Solving the Problem of the Compressible Fluid Flow around Obstacles by an Indirect Approach with Vortex Distribution and Linear Boundary Elements

Size: px
Start display at page:

Download "Solving the Problem of the Compressible Fluid Flow around Obstacles by an Indirect Approach with Vortex Distribution and Linear Boundary Elements"

Transcription

1 Lumta Grecu Sov the Probem of the ompressbe Fud Fow aroud Obstaces b a Idrect Approach wth Vorte Dstrbuto ad Lear Boudar Eemets LUMINITA GREU Departmet of Apped Sceces, Navato ad Evromet Protecto Facut of Eeer ad Maaemet of Techooca Sstems, Dr Tr Sever, Uverst of raova st auare street, Dr Tr Sever, 37 ROMANIA umrecu@hotma.com Abstract: - I the preset paper there s preseted a souto wth ear boudar eemets of araea tpe for the suar boudar tera equato obtaed b a drect techque wth vorte dstrbuto for the bdmesoa compressbe fud fow aroud bodes. The suar boudar tera equato the probem s reduced at s formuated terms of prmar varabes-the compoets of the veoct o the boudar. Numerca soutos for the compoets of the veoct ad the oca pressure coeffcet are obtaed, for dfferet tpes of obstaces, wth some computer codes made MATHAD, based o the method eposed. For some partcuar cases, whe aatca soutos est a comparso stud betwee the umerca soutos ad the eact oes s aso doe. It ca be see, from the raphcs obtaed, that the umerca soutos are ood areemet wth the eact soutos of the probem. The paper s aso focused o a comparso stud betwee the umerca soutos obtaed whe the drect method wth sources dstrbuto s used ad the umerca souto preseted ths paper whe boudar eemets of same tpe are used for sov both suar boudar tera equatos. Ke-Words: - ompressbe fud fow, boudar eemet method, vorte dstrbuto, ear boudar eemets. INTRODUTION For sov boudar vaues probems for sstems of parta dffereta equatos dfferet umerca methods ca be used. Most of them are abe to fd the soutos b us the dffereta equatos as the are ve, wthout a further mathematca mapuato. The appromate the dffereta operators the equatos b smper oes vad at a seres of odes wth the reo, ke the fte dfferece method, or the represet the reo tsef b fte eemets whch are assembed to provde a appromato of the sstem voved, ke the fte eemet methods. The Boudar Eemet Method (BEM), aso kow as the Boudar Itera Method, s a moder umerca techque whch ca be cuded, toether wth the Fte Eemet Method, the are cass of Gaerk methods. These are a cass of methods for covert a cotuous operator probem to a dscrete probem. I pre, ths s doe b covert the equato to a weak formuato. There est two pra techques of app BEM method: the drect BEM method; the drect BEM method. Both of these methods offer the pra advatae of the BEM over other umerca methods - the abt to reduce the probem dmeso b oe. Ths propert s advataeous as t reduces the sze of the sstem the probem s equvaet wth, ad so mproves computatoa effcec. Whe sov a probem wth ths method two mportat steps have to be made: frst, we must obta a equvaet boudar formuato for the probem voved, fact a boudar tera equato or a sstem of boudar tera equatos, ad the, ths boudar tera equato whch ISSN: Issue 7, Voume 7, Ju 8

2 Lumta Grecu usua s a suar oe must be soved. For sov the boudar tera equato ma tpes of boudar eemets ca be used: costat, ear quadratc or hher order boudar eemets. The Boudar Eemet Method reduces the probem to a sstem of ear equatos (see [], [], [3]), ad further the probem ca be soved wth a computer. The am of the paper s to sove the probem of the compressbe fud fow aroud a obstace us a boudar eemet approach based o the drect method wth a vorte dstrbuto, ad to sove the suar boudar equato that resuts wth ear soparametrc boudar eemets of Laraea tpe.. Advataes brouht b app BEM wth vorte dstrbuto The probem has bee studed b ma authors, wth dfferet kds of techques. There have bee made dfferet assumptos for smpf the mathematca mode of the probem. Some ear techques dea wth the case of the compressbe fud fow ad use ear equatos, ear boudar codtos ad sometmes the boudar codto was satsfed ot o the boudar but o the chord of the profe. B app the BEM to sove ths probem o the frst assumpto s st use. So the BEM uses the oear boudar codto whch s satsfed o the obstace s boudar, ot o ts chord. The BEM was frst apped o for the compressbe case ad the boudar tera formuato was obtaed terms of poteta fucto or stream fucto. The measures of terest for the probem, ke the veoct for eampe, were obtaed after evauat the dervatves of the ukows of the probem, ad so, ew errors were troduced at ths stae. The BEM wth vorte dstrbuto, preseted ths paper, besdes the advataes brouht b the BEM, offers aso the advatae that deas wth the compressbe case ad eads to a boudar formuato of the probem terms of prmar varabes-the compoets of the veoct fed emat so the errors that coud appear b evauat the dervatves, ad br so more accurac to the umerca souto. We frst preset the probem to sove: a uform, stead, poteta moto of a dea vscd fud of subsoc veoctu, pressure p ad dest ρ s perturbed b the presece of a fed bod of a kow boudar, oted, assumed to be smooth ad cosed. We wat to fd out the perturbed moto, ad the fud acto over the bod. Deot b v the perturbato veoct (u, v ts compoets ao the aes) ad us dmesoess varabes we have the foow mathematca mode: u v + v u = = wth the boudar codto: ( β u) + β v = +, () o, () where s the orma ut vector outward the fud, β has the usua sfcato, β = M, ad M the Mach umber for the uperturbed moto. It s aso requred that the perturbato veoct vashes at ft: m v =. 3. The boudar tera equato - vorte dstrbuto The fudameta souto of vorte tpe s the souto of the foow sstem (see [6] ): * * u v + = * * v u = δ ( ξ, η ) Its ame comes from the fact that the perturbato produced b the presece of δ appears the secod equato of (), equato whch epresses the fact that the perturbed moto s rrotatoa, ad t has the foow epresso (see[6]): ISSN: Issue 7, Voume 7, Ju 8

3 Lumta Grecu u v * * = = η ( ξ ) + ( η) ξ ( ξ ) + ( η) Appromat the boudar wth a cotuous dstrbuto of such fudameta soutos, hav the ukow test ( ), the compoets of the perturbato veoct for a pot stuated the fud doma are frst foud. The are ve b the formuas: u v ( ξ ) = ( ) ( ξ ) = ( ) η ds ξ ξ ξ For obta the compoets of the perturbato veoct we must take the mt of the above teras for ξ, a reuar pot o the boudar. As t ca be observed, the above teras are suar for such pots. It s ecessar to use the cocept of the auch Pra Vaue of a tera for dea wth the suar teras see for eampe []. Ths cocept s defed ma books ad ts defto s ver smpe ad atura. F.. For evauate the mt of a tera that has a suart we have to soate ths pot wth a crce of a ver sma radus, oted ε, that tersect ds the cosdered boudar ao the arc, oted c. So we have: = +. c If, forε, the tera c teds to a fte c mt, the the mt s caed the PV of the tera. Not wth the prm s the PV of a tera, we have the reato: ' = m ε c. Assum that s a H o.. der fucto o, [6] s obtaed a tera formuato for the probem. the compoets of the perturbato veoct for a reuar pot o the boudar are foud. The are ve b the foow epressos: u v ( ) = ( ) + ( ) ( ) = ( ) ( ) where, ' ' ds (3) ds are the compoets of the orma ut vector outward the fud evauated at. Us the boudar codto the suar boudar equato s deduced ad has the foow form: M = β ( ) + ( ) ' β ( ) ( ) ds = wth the same otatos as before. The oa of ths paper s to sove the suar boudar tera (4) us boudar eemets that offer a oba cotut for the ukow of the probem, so for the ukow test. For sov tera equatos method of successve appromato, orthooa poomas, or Krov subspaces ca be used for eampe. I case of sov suar boudar tera equatos or more eera, suar boudar terodffereta equatos, appromate soutos ca be ( 4) ISSN: Issue 7, Voume 7, Ju 8

4 Lumta Grecu obtaed b us the coocato method as [4]ad [5]. For the suar boudar tera equato (4) [8] a coocato method s used ad ood umerca resuts are obtaed. 4. Lear boudar eemets for sov the suar boudar era equato I ths paper, order to sove the suar boudar tera equato (4) we use ear soparametrc boudar eemets of Laraea tpe (see [], [], [3]). We choose N odes o the boudar, so o, ad we appromate the boudar wth a pooa e hav the semets, =,N ad the etremes: (, ) ad (, ) a oca umber sstem. We have reatos: (, ) = ( +, + ), N ad (, N ) N = (, ), cotour be cosed. L = ϕ + ϕ = ϕ + ϕ, t [, ], (5) where ϕ,ϕ are the shape fuctos ve b: ( t ) = t, ϕ ( t = t ϕ ). (6) Us soparametrc boudar eemets we have, for the ukow, the oca represetato: where = ϕ + ϕ, (7), are the oda vaues of the ukow, t meas the vaues of at the etremes of the boudar eemet, the oca umber. L These vaues satsf the reatos: = +, N, ad N =. For smpf the wrt we sha ot use the prm s to specf that a tera must be uderstad ts auch sese. For =, =, N equato (4) we obta a aebrac sstem of N equatos each of them of the foow form: M ` N + = L ( ϕ + ϕ ) + β ( ) ( ) (8) ds = β F.. A soparametrc boudar eemet uses the same shape fuctos for oca descrbe theukow ad the eometr of the eemet. For descrbe the eometr of a boudar eemet we use a oca sstem of coordates whch has the or the frst ode of a eemet, ad so we have the reatos: 5. oeffcets evauato a b Wth the otatos: β = ϕ L β = ϕ L ( ) ( ) ( ) ( ) ds, we et the foow equvaet form for (8): ds (9) ISSN: Issue 7, Voume 7, Ju 8

5 Lumta Grecu N = N a + b = = β, () c =. where: a = a for ( M ) a = a +, ad,, =, N. () After do some cacuous we et the foow reatos for the above coeffcets: a [ + t( )] β = ( t) dt at + bt ( t) [ + t( )] dt = at + bt [( ) I + ( + ) I ( ) I ] β = β b [( ) I + ( + ) I ] ( ) I β = t t β = Wth teras: I [ + t( )] at + bt [ + t( )] at + bt [( ) I + ( ) I ] [( ) ( I + ) I ] I k, k =,, k t = dt, k =,, at + bt dt = dt () we have oted the foow k, where a =, ( )( ) + ( )( ) b =, For the compoets of the the orma ut vector we use the reatos: =, =, = N. (3), A computer code ca be use to evaute these teras but, for mtt the errors that appare because of the umerca approach, the osuar teras are computed aatca ad for the suar oes the defto of the auch Pra Vaue s used. a) The osuar case For whe =, N ad N whe =, we et the foow epressos: I I I = ac b arct a + b = a c a ac b c + b b ac b, arct ac b c + b b a + b b ac = + I. (4) a a c a b) The suar case For = ( =, N ) ad for = N whe =, so for the suar teras that appear we et: I = I =, ad I =. (5) Achev ths stae we ca observe a mportat aspect: a the coeffcets () ca be aatca evauated ad the deped o o the coordates of the odes chose for the boudar dscretzato. Retur to the oba sstem of otato, so cosdr that: = + = + for =, N, N = =, ad ot:, ISSN: Issue 7, Voume 7, Ju 8

6 Lumta Grecu A A + = a + b for = N,, = a bn ad T β, = =, N (6) we deduce the foow equvaet epresso for sstem (): N A = T, =, N. (7) = For evauat the suar teras that appeare whe sov secod order eptc equato of Posso tpe, for the three dmesoa case, wth Boudar Eemet Method, a appromate techque based o the auto sod ae evauato ca be used as []. 6. Evauat the oda vaues of the veoct s compoets ad of the oca pressure coeffcet o the boudar After sov ths sstem ad fd the oda vaues for the ukow fucto, fact the oda vaues of the vorte testes, oted, =, N, the compoets of the veoct o the boudar (for the ode, =, N ) ca be evauated start from formuas (3). Wth the same otatos as before we et the foow epressos: u = N + = N + v = = N N = = + [( ) I + ( + ) I ( ) I ] [( ) I + ( ) I ], ( 8) + [( ) I + ( + ) I ( ) I ] [( ) I + ( ) I ]. ( 9) We ca compute the fud veoct for dfferet + po.ts of the fud doma too us the dscretzated epressos of (3). Reard the fud acto over the bod, we ca evauate the oca pressure coeffcet, oted c p, us the reato: c p = u v u. () Ths coeffcet s oe of reat mportace for the probem because t s used to obta the ft force. It s kow that for profes wth smooth boudar the ft force does t appear because of the same vaues of the oca pressure coeffcet o the tra ad etrados of the profe. It s mportat to specf that a the coeffcets sstem (7) have aatca epressos ad therefore o errors are troduced for ther evauatos. A these coeffcets deped o o the coordates of the odes used for the boudar dscretzato, ad so, t ca be use a computer code to sove the probem. 7. Numerca resuts ad cocusos For sov sstem (7) ad for evauat the fud veoct ad the oca pressure coeffcets there s deveoped a computer code MATHAD that uses reatos (8), (9), (). These umerca soutos are compared wth the eact soutos that est for the partcuar case of a crcuar obstace ad a compressbe fud (M=). I [7] the bdmesoa probem of the compressbe fud fow aroud a crcuar obstace + s eact soved. The epressos of the compoets of the perturbed fud veoct are obtaed ad the are ve b the foow reatos: u = U cos θ, v = U s θ For the dmesoess compoets we et: u = cosθ, v = s θ, () ad further, for the oca pressure coeffcet, the foow epresso: = os θ. () Aother computer code ves us the souto for ths case. Both prorams ca be ru for dfferet umber of odes used for the boudar dscretzato. ISSN: Issue 7, Voume 7, Ju 8

7 Lumta Grecu For the case whe we use odes for the dscretzato the soutos obtaed are represeted the foow raphcs. I F. 3. there are represeted the vaues obtaed for the veoct compoet ao the O as. I F. 4. there are represeted the vaues obtaed for the veoct compoet ao the O as. The pressure coeffcet s represeted F. 5. The umerca souto s ood areemet wth the eact oe. We ca verf wth ths raphc a we kow resut too: the crcuar obstace s a o-ft profe because of the oca pressure coeffcet smmetr. For correspod odes o the upper ad the ower boudar t takes the same vaue. As we kow ths s a cosequece of the fact that the aazed profe has a smooth boudar. v,5,5 -, v v eact v ear,5,5 -,5 - -,5 - -,5, odes F. 5. The oca pressure coeffcet for the case of vorte dstrbuto wth ear boudar eemets, ad the eact souto. As we ca see from the raphcs the umerca soutos are ood areemet wth the eact souto, ad a sma umber of eemets () s suffcet for obta satsfactor resuts. As t s atura the umerca souto s fueced b the umber of odes chose for the boudar dscretzato. We ca observe ths from the foow raphcs where the oda vaues of the oca pressure coeffcet are performed for dfferet umber of odes o the boudar. There were cosdered, 5, 5, ad 3 odes for the boudar dscretzato. eact ear -,5 odes F. 3. The veoct ao the O as: case of vorte dstrbuto wth ear boudar eemets ad the eact souto ,5 v - - vorte eact,5-4 v -, v eact v ear odes F. 6. The oca pressure coeffcet for the case of odes: umerca souto ad eact souto. - -,5 odes F. 4. The veoct ao the O as: case of vorte dstrbuto wth ear boudar eemets ad the eact souto. ISSN: Issue 7, Voume 7, Ju 8

8 Lumta Grecu,5,5 the errors that appear each of the above cases. We otce that these vaues decrease wth the rowth of the odes umber. -, errors - -,5 - -,5,5 odes vorte eact ma error,6,4,,8,6 errors F. 7. The oca pressure coeffcet for the case of 5 odes: umerca souto ad eact souto.,4, umber of odes,5,5 -,5 - -,5 - -,5, odes vorte eact F. 8. The oca pressure coeffcet for the case of 5 odes: umerca souto ad eact souto.,5,5 -,5 - -,5 - -,5, odes vorte eact F. 7. The oca pressure coeffcet for the case of 3 odes: umerca souto ad eact souto. As epected, better resuts are obtaed whe us more odes o the boudar, but the resuts are ver ood whe us, 5 ad 3 odes. For better observ the umerca souto mprovemet brouht b the rowth umber of odes we cosder F. 8 the mamum vaues for F. 8. The mamum errors for, 5,, 5 ad 3 odes o the boudar. We ca aso see from the raphc that a umber of odes ber tha for the boudar dscretzato does ot ead to a substata mprovemet so much that to ustf the computatoa effort. It appears reasoabe to epect better resuts b us hher order boudar eemets for sov the suar boudar tera equato because the aow a better appromato of the eometr, I paper [9] the boudar tera equato, obtaed as a equvaet form for the voved probem, b app the drect method wth sources dstrbuto of ukow testes, s soved wth ear soparametrc boudar eemets of Laraea tpe. I the same paper the umerca souto s compared to the eact oe for the same partcuar case: the crcuar obstace ad the compressbe fud, ad there were obtaed ood resuts. For the boudar dscretzato there were aso used odes. I the foow pararaphs the umerca souto obtaed ths paper s compared to the eact oe, ad to the oe obtaed case of sources dstrbuto, for the metoed partcuar case-the crcuar obstace. The comparso stud s made throuh the oca pressure coeffcet,. I the foow raphcs we perform the eact oda vaues of ad the umerca oes obtaed wth sources dstrbuto ad vorte dstrbuto ad the errors that appear each case order to see whch of the two umerca soutos offers a better resut. ISSN: Issue 7, Voume 7, Ju 8

9 Lumta Grecu,5,5 -,5 - -,5 - -,5, eact sorces vorte F. 9. The oca pressure coeffcet: eact souto, sources dstrbuto ad vorte dstrbuto. The errors that appear are represeted the foow raph. Because of the smmetr of the profe the umerca souto s aso smmetrca ad so the errors are. error vaue,6,5,4,3, errors error v error s,6,5,4,3,, error v ma. errors error s errors F.. The mamum errors for the case of vorte ad sources dstrbuto. The umerca resuts preseted the above pararaphs show that the drect boudar eemet method wth vorte dstrbuto ad ear boudar eemets offers for the probem of the compressbe fud fow aroud a obstace a better souto tha the oe that uses a sources dstrbuto ad ear boudar eemets, ad ver ood resuts for a qute sma umber of dscretzato odes. Wth the same computer code based o the method preseted ths paper, umerca soutos ca be obtaed for a kd of compressbe fud fows, for dfferet vaues of Mach umber, ot o for the compressbe case, ad for other kds of obstaces wth smooth boudares too.,, odes F.. The errors betwee the eact oda vaues of the oca pressure coeffcet ad the umerca oes obtaed: wth vorte dstrbuto (error v) ad sources dstrbuto (error s). As we ca see the errors obtaed whe the obstace s boudar s assmated wth a vorte dstrbuto are smaer tha the errors obtaed case of the sources dstrbuto for ma odes ( from odes) ad aso there s a b dfferece betwee the two mamum errors vaues obtaed these cases. Ths ca be better otce from the foow fure. Refereces: [] Brebba. A., Tees J.. F., Wobe L.., Boudar Eemet Theor ad Appcato Eeer, Sprer-Vera, Ber,984. [] Brebba. A., Waker S., Boudar Eemet Techques Eeer Butterworths, Lodo 98 [3] Boe M., Boudar tera equato methods for sods ad fuds, Joh We ad Sos, 995. [4] araus I., Mastoraks N. E., The Numerca Souto for Suar Itero- Dffereta Equatos Geerazed Hoder Spaces, Wseas Trasacto o Mathematcs, Issue 5, vo 5, Ma 6, pa [5] araus I., Mastoraks N. E., overece of the coocato methods for suar terodffereta equatos Lebesue spaces, Wseas Trasacto o Mathematcs, Issue, vo 6, November 7, pa ISSN: Issue 7, Voume 7, Ju 8

10 Lumta Grecu [6] Draoş L., Mathematca Methods Aerodamcs, Ed. Academe Româe, Bucureşt. [7] Draoş L., Fud Mechacs Vo.. Geera Theor. The Idea Icompressbe Fud (Mecaca Fudeor Vo. Teora Geeraă Fudu Idea Icompresb) Edtura Academe Româe, Bucureşt, 999. [8] Grecu L., Ph.D. these: Boudar eemet method apped fud mechacs, Uverst of Bucharest, Facut of Mathematcs, 4. [9] Grecu L., A Souto of the Boudar Itera Equato of the Theor of the Ifte Spa Arfo Subsoc Fow wth Lear Boudar Eemets, Aas of Bucharest Uverst, Mathematcs, Year LII, Nr. (3), pp [] Lfaov I. K., Suar tera equatos ad dscrete vortces, VSP, Utrecht, TheNetherads, 996. [] Rubo D, Troparevsk M.I., O the appromato of the auto sod ae for sov tera eqautos", Wseas Trasacto o Mathematcs, Issue, vo 3, Jauar 4, pa 3 ISSN: Issue 7, Voume 7, Ju 8

Different Kinds of Boundary Elements for Solving the Problem of the Compressible Fluid Flow around Bodies-a Comparison Study

Different Kinds of Boundary Elements for Solving the Problem of the Compressible Fluid Flow around Bodies-a Comparison Study Proceedgs of the Word Cogress o Egeerg 8 Vo II WCE 8, Ju - 4, 8, Lodo, U.K. Dfferet Kds of Boudar Eemets for Sovg the Probem of the Compressbe Fud Fow aroud Bodes-a Comparso Stud Lumta Grecu, Gabrea Dema

More information

Finsler Geometry & Cosmological constants

Finsler Geometry & Cosmological constants Avaabe oe at www.peaaresearchbrary.com Peaa esearch Lbrary Advaces Apped Scece esearch, 0, (6):44-48 Fser Geometry & Cosmooca costats. K. Mshra ad Aruesh Padey ISSN: 0976-860 CODEN (USA): AASFC Departmet

More information

A stopping criterion for Richardson s extrapolation scheme. under finite digit arithmetic.

A stopping criterion for Richardson s extrapolation scheme. under finite digit arithmetic. A stoppg crtero for cardso s extrapoato sceme uder fte dgt artmetc MAKOO MUOFUSHI ad HIEKO NAGASAKA epartmet of Lbera Arts ad Sceces Poytecc Uversty 4-1-1 Hasmotoda,Sagamara,Kaagawa 229-1196 JAPAN Abstract:

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Joura of Mathematca Sceces: Advaces ad Appcatos Voume 4 umber 2 2 Pages 33-34 COVERGECE OF HE PROJECO YPE SHKAWA ERAO PROCESS WH ERRORS FOR A FE FAMY OF OSEF -ASYMPOCAY QUAS-OEXPASVE MAPPGS HUA QU ad S-SHEG

More information

Fourth Order Four-Stage Diagonally Implicit Runge-Kutta Method for Linear Ordinary Differential Equations ABSTRACT INTRODUCTION

Fourth Order Four-Stage Diagonally Implicit Runge-Kutta Method for Linear Ordinary Differential Equations ABSTRACT INTRODUCTION Malasa Joural of Mathematcal Sceces (): 95-05 (00) Fourth Order Four-Stage Dagoall Implct Ruge-Kutta Method for Lear Ordar Dfferetal Equatos Nur Izzat Che Jawas, Fudzah Ismal, Mohamed Sulema, 3 Azm Jaafar

More information

MMJ 1113 FINITE ELEMENT METHOD Introduction to PART I

MMJ 1113 FINITE ELEMENT METHOD Introduction to PART I MMJ FINITE EEMENT METHOD Cotut requremets Assume that the fuctos appearg uder the tegral the elemet equatos cota up to (r) th order To esure covergece N must satsf Compatblt requremet the fuctos must have

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics CS56 Itro to Computer Graphcs Geometrc Modelg art II Geometrc Modelg II hyscal Sples Curve desg pre-computers Cubc Sples Stadard sple put set of pots { } =, No dervatves specfed as put Iterpolate by cubc

More information

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES FDM: Appromato of Frst Order Dervatves Lecture APPROXIMATION OF FIRST ORDER DERIVATIVES. INTRODUCTION Covectve term coservato equatos volve frst order dervatves. The smplest possble approach for dscretzato

More information

Some Applications of the Resampling Methods in Computational Physics

Some Applications of the Resampling Methods in Computational Physics Iteratoal Joural of Mathematcs Treds ad Techoloy Volume 6 February 04 Some Applcatos of the Resampl Methods Computatoal Physcs Sotraq Marko #, Lorec Ekoom * # Physcs Departmet, Uversty of Korca, Albaa,

More information

Computational learning and discovery

Computational learning and discovery Computatoa earg ad dscover CSI 873 / MAH 689 Istructor: I. Grva Wedesda 7:2-1 pm Gve a set of trag data 1 1 )... ) { 1 1} fd a fucto that ca estmate { 1 1} gve ew ad mmze the frequec of the future error.

More information

Optimal Constants in the Rosenthal Inequality for Random Variables with Zero Odd Moments.

Optimal Constants in the Rosenthal Inequality for Random Variables with Zero Odd Moments. Optma Costats the Rosetha Iequaty for Radom Varabes wth Zero Odd Momets. The Harvard commuty has made ths artce opey avaabe. Pease share how ths access beefts you. Your story matters Ctato Ibragmov, Rustam

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodyamcs I UNIT C: 2-D Arfols C-1: Aerodyamcs of Arfols 1 C-2: Aerodyamcs of Arfols 2 C-3: Pael Methods C-4: Th Arfol Theory AE301 Aerodyamcs I Ut C-3: Lst of Subects Problem Solutos?

More information

Arithmetic Mean and Geometric Mean

Arithmetic Mean and Geometric Mean Acta Mathematca Ntresa Vol, No, p 43 48 ISSN 453-6083 Arthmetc Mea ad Geometrc Mea Mare Varga a * Peter Mchalča b a Departmet of Mathematcs, Faculty of Natural Sceces, Costate the Phlosopher Uversty Ntra,

More information

Sampling Theory MODULE V LECTURE - 14 RATIO AND PRODUCT METHODS OF ESTIMATION

Sampling Theory MODULE V LECTURE - 14 RATIO AND PRODUCT METHODS OF ESTIMATION Samplg Theor MODULE V LECTUE - 4 ATIO AND PODUCT METHODS OF ESTIMATION D. SHALABH DEPATMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOG KANPU A mportat objectve a statstcal estmato procedure

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation PGE 30: Formulato ad Soluto Geosystems Egeerg Dr. Balhoff Iterpolato Numercal Methods wth MATLAB, Recktewald, Chapter 0 ad Numercal Methods for Egeers, Chapra ad Caale, 5 th Ed., Part Fve, Chapter 8 ad

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

MATRIX ANALYSIS OF ANCHORED STRUCTURES

MATRIX ANALYSIS OF ANCHORED STRUCTURES SES It Cof o DMIL SSEMS ad COOL ece Ita oveber - pp-8 M LSIS OF CHOED SES IOS MSOIS Head of the Departet of Coputer Scece Mtar Ist of verst Educato / Heec ava cade era Hatraou 8 Praeus GEECE http://wwwwseasorg/astoras

More information

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean Research Joural of Mathematcal ad Statstcal Sceces ISS 30 6047 Vol. 1(), 5-1, ovember (013) Res. J. Mathematcal ad Statstcal Sc. Comparso of Dual to Rato-Cum-Product Estmators of Populato Mea Abstract

More information

1. A real number x is represented approximately by , and we are told that the relative error is 0.1 %. What is x? Note: There are two answers.

1. A real number x is represented approximately by , and we are told that the relative error is 0.1 %. What is x? Note: There are two answers. PROBLEMS A real umber s represeted appromately by 63, ad we are told that the relatve error s % What s? Note: There are two aswers Ht : Recall that % relatve error s What s the relatve error volved roudg

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

Evaluation of uncertainty in measurements

Evaluation of uncertainty in measurements Evaluato of ucertaty measuremets Laboratory of Physcs I Faculty of Physcs Warsaw Uversty of Techology Warszawa, 05 Itroducto The am of the measuremet s to determe the measured value. Thus, the measuremet

More information

Linear models for classification

Linear models for classification CS 75 Mache Lear Lecture 9 Lear modes for cassfcato Mos Hausrecht mos@cs.ptt.edu 539 Seott Square ata: { d d.. d} d Cassfcato represets a dscrete cass vaue Goa: ear f : X Y Bar cassfcato A speca case he

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

Analysis of Lagrange Interpolation Formula

Analysis of Lagrange Interpolation Formula P IJISET - Iteratoal Joural of Iovatve Scece, Egeerg & Techology, Vol. Issue, December 4. www.jset.com ISS 348 7968 Aalyss of Lagrage Iterpolato Formula Vjay Dahya PDepartmet of MathematcsMaharaja Surajmal

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

Objectives of Multiple Regression

Objectives of Multiple Regression Obectves of Multple Regresso Establsh the lear equato that best predcts values of a depedet varable Y usg more tha oe eplaator varable from a large set of potetal predctors {,,... k }. Fd that subset of

More information

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations Dervato of -Pot Block Method Formula for Solvg Frst Order Stff Ordary Dfferetal Equatos Kharul Hamd Kharul Auar, Kharl Iskadar Othma, Zara Bb Ibrahm Abstract Dervato of pot block method formula wth costat

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Evaluating new varieties of wheat with the application of Vague optimization methods

Evaluating new varieties of wheat with the application of Vague optimization methods Evauatg ew varetes of wheat wth the appcato of Vague optmzato methods Hogxu Wag, FuJ Zhag, Yusheg Xu,3 Coege of scece ad egeerg, Coege of eectroc formato egeerg, Qogzhou Uversty, aya Haa 570, Cha. zfj5680@63.com,

More information

Band structure calculations

Band structure calculations Bad structure cacuatos group semar 00-0 Georg Wrth Isttut für Laser Physk Jauary 00 Motvato attce ad stab. aser are outcouped from SM-PM-fber Mcheso terferometer braches overap uder 90 attce forms overappg

More information

PHYS Look over. examples 2, 3, 4, 6, 7, 8,9, 10 and 11. How To Make Physics Pay PHYS Look over. Examples: 1, 4, 5, 6, 7, 8, 9, 10,

PHYS Look over. examples 2, 3, 4, 6, 7, 8,9, 10 and 11. How To Make Physics Pay PHYS Look over. Examples: 1, 4, 5, 6, 7, 8, 9, 10, PHYS Look over Chapter 9 Sectos - Eamples:, 4, 5, 6, 7, 8, 9, 0, PHYS Look over Chapter 7 Sectos -8 8, 0 eamples, 3, 4, 6, 7, 8,9, 0 ad How To ake Phscs Pa We wll ow look at a wa of calculatg where the

More information

EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM

EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM Jose Javer Garca Moreta Ph. D research studet at the UPV/EHU (Uversty of Basque coutry) Departmet of Theoretcal

More information

PART ONE. Solutions to Exercises

PART ONE. Solutions to Exercises PART ONE Soutos to Exercses Chapter Revew of Probabty Soutos to Exercses 1. (a) Probabty dstrbuto fucto for Outcome (umber of heads) 0 1 probabty 0.5 0.50 0.5 Cumuatve probabty dstrbuto fucto for Outcome

More information

Supervised learning: Linear regression Logistic regression

Supervised learning: Linear regression Logistic regression CS 57 Itroducto to AI Lecture 4 Supervsed learg: Lear regresso Logstc regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Data: D { D D.. D D Supervsed learg d a set of eamples s

More information

DKA method for single variable holomorphic functions

DKA method for single variable holomorphic functions DKA method for sgle varable holomorphc fuctos TOSHIAKI ITOH Itegrated Arts ad Natural Sceces The Uversty of Toushma -, Mamhosama, Toushma, 770-8502 JAPAN Abstract: - Durad-Kerer-Aberth (DKA method for

More information

Beam Warming Second-Order Upwind Method

Beam Warming Second-Order Upwind Method Beam Warmg Secod-Order Upwd Method Petr Valeta Jauary 6, 015 Ths documet s a part of the assessmet work for the subject 1DRP Dfferetal Equatos o Computer lectured o FNSPE CTU Prague. Abstract Ths documet

More information

Coding Theorems on New Fuzzy Information Theory of Order α and Type β

Coding Theorems on New Fuzzy Information Theory of Order α and Type β Progress Noear yamcs ad Chaos Vo 6, No, 28, -9 ISSN: 232 9238 oe Pubshed o 8 February 28 wwwresearchmathscorg OI: http://ddoorg/22457/pdacv6a Progress Codg Theorems o New Fuzzy Iormato Theory o Order ad

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

CHAPTER 3 POSTERIOR DISTRIBUTIONS

CHAPTER 3 POSTERIOR DISTRIBUTIONS CHAPTER 3 POSTERIOR DISTRIBUTIONS If scece caot measure the degree of probablt volved, so much the worse for scece. The practcal ma wll stck to hs apprecatve methods utl t does, or wll accept the results

More information

Bivariate Vieta-Fibonacci and Bivariate Vieta-Lucas Polynomials

Bivariate Vieta-Fibonacci and Bivariate Vieta-Lucas Polynomials IOSR Joural of Mathematcs (IOSR-JM) e-issn: 78-78, p-issn: 19-76X. Volume 1, Issue Ver. II (Jul. - Aug.016), PP -0 www.osrjourals.org Bvarate Veta-Fboacc ad Bvarate Veta-Lucas Polomals E. Gokce KOCER 1

More information

Lecture 2 - What are component and system reliability and how it can be improved?

Lecture 2 - What are component and system reliability and how it can be improved? Lecture 2 - What are compoet ad system relablty ad how t ca be mproved? Relablty s a measure of the qualty of the product over the log ru. The cocept of relablty s a exteded tme perod over whch the expected

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Correlation and Regression Analysis

Correlation and Regression Analysis Chapter V Correlato ad Regresso Aalss R. 5.. So far we have cosdered ol uvarate dstrbutos. Ma a tme, however, we come across problems whch volve two or more varables. Ths wll be the subject matter of the

More information

Random Variate Generation ENM 307 SIMULATION. Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü. Yrd. Doç. Dr. Gürkan ÖZTÜRK.

Random Variate Generation ENM 307 SIMULATION. Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü. Yrd. Doç. Dr. Gürkan ÖZTÜRK. adom Varate Geerato ENM 307 SIMULATION Aadolu Üverstes, Edüstr Mühedslğ Bölümü Yrd. Doç. Dr. Gürka ÖZTÜK 0 adom Varate Geerato adom varate geerato s about procedures for samplg from a varety of wdely-used

More information

Generative classification models

Generative classification models CS 75 Mache Learg Lecture Geeratve classfcato models Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Data: D { d, d,.., d} d, Classfcato represets a dscrete class value Goal: lear f : X Y Bar classfcato

More information

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1 STA 08 Appled Lear Models: Regresso Aalyss Sprg 0 Soluto for Homework #. Let Y the dollar cost per year, X the umber of vsts per year. The the mathematcal relato betwee X ad Y s: Y 300 + X. Ths s a fuctoal

More information

Lecture Notes Forecasting the process of estimating or predicting unknown situations

Lecture Notes Forecasting the process of estimating or predicting unknown situations Lecture Notes. Ecoomc Forecastg. Forecastg the process of estmatg or predctg ukow stuatos Eample usuall ecoomsts predct future ecoomc varables Forecastg apples to a varet of data () tme seres data predctg

More information

0 () t and an equation

0 () t and an equation DECETRALIZED ODEL REFERECE ADAPTIVE PRECIZE COTROL OF COPLEX OBJECTS S.D. Zemyakov, V.Yu. Rutkovsky, V.. Gumov ad V.. Sukhaov Isttute of Cotro Scece by V.A. Trapezkov Russa Academy of Scece 65 Profsoyuzaya,

More information

Lecture 5: Interpolation. Polynomial interpolation Rational approximation

Lecture 5: Interpolation. Polynomial interpolation Rational approximation Lecture 5: Iterpolato olyomal terpolato Ratoal appromato Coeffcets of the polyomal Iterpolato: Sometme we kow the values of a fucto f for a fte set of pots. Yet we wat to evaluate f for other values perhaps

More information

Chapter Two. An Introduction to Regression ( )

Chapter Two. An Introduction to Regression ( ) ubject: A Itroducto to Regresso Frst tage Chapter Two A Itroducto to Regresso (018-019) 1 pg. ubject: A Itroducto to Regresso Frst tage A Itroducto to Regresso Regresso aalss s a statstcal tool for the

More information

Study of Correlation using Bayes Approach under bivariate Distributions

Study of Correlation using Bayes Approach under bivariate Distributions Iteratoal Joural of Scece Egeerg ad Techolog Research IJSETR Volume Issue Februar 4 Stud of Correlato usg Baes Approach uder bvarate Dstrbutos N.S.Padharkar* ad. M.N.Deshpade** *Govt.Vdarbha Isttute of

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Investigating Cellular Automata

Investigating Cellular Automata Researcher: Taylor Dupuy Advsor: Aaro Wootto Semester: Fall 4 Ivestgatg Cellular Automata A Overvew of Cellular Automata: Cellular Automata are smple computer programs that geerate rows of black ad whte

More information

i 2 σ ) i = 1,2,...,n , and = 3.01 = 4.01

i 2 σ ) i = 1,2,...,n , and = 3.01 = 4.01 ECO 745, Homework 6 Le Cabrera. Assume that the followg data come from the lear model: ε ε ~ N, σ,,..., -6. -.5 7. 6.9 -. -. -.9. -..6.4.. -.6 -.7.7 Fd the mamum lkelhood estmates of,, ad σ ε s.6. 4. ε

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Kernel-based Methods and Support Vector Machines

Kernel-based Methods and Support Vector Machines Kerel-based Methods ad Support Vector Maches Larr Holder CptS 570 Mache Learg School of Electrcal Egeerg ad Computer Scece Washgto State Uverst Refereces Muller et al. A Itroducto to Kerel-Based Learg

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS Course Project: Classcal Mechacs (PHY 40) Suja Dabholkar (Y430) Sul Yeshwath (Y444). Itroducto Hamltoa mechacs s geometry phase space. It deals

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

European Journal of Mathematics and Computer Science Vol. 3 No. 1, 2016 ISSN ISSN

European Journal of Mathematics and Computer Science Vol. 3 No. 1, 2016 ISSN ISSN Euroe Jour of Mthemtcs d omuter Scece Vo. No. 6 ISSN 59-995 ISSN 59-995 ON AN INVESTIGATION O THE MATRIX O THE SEOND PARTIA DERIVATIVE IN ONE EONOMI DYNAMIS MODE S. I. Hmdov Bu Stte Uverst ABSTRAT The

More information

x y exp λ'. x exp λ 2. x exp 1.

x y exp λ'. x exp λ 2. x exp 1. egecosmcd Egevalue-egevector of the secod dervatve operator d /d hs leads to Fourer seres (se, cose, Legedre, Bessel, Chebyshev, etc hs s a eample of a systematc way of geeratg a set of mutually orthogoal

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

On a Semi-symmetric Non-metric Connection Satisfying the Schur`s Theorem on a Riemannian Manifold

On a Semi-symmetric Non-metric Connection Satisfying the Schur`s Theorem on a Riemannian Manifold O a Sem-symmetrc No-metrc oecto Satsfy te Scur`s Teorem o a emaa Mafod Ho Ta Yu Facuty of Matematcs, Km I Su versty, D.P..K Abstract: 99, Aace ad ae troduced te cocet of a sem-symmetrc o-metrc coecto[].

More information

Stationary states of atoms and molecules

Stationary states of atoms and molecules Statoary states of atos ad olecules I followg wees the geeral aspects of the eergy level structure of atos ad olecules that are essetal for the terpretato ad the aalyss of spectral postos the rotatoal

More information

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem Joural of Amerca Scece ;6( Cubc Nopolyomal Sple Approach to the Soluto of a Secod Order Two-Pot Boudary Value Problem W.K. Zahra, F.A. Abd El-Salam, A.A. El-Sabbagh ad Z.A. ZAk * Departmet of Egeerg athematcs

More information

Explicit and Implicit Solutions of First Order Algorithms Applied to the Euler Equations in Two-Dimensions Part I Explicit Formulations

Explicit and Implicit Solutions of First Order Algorithms Applied to the Euler Equations in Two-Dimensions Part I Explicit Formulations Uversdade edera de ão João De-Re MG 6 a 8 de mao de 00 ssocação rasera de Métodos Computacoas em Egehara Epct ad Impct outos of rst Order gorthms pped to the Euer Equatos Two-Dmesos Part I Epct ormuatos

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

Plate Bending Analysis by Two-dimensional Non-linear Partial Differential Equations

Plate Bending Analysis by Two-dimensional Non-linear Partial Differential Equations Uversa Joura of Coputatoa Aass 1 013 1-8.papersceces.co Pate Bedg Aass b To-desoa No-ear Parta Dffereta Equatos E.G. Ladopouos Iterpaper Research Orgazato 8 Da Str. Athes GR - 106 7 Greece eadopouos@terpaper.org

More information

Unsupervised Learning and Other Neural Networks

Unsupervised Learning and Other Neural Networks CSE 53 Soft Computg NOT PART OF THE FINAL Usupervsed Learg ad Other Neural Networs Itroducto Mture Destes ad Idetfablty ML Estmates Applcato to Normal Mtures Other Neural Networs Itroducto Prevously, all

More information

Conservative Averaging and Finite Difference Methods for Transient Heat Conduction in 3D Fuse

Conservative Averaging and Finite Difference Methods for Transient Heat Conduction in 3D Fuse Ramods Vums Adrs Buks Coservatve Averagg ad Fte Dfferece Metods for Traset Heat Coducto 3D Fuse RAIMONDS VIUMS ANDRIS BUIKIS Isttute of Matematcs ad Computer Scece Uversty of atva Raa uv 9 Rga V459 ATVIA

More information

PROJECTION PROBLEM FOR REGULAR POLYGONS

PROJECTION PROBLEM FOR REGULAR POLYGONS Joural of Mathematcal Sceces: Advaces ad Applcatos Volume, Number, 008, Pages 95-50 PROJECTION PROBLEM FOR REGULAR POLYGONS College of Scece Bejg Forestry Uversty Bejg 0008 P. R. Cha e-mal: sl@bjfu.edu.c

More information

3. Basic Concepts: Consequences and Properties

3. Basic Concepts: Consequences and Properties : 3. Basc Cocepts: Cosequeces ad Propertes Markku Jutt Overvew More advaced cosequeces ad propertes of the basc cocepts troduced the prevous lecture are derved. Source The materal s maly based o Sectos.6.8

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Lecture 2: The Simple Regression Model

Lecture 2: The Simple Regression Model Lectre Notes o Advaced coometrcs Lectre : The Smple Regresso Model Takash Yamao Fall Semester 5 I ths lectre we revew the smple bvarate lear regresso model. We focs o statstcal assmptos to obta based estmators.

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x CS 75 Mache Learg Lecture 8 Lear regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Lear regresso Fucto f : X Y s a lear combato of put compoets f + + + K d d K k - parameters

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

STK3100 and STK4100 Autumn 2017

STK3100 and STK4100 Autumn 2017 SK3 ad SK4 Autum 7 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Sectos 4..5, 4.3.5, 4.3.6, 4.4., 4.4., ad 4.4.3 Sectos 5.., 5.., ad 5.5. Ørulf Borga Deartmet of Mathematcs

More information

A Family of Generalized Stirling Numbers of the First Kind

A Family of Generalized Stirling Numbers of the First Kind Apped Mathematc, 4, 5, 573-585 Pubhed Oe Jue 4 ScRe. http://www.crp.org/oura/am http://d.do.org/.436/am.4.55 A Famy of Geerazed Strg Number of the Frt Kd Beh S. E-Deouy, Nabea A. E-Bedwehy, Abdefattah

More information

Non-degenerate Perturbation Theory

Non-degenerate Perturbation Theory No-degeerate Perturbato Theory Proble : H E ca't solve exactly. But wth H H H' H" L H E Uperturbed egevalue proble. Ca solve exactly. E Therefore, kow ad. H ' H" called perturbatos Copyrght Mchael D. Fayer,

More information

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uverst Mchael Bar Sprg 5 Mdterm xam, secto Soluto Thursda, Februar 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes exam.. No calculators of a kd are allowed..

More information

Centroids & Moments of Inertia of Beam Sections

Centroids & Moments of Inertia of Beam Sections RCH 614 Note Set 8 S017ab Cetrods & Momets of erta of Beam Sectos Notato: b C d d d Fz h c Jo L O Q Q = ame for area = ame for a (base) wdth = desgato for chael secto = ame for cetrod = calculus smbol

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

KLT Tracker. Alignment. 1. Detect Harris corners in the first frame. 2. For each Harris corner compute motion between consecutive frames

KLT Tracker. Alignment. 1. Detect Harris corners in the first frame. 2. For each Harris corner compute motion between consecutive frames KLT Tracker Tracker. Detect Harrs corers the frst frame 2. For each Harrs corer compute moto betwee cosecutve frames (Algmet). 3. Lk moto vectors successve frames to get a track 4. Itroduce ew Harrs pots

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

1 Lyapunov Stability Theory

1 Lyapunov Stability Theory Lyapuov Stablty heory I ths secto we cosder proofs of stablty of equlbra of autoomous systems. hs s stadard theory for olear systems, ad oe of the most mportat tools the aalyss of olear systems. It may

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET Abstract. The Permaet versus Determat problem s the followg: Gve a matrx X of determates over a feld of characterstc dfferet from

More information