an experiment, these are applied to the dependent variable (DV)

MALLOY PSYCH 3000 MEAN & VARIANCE PAGE 1 STATISTICS MEASURES OF CENTRAL TENDENCY. In an experiment, these are applied to the dependent variable (DV) MALLOY PSYCH 3000 MEAN & VARIANCE PAGE 1 STATISTICS Descriptive statistics Inferential statistics MEASURES OF CENTRAL TENDENCY In an experiment, these are applied to the dependent variable (DV) E.g., MEASURES

More information

Statistics and Data Analysis in Geology

Statistics and Data Analysis in Geology Statistics and Data Analysis in Geology 6. Normal Distribution probability plots central limits theorem Dr. Franz J Meyer Earth and Planetary Remote Sensing, University of Alaska Fairbanks 1 2 An Enormously

More information

Chapter2 Description of samples and populations. 2.1 Introduction.

Chapter2 Description of samples and populations. 2.1 Introduction. Chapter2 Description of samples and populations. 2.1 Introduction. Statistics=science of analyzing data. Information collected (data) is gathered in terms of variables (characteristics of a subject that

More information

Business Statistics. Lecture 10: Course Review

Business Statistics. Lecture 10: Course Review Business Statistics Lecture 10: Course Review 1 Descriptive Statistics for Continuous Data Numerical Summaries Location: mean, median Spread or variability: variance, standard deviation, range, percentiles,

More information

Section 5.4. Ken Ueda

Section 5.4. Ken Ueda Section 5.4 Ken Ueda Students seem to think that being graded on a curve is a positive thing. I took lasers 101 at Cornell and got a 92 on the exam. The average was a 93. I ended up with a C on the test.

More information