Normal distributions

Size: px
Start display at page:

Download "Normal distributions"

Transcription

1 Normal distributions Suppose a region has area A and a subregion has area A 1 : If a point is placed at random in the larger region, the probability that the point is in the subregion is p = A1 A : If A =1then p = A 1 :

2 Suppose a company sells bags of peanuts. A bag is supposed to weight 32 ounces. A quality control expert weighed some bags as they left the production line: The results are as follows: weight f=no. bags midpt. 31:3 x<31: :5 x<31: :7 x<31: :9 x<32: :1 x<32: :3 x<32: :5 x<32: The mean is approximately 32 s=standard deviation is approximately.3 Given a bag of peanuts at random, what is the probability that its weight is between 31.9 and 32.1? One way of answering: 58/200 by simple counting; there are 200 bags in all and 58 of them have weight between 31.9 and 32.1.

3 Another way: Fit a curve to the data, and nd the ratio of the area under the curve that is inside the strip a < x < b and then divide by the total area under the curve. Use the standard normal curve so that the total area under the curve is 1. Given the mean m and the standard deviation s, the curve that approximates the data is f(x) = 1 p 2¼s 2 e 1 2 (x m s ) 2 If that curve gives a good approximation to the data, then the data is called a normal distribution. In that case, the above function is the associated normal function. The actual formula is not important in this course. The point is this: If you have a normal distribution, then with a calculator or computer you can nd the area under the curve between two points a and b. Here is a chart with the relative frequency densities, a smooth curve through the middles of the tops of the rectangles, and the associated normal function. Given a normal distribution, all you need to be given is the mean and the standard deviation. Then you can nd a curve that approximates the data. In the example of the bags of peanuts, we want p(a<x<b). In other words, we want the area under the associated normal function (the yellow curve) between 31.9 and If we know that, then we know the percentage of the bags that weigh between 31.9 and 32.1 ounces, and then we would know the number of bags that weigh between 31.9 and 32.1 ounces. In our example, the mean m is approximately 32, the standard deviation s is approximately.3, a=31.9, and b=32.1. With these values of m and s, p(a <x<b) ¼ :26: So approximately 26% of the bags

4 weigh between 31.9 and 32.1 ounces. So we get an answer that : = 52 of the bags weigh between 31.9 and 32.1 ounces. We don't expect exact agreement with the answer by directly counting. The area under the approximating curve, the associated normal function, is not exactly the same as the area of the rectangles between two points a and b. After all that, we could have stated our problem as follows. A weights of a collection of bags of peanuts are normally distributed, with a mean of 32 ounces and a standard deviation of.3 ounces. What is the probability that a bag chosen at random weights between 31.9 and 32.1 ounces? If there are 200 bags in all, approximately how many bags weigh between 31.9 ounces and 32.1 ounces? This is all the information you need to answer the question. Computing p(a <x<b)usingacalculator: The way you do this computation on a calculator depends on which calculator you have. COMPUTING p(a <x<b)withtheti-83: On a TI-83, you push DISTR ( rst push the 2nd key, release that key and then push the VARS key.) Then highlight normalcdf( and push enter. Now enter lowerbound, upperbound, m, s) so you see normalcdf(31.9,32.1,32,.3) Then push enter to see which we round to.26. Given m,s,a,x, the notation p(a <x) means b is very large (in nity), so use 1E99 for the value of b. If you prefer, you can use a relatively large number such as a +5 s for b. Similarly, p(x <b)meansais negative in nity, so you use -1E99 for a, or b 5 s for a, in that case. In my TI-83 manual this is on page Your manual might be di erent. For another example, if you want p(x <1:25) with m =0; normalcdf(-1e99,1.25,0,1)= s =1; you should check that Recall that to enter a number in scienti c notation, for example, -1E99, rst push the (-) key next to the ENTER key. Then enter 1. Then press 2nd EE so E is pasted to the cursor location. Then enter 99. Now suppose you are given the problem p(x <a)=0:8 andm =0;s =1; and you want to nd what a is. This time you use invnorm(, which is right below normalcdf(. Check that invnorm(.8,0,1)= , in other words, a is approximately.84.

5 If you have a di erent model TI calculator, look up normalcdf in the manual. (Optional for TI 82 users: click here) If you have an HP38G, the function UTPN(mean,variance,x) gives the area of the tail, that is, the area under the curve from x to in nity. For example, if the mean=0 and the standard deviation=1, since the variance =(standard deviation) 2 ; then the variance is 1 in this case. Suppose x = Then p(x >1:87) = UTPN(0; 1; 1:87) = : ::: You get the function UTPN by pushing math, then scrolling down to Prob., then over and scroll down to UTPN. You might notice it is faster to push math, then scroll up once to Prob., then over and up twice to UTPN. Suppose you want p(0:75 <x<1:25) with mean=0 and standard deviation=1. The area under the curve is the area from 0.75 minus the area from 1.25 to in nity, so p(0:75 <x<1:25)=utpn(0,1,.75)-utpn(0,1,1.25)= Now suppose the mean is 68 and the standard deviation is 4. We want p(73 <x): The variance =16, so we want UTPN(68,16,73)= If you are given a value for p and want a, for example, if you have the equation p(a <x)=:1056 and you are given m=68, standard deviation=4, you could plot the function f(x)=utpn(68,16,x) and use trace to nd where f(x)=.1056 approximately and you will quickly nd x is approximately 73, so that is your value of a. You need to remember that the HP38G uses UTPN(mean, variance, x) so you need to use the variance, not the standard deviation, as your second variable. If you are already familiar with the HP38G, you can add f(x)=utpn(68,16,x) as one function, f(x)=.1056 as another function, making sure there are check marks by those two functions, then make reasonable choices for the x range, say x=68 and x=100. Choose the y range with 0 and 1 for the limits. After plotting, go to the menu, then fcn menu, then choose intersection. You calculator will nd the value of a, where those two functions intersect, automatically for you. Computing p(a <x<b) using Excel: The Excel function normdist(b,m,s,true) gives the area under the curve from negative in nity to b. The Excel function normdist(a,m,s,true) gives the area under the curve from negative in nity to a. Therefore The Excel function normdist(b,m,s,true) - normdist(a,m,s,true) gives the area under the curve fromatob. For example, suppose a=15.9,b=16.1, m=16, s=0.3. Click on a cell, for example a1. Then enter =normdist(16.1,16,.3,true), or if you forget what the function is, click on the paste function (f*), statistical, then normdist, then OK. Enter the point x, the mean, the standard deviation, and choose true under the choice cumulative (this means you are nding an area). Next, click on a cell below, for example a2. Then enter =normdist(15.9,16,.3,true). Then in the cell below that, for example a3, enter=a1-a2. If you prefer, you can simply type in at a cell the following: =normdist(16.1,16,.3,true)-normdist(15.9,16,.3,true) The answer is approximately 0.26, which is close to 58/200. We don't expect exact agreement since the data is not exactly a normal distribution (it should be bell-shaped and be symmetric about

6 the mean) and the areas under the approximating rectangles are not the same as the area under the curve that tries to t the data. Another example: Suppose you want to nd the area under the curve from negative in nity to 1.25 for the standard normal distribution (m=0,s=1). We need p(x < 1:25) with m = 0; x = 1: Using Excel, we enter =normdist(1.25,0,1,true) in a cell and get for an answer. Now suppose we are given a probability, for example suppose we are given p=0.8 with m=0 and s=1. In other words, we are given p(x <b)=0:8 but we are not given b. To nd b, we enter =norminv(.8,0,1) in a cell, and we get for an answer. This is the value of b. Another example: The heights of city with a population of 200,000 people are assumed to be normally distributed, with a mean height of 70 inches and the standard deviation is 3 inches. 1. What percentage of the city is taller than 72 inches? 2. What percentage of the city is between 68 and 72 inches tall? 3. How many people are between 68 and 72 inches tall? Answers: 1. With m=70 and s=3, we need p(72 <x) ¼ :25 so about 25 % of the population is taller than 72 inches. 2. With m=70 and s=3, we need p(68 <x<72) ¼ :495 ¼ :5 so about 50 % of the population is between 68 and 72 inches tall. 3. About 100,000 people are between 68 and 72 inches tall. One more example problem: The scores on an exam are assumed to be normally distributed. The mean was 72 and the standard deviation was 14. Tony had a score of 86. Was Tony in the top 10 percent? What score would someone need to be in the top 10 percent? Answer: With m=72 and s=14, p(86 <x) ¼ :16 so Tony was in the top 16 percent but not in the top 10 percent. In order to nd the cuto, we want to nd the value of b for p(x <b)=:9 Use your calculator or Excel, and you should get approximately. The details of how you get this number vary, depending on which calculator you use. If you use Excel, you would enter =norminv(.9,72,14) in a cell and get

Using Tables and Graphing Calculators in Math 11

Using Tables and Graphing Calculators in Math 11 Using Tables and Graphing Calculators in Math 11 Graphing calculators are not required for Math 11, but they are likely to be helpful, primarily because they allow you to avoid the use of tables in some

More information

(i) The mean and mode both equal the median; that is, the average value and the most likely value are both in the middle of the distribution.

(i) The mean and mode both equal the median; that is, the average value and the most likely value are both in the middle of the distribution. MATH 382 Normal Distributions Dr. Neal, WKU Measurements that are normally distributed can be described in terms of their mean µ and standard deviation σ. These measurements should have the following properties:

More information

(i) The mean and mode both equal the median; that is, the average value and the most likely value are both in the middle of the distribution.

(i) The mean and mode both equal the median; that is, the average value and the most likely value are both in the middle of the distribution. MATH 183 Normal Distributions Dr. Neal, WKU Measurements that are normally distributed can be described in terms of their mean µ and standard deviation!. These measurements should have the following properties:

More information

6 THE NORMAL DISTRIBUTION

6 THE NORMAL DISTRIBUTION CHAPTER 6 THE NORMAL DISTRIBUTION 341 6 THE NORMAL DISTRIBUTION Figure 6.1 If you ask enough people about their shoe size, you will find that your graphed data is shaped like a bell curve and can be described

More information

The Chi-Square Distributions

The Chi-Square Distributions MATH 03 The Chi-Square Distributions Dr. Neal, Spring 009 The chi-square distributions can be used in statistics to analyze the standard deviation of a normally distributed measurement and to test the

More information

The Chi-Square Distributions

The Chi-Square Distributions MATH 183 The Chi-Square Distributions Dr. Neal, WKU The chi-square distributions can be used in statistics to analyze the standard deviation σ of a normally distributed measurement and to test the goodness

More information

Chapter 6. The Standard Deviation as a Ruler and the Normal Model 1 /67

Chapter 6. The Standard Deviation as a Ruler and the Normal Model 1 /67 Chapter 6 The Standard Deviation as a Ruler and the Normal Model 1 /67 Homework Read Chpt 6 Complete Reading Notes Do P129 1, 3, 5, 7, 15, 17, 23, 27, 29, 31, 37, 39, 43 2 /67 Objective Students calculate

More information

Using a graphic display calculator

Using a graphic display calculator 12 Using a graphic display calculator CHAPTER OBJECTIVES: This chapter shows you how to use your graphic display calculator (GDC) to solve the different types of problems that you will meet in your course.

More information

Standard Normal Calculations

Standard Normal Calculations Standard Normal Calculations Section 4.3 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 10-2311 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

OPIM 303, Managerial Statistics H Guy Williams, 2006

OPIM 303, Managerial Statistics H Guy Williams, 2006 OPIM 303 Lecture 6 Page 1 The height of the uniform distribution is given by 1 b a Being a Continuous distribution the probability of an exact event is zero: 2 0 There is an infinite number of points in

More information

BIOSTATISTICS. Lecture 3 Continuous Probability Distributions. dr. Petr Nazarov

BIOSTATISTICS. Lecture 3 Continuous Probability Distributions. dr. Petr Nazarov Genomics Research Unit BIOSTATISTICS Lecture 3 Continuous Probability Distributions dr. Petr Nazarov 7-0-015 6-03-015 petr.nazarov@crp-sante.lu Lecture 3. Continuous probability distributions OUTLINE Lecture

More information

Unit 8: Statistics. SOL Review & SOL Test * Test: Unit 8 Statistics

Unit 8: Statistics. SOL Review & SOL Test * Test: Unit 8 Statistics Name: Block: Unit 8: Statistics Day 1 Sequences Day 2 Series Day 3 Permutations & Combinations Day 4 Normal Distribution & Empirical Formula Day 5 Normal Distribution * Day 6 Standard Normal Distribution

More information

Let us think of the situation as having a 50 sided fair die; any one number is equally likely to appear.

Let us think of the situation as having a 50 sided fair die; any one number is equally likely to appear. Probability_Homework Answers. Let the sample space consist of the integers through. {, 2, 3,, }. Consider the following events from that Sample Space. Event A: {a number is a multiple of 5 5, 0, 5,, }

More information

Chapter. The Normal Probability Distribution 7/24/2011. Section 7.1 Properties of the Normal Distribution

Chapter. The Normal Probability Distribution 7/24/2011. Section 7.1 Properties of the Normal Distribution Chapter The Normal Probability Distribution 3 7 Section 7.1 Properties of the Normal Distribution 2010 Pearson Prentice Hall. All rights 2010 reserved Pearson Prentice Hall. All rights reserved 7-2 Illustrating

More information

Section 7.1 Properties of the Normal Distribution

Section 7.1 Properties of the Normal Distribution Section 7.1 Properties of the Normal Distribution In Chapter 6, talked about probability distributions. Coin flip problem: Difference of two spinners: The random variable x can only take on certain discrete

More information

What does a population that is normally distributed look like? = 80 and = 10

What does a population that is normally distributed look like? = 80 and = 10 What does a population that is normally distributed look like? = 80 and = 10 50 60 70 80 90 100 110 X Empirical Rule 68% 95% 99.7% 68-95-99.7% RULE Empirical Rule restated 68% of the data values fall within

More information

Section 5.4. Ken Ueda

Section 5.4. Ken Ueda Section 5.4 Ken Ueda Students seem to think that being graded on a curve is a positive thing. I took lasers 101 at Cornell and got a 92 on the exam. The average was a 93. I ended up with a C on the test.

More information

EXPERIMENT 2 Reaction Time Objectives Theory

EXPERIMENT 2 Reaction Time Objectives Theory EXPERIMENT Reaction Time Objectives to make a series of measurements of your reaction time to make a histogram, or distribution curve, of your measured reaction times to calculate the "average" or mean

More information

The Shape, Center and Spread of a Normal Distribution - Basic

The Shape, Center and Spread of a Normal Distribution - Basic The Shape, Center and Spread of a Normal Distribution - Basic Brenda Meery, (BrendaM) Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version

More information

3/30/2009. Probability Distributions. Binomial distribution. TI-83 Binomial Probability

3/30/2009. Probability Distributions. Binomial distribution. TI-83 Binomial Probability Random variable The outcome of each procedure is determined by chance. Probability Distributions Normal Probability Distribution N Chapter 6 Discrete Random variables takes on a countable number of values

More information

Exploring the Normal Probability Distribution

Exploring the Normal Probability Distribution Last Name First Name Class Time Chapter 6-1 Chapter 6: The Normal Distribution Bell-shaped probability density function. Graph is symmetric about a vertical line through the mean. Highest point, the peak,

More information

Mt. Douglas Secondary

Mt. Douglas Secondary Foundations of Math 11 Calculator Usage 207 HOW TO USE TI-83, TI-83 PLUS, TI-84 PLUS CALCULATORS FOR STATISTICS CALCULATIONS shows it is an actual calculator key to press 1. Using LISTS to Calculate Mean,

More information

4/1/2012. Test 2 Covers Topics 12, 13, 16, 17, 18, 14, 19 and 20. Skipping Topics 11 and 15. Topic 12. Normal Distribution

4/1/2012. Test 2 Covers Topics 12, 13, 16, 17, 18, 14, 19 and 20. Skipping Topics 11 and 15. Topic 12. Normal Distribution Test 2 Covers Topics 12, 13, 16, 17, 18, 14, 19 and 20 Skipping Topics 11 and 15 Topic 12 Normal Distribution 1 Normal Distribution If Density Curve is symmetric, single peaked, bell-shaped then it is

More information

Inferential Statistics and Distributions

Inferential Statistics and Distributions 13 Inferential Statistics and Distributions Contents Getting Started: Mean Height of a Population... 13-2 Inferential Stat Editors... 13-6 STAT TESTS Menu... 13-9 Inferential Statistics Input Descriptions...

More information

Introduction to Algebraic Expressions

Introduction to Algebraic Expressions M0_BITT774_08_C0_0 pp5.qxd 0/9/08 2:5 PM Page Introduction to Algebraic Expressions Brian Busby CHIEF METEOROLOGIST Kansas City, Missouri All weather measurements are a series of numbers and values. Temperature,

More information

Counting principles, including permutations and combinations.

Counting principles, including permutations and combinations. 1 Counting principles, including permutations and combinations. The binomial theorem: expansion of a + b n, n ε N. THE PRODUCT RULE If there are m different ways of performing an operation and for each

More information

Secondary Math 3 Honors - Polynomial and Polynomial Functions Test Review

Secondary Math 3 Honors - Polynomial and Polynomial Functions Test Review Name: Class: Date: Secondary Math 3 Honors - Polynomial and Polynomial Functions Test Review 1 Write 3x 2 ( 2x 2 5x 3 ) in standard form State whether the function is even, odd, or neither Show your work

More information

Chapter 8: Confidence Intervals

Chapter 8: Confidence Intervals Chapter 8: Confidence Intervals Introduction Suppose you are trying to determine the mean rent of a two-bedroom apartment in your town. You might look in the classified section of the newspaper, write

More information

INF FALL NATURAL LANGUAGE PROCESSING. Jan Tore Lønning

INF FALL NATURAL LANGUAGE PROCESSING. Jan Tore Lønning 1 INF4080 2018 FALL NATURAL LANGUAGE PROCESSING Jan Tore Lønning 2 Probability distributions Lecture 5, 5 September Today 3 Recap: Bayes theorem Discrete random variable Probability distribution Discrete

More information

Statistical Calculations and Tests Using the TI 83/84.

Statistical Calculations and Tests Using the TI 83/84. Statistical Calculations and Tests Using the TI 83/84. The document is meant to be read with a calculator in hand. Work an example to see the results of every step. The content is in the order that the

More information

Tutorial 23 Back Analysis of Material Properties

Tutorial 23 Back Analysis of Material Properties Tutorial 23 Back Analysis of Material Properties slope with known failure surface sensitivity analysis probabilistic analysis back analysis of material strength Introduction Model This tutorial will demonstrate

More information

Measuring Momentum: Using distance moved after impact to estimate velocity

Measuring Momentum: Using distance moved after impact to estimate velocity Case File 6 Measuring Momentum: Using distance moved after impact to estimate velocity Explore how the speed of an impacting vehicle causes a stationary object to move. Police Report Last Tuesday night,

More information

Section 7.2 Homework Answers

Section 7.2 Homework Answers 25.5 30 Sample Mean P 0.1226 sum n b. The two z-scores are z 25 20(1.7) n 1.0 20 sum n 2.012 and z 30 20(1.7) n 1.0 0.894, 20 so the probability is approximately 0.1635 (0.1645 using Table A). P14. a.

More information

CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS. 6.2 Normal Distribution. 6.1 Continuous Uniform Distribution

CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS. 6.2 Normal Distribution. 6.1 Continuous Uniform Distribution CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS Recall that a continuous random variable X is a random variable that takes all values in an interval or a set of intervals. The distribution of a continuous

More information

May 2015 Timezone 2 IB Maths Standard Exam Worked Solutions

May 2015 Timezone 2 IB Maths Standard Exam Worked Solutions May 015 Timezone IB Maths Standard Exam Worked Solutions 015, Steve Muench steve.muench@gmail.com @stevemuench Please feel free to share the link to these solutions http://bit.ly/ib-sl-maths-may-015-tz

More information

Polynomial Functions and Their Graphs. Definition of a Polynomial Function: numbers, with a n 0. The function defined by

Polynomial Functions and Their Graphs. Definition of a Polynomial Function: numbers, with a n 0. The function defined by Polynomial Functions and Their Graphs Definition of a Polynomial Function: Let n be a nonnegative number and let a n, a n 1, a 2, a 1, a 0 be real numbers, with a n 0. The function defined by f(x) = a

More information

Using Excel 2010 to Find Probabilities for the Normal and t Distributions

Using Excel 2010 to Find Probabilities for the Normal and t Distributions Using Excel 2010 to Find Probabilities for the Normal and t Distributions A TUTORIAL Using Excel with the Standard Normal, Normal, and t distributions Standard Normal ( Z ) Mean 0 Standard deviation 1

More information

Experiment 0 ~ Introduction to Statistics and Excel Tutorial. Introduction to Statistics, Error and Measurement

Experiment 0 ~ Introduction to Statistics and Excel Tutorial. Introduction to Statistics, Error and Measurement Experiment 0 ~ Introduction to Statistics and Excel Tutorial Many of you already went through the introduction to laboratory practice and excel tutorial in Physics 1011. For that reason, we aren t going

More information

DISCRETE RANDOM VARIABLES EXCEL LAB #3

DISCRETE RANDOM VARIABLES EXCEL LAB #3 DISCRETE RANDOM VARIABLES EXCEL LAB #3 ECON/BUSN 180: Quantitative Methods for Economics and Business Department of Economics and Business Lake Forest College Lake Forest, IL 60045 Copyright, 2011 Overview

More information

In this chapter, you will study the normal distribution, the standard normal, and applications associated with them.

In this chapter, you will study the normal distribution, the standard normal, and applications associated with them. The Normal Distribution The normal distribution is the most important of all the distributions. It is widely used and even more widely abused. Its graph is bell-shaped. You see the bell curve in almost

More information

Introduction to Probability and Statistics Twelfth Edition

Introduction to Probability and Statistics Twelfth Edition Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver Introduction to Probability and

More information

( )( ) of wins. This means that the team won 74 games.

( )( ) of wins. This means that the team won 74 games. AP Statistics Ch. 2 Notes Describing Location in a Distribution Often, we are interested in describing where one observation falls in a distribution in relation to the other observations. The pth percentile

More information

Scatterplots. 3.1: Scatterplots & Correlation. Scatterplots. Explanatory & Response Variables. Section 3.1 Scatterplots and Correlation

Scatterplots. 3.1: Scatterplots & Correlation. Scatterplots. Explanatory & Response Variables. Section 3.1 Scatterplots and Correlation 3.1: Scatterplots & Correlation Scatterplots A scatterplot shows the relationship between two quantitative variables measured on the same individuals. The values of one variable appear on the horizontal

More information

Section 6-1 Overview. Definition. Definition. Using Area to Find Probability. Area and Probability

Section 6-1 Overview. Definition. Definition. Using Area to Find Probability. Area and Probability Chapter focus is on: Continuous random variables Normal distributions Figure 6-1 Section 6-1 Overview ( -1 e 2 x-µ σ ) 2 f(x) = σ 2 π Formula 6-1 Slide 1 Section 6-2 The Standard Normal Distribution Key

More information

Sections 6.1 and 6.2: Systems of Linear Equations

Sections 6.1 and 6.2: Systems of Linear Equations What is a linear equation? Sections 6.1 and 6.2: Systems of Linear Equations We are now going to discuss solving systems of two or more linear equations with two variables. Recall that solving an equation

More information

Section 8.5 The Normal Distribution

Section 8.5 The Normal Distribution Section 8.5 The Normal Distribution Properties of the Normal Distribution Curve 1. We denote the normal random variable with X = x. 2. The curve has a peak at x = µ. 3. The curve is symmetric about the

More information

Stat 101 Exam 1 Important Formulas and Concepts 1

Stat 101 Exam 1 Important Formulas and Concepts 1 1 Chapter 1 1.1 Definitions Stat 101 Exam 1 Important Formulas and Concepts 1 1. Data Any collection of numbers, characters, images, or other items that provide information about something. 2. Categorical/Qualitative

More information

Ingredients of Multivariable Change: Models, Graphs, Rates & 9.1 Cross-Sectional Models and Multivariable Functions

Ingredients of Multivariable Change: Models, Graphs, Rates & 9.1 Cross-Sectional Models and Multivariable Functions Chapter 9 Ingredients of Multivariable Change: Models, Graphs, Rates & 9.1 Cross-Sectional Models and Multivariable Functions For a multivariable function with two input variables described by data given

More information

Chapter 2 Solutions Page 15 of 28

Chapter 2 Solutions Page 15 of 28 Chapter Solutions Page 15 of 8.50 a. The median is 55. The mean is about 105. b. The median is a more representative average" than the median here. Notice in the stem-and-leaf plot on p.3 of the text that

More information

Chapter 3 Probability Distributions and Statistics Section 3.1 Random Variables and Histograms

Chapter 3 Probability Distributions and Statistics Section 3.1 Random Variables and Histograms Math 166 (c)2013 Epstein Chapter 3 Page 1 Chapter 3 Probability Distributions and Statistics Section 3.1 Random Variables and Histograms The value of the result of the probability experiment is called

More information

Chapter 5: Normal Probability Distributions

Chapter 5: Normal Probability Distributions Probability and Statistics Mrs. Leahy Chapter 5: Normal Probability Distributions 5.1 Introduction to Normal Distributions and the Standard Normal Distribution What is a Normal Distribution and a Normal

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Suhasini Subba Rao Review Our objective: to make confident statements about a parameter (aspect) in

More information

GRE Workshop Quantitative Reasoning. February 13 and 20, 2018

GRE Workshop Quantitative Reasoning. February 13 and 20, 2018 GRE Workshop Quantitative Reasoning February 13 and 20, 2018 Overview Welcome and introduction Tonight: arithmetic and algebra 6-7:15 arithmetic 7:15 break 7:30-8:45 algebra Time permitting, we ll start

More information

EXPERIMENT: REACTION TIME

EXPERIMENT: REACTION TIME EXPERIMENT: REACTION TIME OBJECTIVES to make a series of measurements of your reaction time to make a histogram, or distribution curve, of your measured reaction times to calculate the "average" or "mean"

More information

Chapter 23. Inference About Means

Chapter 23. Inference About Means Chapter 23 Inference About Means 1 /57 Homework p554 2, 4, 9, 10, 13, 15, 17, 33, 34 2 /57 Objective Students test null and alternate hypotheses about a population mean. 3 /57 Here We Go Again Now that

More information

Applied Statistics and Probability for Engineers. Sixth Edition. Chapter 4 Continuous Random Variables and Probability Distributions.

Applied Statistics and Probability for Engineers. Sixth Edition. Chapter 4 Continuous Random Variables and Probability Distributions. Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger Chapter 4 Continuous Random Variables and Probability Distributions 4 Continuous CHAPTER OUTLINE Random

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger Chapter 4 Continuous Random Variables and Probability Distributions 4 Continuous CHAPTER OUTLINE 4-1

More information

Solutions to Additional Questions on Normal Distributions

Solutions to Additional Questions on Normal Distributions Solutions to Additional Questions on Normal Distributions 1.. EPA fuel economy estimates for automobile models tested recently predicted a mean of.8 mpg and a standard deviation of mpg for highway driving.

More information

Looking at data: distributions - Density curves and Normal distributions. Copyright Brigitte Baldi 2005 Modified by R. Gordon 2009.

Looking at data: distributions - Density curves and Normal distributions. Copyright Brigitte Baldi 2005 Modified by R. Gordon 2009. Looking at data: distributions - Density curves and Normal distributions Copyright Brigitte Baldi 2005 Modified by R. Gordon 2009. Objectives Density curves and Normal distributions!! Density curves!!

More information

BARUCH COLLEGE MATH 2207 FALL 2007 MANUAL FOR THE UNIFORM FINAL EXAMINATION. No calculator will be allowed on this part.

BARUCH COLLEGE MATH 2207 FALL 2007 MANUAL FOR THE UNIFORM FINAL EXAMINATION. No calculator will be allowed on this part. BARUCH COLLEGE MATH 07 FALL 007 MANUAL FOR THE UNIFORM FINAL EXAMINATION The final eamination for Math 07 will consist of two parts. Part I: Part II: This part will consist of 5 questions. No calculator

More information

Sampling Distributions

Sampling Distributions Sampling Error As you may remember from the first lecture, samples provide incomplete information about the population In particular, a statistic (e.g., M, s) computed on any particular sample drawn from

More information

Chapter 6 Continuous Probability Distributions

Chapter 6 Continuous Probability Distributions Continuous Probability Distributions Learning Objectives 1. Understand the difference between how probabilities are computed for discrete and continuous random variables. 2. Know how to compute probability

More information

Free Fall. v gt (Eq. 4) Goals and Introduction

Free Fall. v gt (Eq. 4) Goals and Introduction Free Fall Goals and Introduction When an object is subjected to only a gravitational force, the object is said to be in free fall. This is a special case of a constant-acceleration motion, and one that

More information

Unit 4 Probability. Dr Mahmoud Alhussami

Unit 4 Probability. Dr Mahmoud Alhussami Unit 4 Probability Dr Mahmoud Alhussami Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping a coin, rolling a die or drawing a card from

More information

Module 8: Linear Regression. The Applied Research Center

Module 8: Linear Regression. The Applied Research Center Module 8: Linear Regression The Applied Research Center Module 8 Overview } Purpose of Linear Regression } Scatter Diagrams } Regression Equation } Regression Results } Example Purpose } To predict scores

More information

Chapter 9 Ingredients of Multivariable Change: Models, Graphs, Rates

Chapter 9 Ingredients of Multivariable Change: Models, Graphs, Rates Chapter 9 Ingredients of Multivariable Change: Models, Graphs, Rates 9.1 Multivariable Functions and Contour Graphs Although Excel can easily draw 3-dimensional surfaces, they are often difficult to mathematically

More information

23.3. Sampling Distributions. Engage Sampling Distributions. Learning Objective. Math Processes and Practices. Language Objective

23.3. Sampling Distributions. Engage Sampling Distributions. Learning Objective. Math Processes and Practices. Language Objective 23.3 Sampling Distributions Essential Question: How is the mean of a sampling distribution related to the corresponding population mean or population proportion? Explore 1 Developing a Distribution of

More information

Using Microsoft Excel

Using Microsoft Excel Using Microsoft Excel Objective: Students will gain familiarity with using Excel to record data, display data properly, use built-in formulae to do calculations, and plot and fit data with linear functions.

More information

Objective A: Mean, Median and Mode Three measures of central of tendency: the mean, the median, and the mode.

Objective A: Mean, Median and Mode Three measures of central of tendency: the mean, the median, and the mode. Chapter 3 Numerically Summarizing Data Chapter 3.1 Measures of Central Tendency Objective A: Mean, Median and Mode Three measures of central of tendency: the mean, the median, and the mode. A1. Mean The

More information

Sample Math Placement Exam Questions

Sample Math Placement Exam Questions Sample Math Placement Exam Questions This review is not intended to cover all of the material on the Math Placement Exam. Material on the Math Placement Exam that is not covered in this review includes:

More information

How many states. Record high temperature

How many states. Record high temperature Record high temperature How many states Class Midpoint Label 94.5 99.5 94.5-99.5 0 97 99.5 104.5 99.5-104.5 2 102 102 104.5 109.5 104.5-109.5 8 107 107 109.5 114.5 109.5-114.5 18 112 112 114.5 119.5 114.5-119.5

More information

Stat 400 section 4.1 Continuous Random Variables

Stat 400 section 4.1 Continuous Random Variables Stat 400 section 4. Continuous Random Variables notes by Tim Pilachowski Suppose we measure the heights of 5 people to the nearest inch and get the following results: height (in.) 64 65 66 67 68 69 70

More information

Descriptive Statistics and Probability Test Review Test on May 4/5

Descriptive Statistics and Probability Test Review Test on May 4/5 Descriptive Statistics and Probability Test Review Test on May 4/5 1. The following frequency distribution of marks has mean 4.5. Mark 1 2 3 4 5 6 7 Frequency 2 4 6 9 x 9 4 Find the value of x. Write down

More information

0613ia. Integrated Algebra Regents Exam Which expression represents 5 less than twice x? 1) 2) 3) 4)

0613ia. Integrated Algebra Regents Exam Which expression represents 5 less than twice x? 1) 2) 3) 4) 0613ia 1 Which expression represents 5 less than twice x? 2 Gabriella has 20 quarters, 15 dimes, 7 nickels, and 8 pennies in a jar. After taking 6 quarters out of the jar, what will be the probability

More information

Stochastic Modelling

Stochastic Modelling Stochastic Modelling Simulating Random Walks and Markov Chains This lab sheets is available for downloading from www.staff.city.ac.uk/r.j.gerrard/courses/dam/, as is the spreadsheet mentioned in section

More information

1.3: Describing Quantitative Data with Numbers

1.3: Describing Quantitative Data with Numbers 1.3: Describing Quantitative Data with Numbers Section 1.3 Describing Quantitative Data with Numbers After this section, you should be able to MEASURE center with the mean and median MEASURE spread with

More information

1. 8 x 10-9, 14.7 x 10-7, 0.22 x 10

1. 8 x 10-9, 14.7 x 10-7, 0.22 x 10 Black - Divide by Whole Numbers and Powers of 10 Scientific Notation (continued from last lesson) Order from least to greatest. 1. 8 x 10-9, 14.7 x 10-7, 0.22 x 10-10 You can multiply numbers in scientific

More information

PubHlth 540 Fall Summarizing Data Page 1 of 18. Unit 1 - Summarizing Data Practice Problems. Solutions

PubHlth 540 Fall Summarizing Data Page 1 of 18. Unit 1 - Summarizing Data Practice Problems. Solutions PubHlth 50 Fall 0. Summarizing Data Page of 8 Unit - Summarizing Data Practice Problems Solutions #. a. Qualitative - ordinal b. Qualitative - nominal c. Quantitative continuous, ratio d. Qualitative -

More information

(It's not always good, but we can always make it.) (4) Convert the normal distribution N to the standard normal distribution Z. Specically.

(It's not always good, but we can always make it.) (4) Convert the normal distribution N to the standard normal distribution Z. Specically. . Introduction The quick summary, going forwards: Start with random variable X. 2 Compute the mean EX and variance 2 = varx. 3 Approximate X by the normal distribution N with mean µ = EX and standard deviation.

More information

Math Check courseware for due dates for Homework, Quizzes, Poppers, Practice test and Tests

Math Check courseware for due dates for Homework, Quizzes, Poppers, Practice test and Tests Math 1311 Check courseware for due dates for Homework, Quizzes, Poppers, Practice test and Tests Previous lecture Example : Graph the function f (x) = 3 x x 2. a. Find a good window to view the piece from

More information

Ch. 3 Equations and Inequalities

Ch. 3 Equations and Inequalities Ch. 3 Equations and Inequalities 3.1 Solving Linear Equations Graphically There are 2 methods presented in this section for solving linear equations graphically. Normally I would not cover solving linear

More information

Sem. 1 Review Ch. 1-3

Sem. 1 Review Ch. 1-3 AP Stats Sem. 1 Review Ch. 1-3 Name 1. You measure the age, marital status and earned income of an SRS of 1463 women. The number and type of variables you have measured is a. 1463; all quantitative. b.

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math 1332 Exam Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the cardinal number for the set. 1) {8, 10, 12,..., 66} 1) Are the sets

More information

MathB65 Ch 1 I,II,III, IV.notebook. August 23, 2017

MathB65 Ch 1 I,II,III, IV.notebook. August 23, 2017 Chapter 1: Expressions, Equations and Inequalities I. Variables & Constants II. Algebraic Expressions III. Translations IV. Introduction to Equations V. The Additive/Multiplication Principles VI. Strategy

More information

Chapter 1 Introduction & 1.1: Analyzing Categorical Data

Chapter 1 Introduction & 1.1: Analyzing Categorical Data Chapter 1 Chapter 1 Introduction & 1.1: Analyzing Categorical Data Population Sample Make an inference about the population. Collect data from a representative sample... Perform Data Analysis, keeping

More information

L06. Chapter 6: Continuous Probability Distributions

L06. Chapter 6: Continuous Probability Distributions L06 Chapter 6: Continuous Probability Distributions Probability Chapter 6 Continuous Probability Distributions Recall Discrete Probability Distributions Could only take on particular values Continuous

More information

Francine s bone density is 1.45 standard deviations below the mean hip bone density for 25-year-old women of 956 grams/cm 2.

Francine s bone density is 1.45 standard deviations below the mean hip bone density for 25-year-old women of 956 grams/cm 2. Chapter 3 Solutions 3.1 3.2 3.3 87% of the girls her daughter s age weigh the same or less than she does and 67% of girls her daughter s age are her height or shorter. According to the Los Angeles Times,

More information

9/19/2012. PSY 511: Advanced Statistics for Psychological and Behavioral Research 1

9/19/2012. PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 The aspect of the data we want to describe/measure is relative position z scores tell us how many standard deviations above or below

More information

STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA II. 2 nd Nine Weeks,

STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA II. 2 nd Nine Weeks, STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA II 2 nd Nine Weeks, 2016-2017 1 OVERVIEW Algebra II Content Review Notes are designed by the High School Mathematics Steering Committee as a resource

More information

Essential Question: What are the standard intervals for a normal distribution? How are these intervals used to solve problems?

Essential Question: What are the standard intervals for a normal distribution? How are these intervals used to solve problems? Acquisition Lesson Planning Form Plan for the Concept, Topic, or Skill Normal Distributions Key Standards addressed in this Lesson: MM3D2 Time allotted for this Lesson: Standard: MM3D2 Students will solve

More information

MODULE 9 NORMAL DISTRIBUTION

MODULE 9 NORMAL DISTRIBUTION MODULE 9 NORMAL DISTRIBUTION Contents 9.1 Characteristics of a Normal Distribution........................... 62 9.2 Simple Areas Under the Curve................................. 63 9.3 Forward Calculations......................................

More information

Math 140 Introductory Statistics

Math 140 Introductory Statistics Math 140 Introductory Statistics Professor Silvia Fernández Chapter 2 Based on the book Statistics in Action by A. Watkins, R. Scheaffer, and G. Cobb. Visualizing Distributions Recall the definition: The

More information

Math 140 Introductory Statistics

Math 140 Introductory Statistics Visualizing Distributions Math 140 Introductory Statistics Professor Silvia Fernández Chapter Based on the book Statistics in Action by A. Watkins, R. Scheaffer, and G. Cobb. Recall the definition: The

More information

6.2A Linear Transformations

6.2A Linear Transformations 6.2 Transforming and Combining Random Variables 6.2A Linear Transformations El Dorado Community College considers a student to be full time if he or she is taking between 12 and 18 credits. The number

More information

Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data

Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data Chapter 2: Summarising numerical data Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data Extract from Study Design Key knowledge Types of data: categorical (nominal and ordinal)

More information

How to Run the Analysis: To run a principal components factor analysis, from the menus choose: Analyze Dimension Reduction Factor...

How to Run the Analysis: To run a principal components factor analysis, from the menus choose: Analyze Dimension Reduction Factor... The principal components method of extraction begins by finding a linear combination of variables that accounts for as much variation in the original variables as possible. This method is most often used

More information

8: Statistical Distributions

8: Statistical Distributions : Statistical Distributions The Uniform Distribution 1 The Normal Distribution The Student Distribution Sample Calculations The Central Limit Theory Calculations with Samples Histograms & the Normal Distribution

More information

Electric Fields and Equipotentials

Electric Fields and Equipotentials OBJECTIVE Electric Fields and Equipotentials To study and describe the two-dimensional electric field. To map the location of the equipotential surfaces around charged electrodes. To study the relationship

More information

Stat 20 Midterm 1 Review

Stat 20 Midterm 1 Review Stat 20 Midterm Review February 7, 2007 This handout is intended to be a comprehensive study guide for the first Stat 20 midterm exam. I have tried to cover all the course material in a way that targets

More information

Lab: Newton s Second Law

Lab: Newton s Second Law Ph4_ConstMass2ndLawLab Page 1 of 9 Lab: Newton s Second Law Constant Mass Equipment Needed Qty Equipment Needed Qty 1 Mass and Hanger Set (ME-8967) 1 Motion Sensor (CI-6742) 1 String (SE-8050) 1 m Balance

More information