Conservative Averaging and Finite Difference Methods for Transient Heat Conduction in 3D Fuse

Size: px
Start display at page:

Download "Conservative Averaging and Finite Difference Methods for Transient Heat Conduction in 3D Fuse"

Transcription

1 Ramods Vums Adrs Buks Coservatve Averagg ad Fte Dfferece Metods for Traset Heat Coducto 3D Fuse RAIMONDS VIUMS ANDRIS BUIKIS Isttute of Matematcs ad Computer Scece Uversty of atva Raa uv 9 Rga V459 ATVIA ramodsvums@uv uks@atetv ttp://wwwav/scetsts/ukstm Astract: Tree-dmesoa matematca mode of te automotve fuse s cosdered ts paper Itay parta dffereta equatos of te traset eat coducto are gve to descre eat-up process te fuse Coservatve averagg metod s used to ota aaytca appromato of tese equatos y te system of tree ordary dffereta equatos Fte dfferece sceme s gve f coservatve averagg procedure s stopped oe step efore e after D proem of parta dffereta equatos s otaed Key-Words: Heat coducto Quas-ear Traset process Tree-dmesoa Aaytca reducto Coservatve averagg Fte dfferece sceme Itroducto Usuay matematca modeg of te fuse s mpemeted y makg oe dmesoa assumptos []-[4] I ts paper we use orga metod of coservatve averagg to trasform ta 3D statemet of te proem to te statemet of ew type tat cossts of tree ordary dffereta equatos Appromate aaytca 3D souto s otaae from te souto of te trasformed proem Coservatve averagg metod s teoretcay we fouded for ear parta dffereta equatos [6]-[] Here (as [3] [4] we vestgate quas-ear proem Fg Geometry of te Mode We start wt geometrc assumptos of te typca car fuse (Fg ad Fg Fg3 Because of te symmetry t s eoug to use oy te saded part of te mode (Fg4 ad Fg5 Fg Eampe of automotve fuse wt ad wtout pastc se We seemgy stragte out te fuse ad use geometry of te mode as sow Fg3 Fg4 ISSN: Issue Voume 3 Jauary 8

2 Ramods Vums Adrs Buks Fg5 We gve ref descrpto of te metod te et capter furter foow matematca statemet of ts proem ad usage of te coservatve averagg 3 Sort Descrpto of Coservatve Averagg Metod Coservatve averagg metod was deveoped as appromate aaytca ad umerca metod for sovg parta dffereta equatos wt pecewse cotuous coeffcets Te usage of ts metod for separate reatvey t su-doma or for sudoma wt arge eat coducto coeffcet eads to reducto of te doma wc te souto must e foud Metod ca e apped for severa su-domas smutaeousy To appy ts metod for a su-domas of te ayered meda a speca type of te spe s costructed: te tegra averaged vaues terpoatg paraoc spe Usage of ts spe aows dmsg te dmesos of ta proem per oe It s mportat tat te orga R proem wt dscotuous coeffcets trasforms to proem wt cotuous coeffcets R a cases More detaed descrpto of te metod s gve papers [6]-[3] But o cocrete steady-state eat coducto eampe ma dea of te metod s gve ere et us assume tat we ave doma D tat cossts of two su-domas (rectages ad G (Fg6 y G G G Fg6 G {( y ( y ( } G {( y ( y ( } D G G {( y y ( } Ojectve s to fd fucto (cotuous doma G ad fucto (cotuous doma G tat fufs foowg equatos: a dffereta equatos: U U k ( k F y y y ( U U k ( k F y y y ( cojugato codtos at : U (3 k U U U k (4 c oudary codtos: U (5 U (6 U (7 y U k ( U Θ (8 y y We requre tat a dervates of te equatos ( ( are cotuous correspodg su-domas Souto of ts matematca proem ca e treated as temperature two ayer meda for eat trasfer process We assume tat a coeffcets are costat ere Temperature depedat coeffcets are cosdered te et capter were coservatve averagg s apped for te mode of te fuse et us assume tat doma G s t -drecto or t s made y matera tat as reatvey etter eat coductvty ta te oter oe (or ot codtos take pace We ca ovousy assume tat temperature s amost costat -drecto te If ts assumpto s ot te case we ca assume tat dstruto of te temperature dffers from some oter curve oy sgty e poyoma or fucto of te epoeta eavor Terefore te frst tg s to uderstad wc doma ad wc drecto te eavor of te ukow fucto s predctae Before we coose specfc represetato we troduce tegra averaged vaue fucto over cose terva If we take doma G ad terva [ ] te te defto of ts fucto s ISSN: Issue Voume 3 Jauary 8

3 Ramods Vums Adrs Buks u ( y U ( y d (9 I our case fucto represets averaged temperature terva [ ] o gve e y Net we seect fucto tat w appromate our ukow fucto cose doma ad segmet It soud descre partcuar pysca stuato It meas etter vew of te stuato we ave more approprate fucto we ca coose For eampe et us use epoeta appromato -drecto Geera form of te fucto U te s ( ( ( ( U y a y y e c y e ( Represetato of te fucto U cotas ukow fuctos ay ( y ( cy ( Tey are otaed suc way tat tey fuf codtos o te oudares ad tegra equaty (9 Practcay yperoc fuctos coud e used stead of epoet I our case etter form of te epoeta appromato s U ( y a( y ( y cos s( ( cy ( s cos( Takg to accout dervatve of ts fucto U y ( s cy ( cos ( ad oudary codto o te order (5 we ota tat cy ( If we appy tegra (9 to te formua ( we ota: ay ( u( y Cojugato codto (4 o te secod oudary of te doma G gves ukow fucto : k U y ( s( After ukow fuctos are foud we ca rewrte appromato of te fucto U foowg form: U ( y u ( y k U (3 cos s( s( Te et step of te coservatve averagg metod s tegrato of te ma dffereta equato ( over te terva [ ] : u U U k k F( y d y y et us take a ook at te frst added: U k d k U k U k U We used codtos (4 (5 o te orders of te doma G to make aaytca trasformatos ere O te oter ad we ca use represetato (3 ad t aso eads to te same resut Order of te tegrato ad dervato s swapped for te oter dervatves te tegra Itegra formua (9 s used after tat: U k d y y d du k Ud k y y dy dy Cosequety dffereta equato for te ukow averaged vaue fucto u ( y s d du k U k ( dy dy f y (4 were f ( y s averaged vaue of te source fucto: f ( y: F ( y d We ave trasformed ta proem to te ew oe Dffereta equato for te fucto U ( y te doma G remas te same ( Te secod dffereta equato (4 s for te averaged vaue fucto u ( y terva y [ ] y G Fg7 If we take to accout represetato of te averaged fucto (3 te cojugato codto (3 gves codto etwee fuctos u ad U : ISSN: Issue Voume 3 Jauary 8

4 Ramods Vums Adrs Buks ( ta( U u U k (5 Ts equato togeter wt te equato (4 coud e cosdered as o-cassca oudary codtos for te order doma G Boudary codtos we y ad y for te fucto are smar as for te fucto U : du u (6 dy y du k y ( u Θ dy (7 y To e accurate tese equates are otaed after tegra s apped to oudary codtos (7 (8 Trasformatos are smar to tose tat were doe for te ma dffereta equato ( Boudary codtos (6 (7 (8 rema te same for te fucto U ( y of te doma G We ave trasformed orga proem ad reduced dmeso of oe doma Usuay t s mposse to fd aaytca souto Te oy coce s to sove t umercay It takes ess computer power to cacuate suc matematca proem ecause of reduced dmeso It s posse to recostruct temperature dstruto U ( y doma G from te represetato (3 after fuctos u ( y ad U ( y are cacuated Note tat t s posse to get vaue at ay pot of a terva - ot oy some dscrete pots as t woud e after appyg fte dfferece metod to ta proem Matematca proem s reduced y oe dmeso for woe system f coservatve averagg metod s apped for te doma G -drecto over terva [ ] Averagg procedure ca e apped cotuousy severa drectos reducg dmesos of te proem oe y oe Numerca cacuatos are aso reduced y order et us ook ack to te orga proem (-(8 For ot domas coservatve averagg coud e apped y-drecto at frst (Fg8 Fg8 Boudary codtos at y ad y trasfer to te ew dffereta equatos te If costat appromato y-drecto s used U( y u( y U( y u( y ( te dffereta equatos for t wre wt covecto s otaed: d du y k ( u d d Θ f (8 f ( F( y Remag oudary ad cojugato codtos actuay stay te same: du du (9 d d du du u u k k ( d d We gave ma steps of te coservatve averagg metod as a summary of ts secto Frst coose fucto of te appromato Secod tegrate ma dffereta equato Trd use oudary ad cojugato codtos 4 Orga Proem ad ts Appromato y Coservatve Averagg Metod 4 Matematca Statemet of te Ita Proem We cotue wt accurate formuato of te treedmesoa matematca mode of te traset eat coducto proem for fuse Fg9 et us treat ma doma (Fg9 as two coected su-domas G ad G : G {( y [ ] y [ ] [ ] } G {( y [ ] y [ ] [ H] } If temperature doma G s deoted as fucto U ( y t te dffereta equato for te eat trasfer s U U γu k k t y y ( U k F( y t U ( y G t> ISSN: Issue Voume 3 Jauary 8

5 Ramods Vums Adrs Buks F Source fucto (eat produced y eectrca curret ca e appromated wt ear fucto: F( y t U B( α ( U Ur ( ρref I ρref I were B B H Parameter ρ ref s resstvty of te matera at te referece temperature Ur α s temperature coeffcet at te same referece temperature; I eectrca curret Heat coductvty k ad eat capacty (per voume γ deped o temperature Besdes ma equatos ( we add symmetry codtos: U U U y y (3 U U U y y (4 ad eat ecage codtos o outer surfaces U k y ( U Θ y y U k y ( U Θ y y (5 U k ( U Θ U k ( U Θ H (6 U k ( U Θ [ H] (7 were ΘΘt ( s temperature of te evromet ut y are eat covecto coeffcets for surfaces correspodg drecto tat aso deped o temperature We aso add cojugato codtos e cotuty of te temperature ad eat fues etwee ot parts of te fuse: U U U U (8 y [ ] [ ] Fay we add ta codtos: U U U cost (9 t t 4 Coservatve Averagg y-drecto We troduce te tegra average vaue of te fuctos U ( y t te y-drecto: V( t U( y t dy (3 I pras frsty te tckess s very sma comparso wt te wdt of te fuse Secody matera of te fuse (meta as g eat coductvty coeffcet Tese features aow us to use te smpest form of te coservatve averagg metod appromato y te costat Detaed procedure of te aaytca trasformatos s gve prevous secto Sorty we tegrate ma equato ( over te segmet y [ ] ad te we use oudary codtos (5 ad ear represetato of te source fucto ( Fay we take to accout tegra equaty (3 ad ota: V V ( γv k k t (3 y ( V Θ B ( α ( V U r Because of te earty te addtoa oudary codtos (BC of ew proem are te same as te statemet of te orga proem (-(9: V V V (3 V k ( V Θ (33 V k ( V Θ H V k ( V Θ (34 [ H] We aso add cojugato codtos at [ ] : V V V V (35 ad ta codtos: V V U cost (36 t t 43 Coservatve Averagg -drecto As te et step we w make coservatve averagg te -drecto We defe oe averaged vaue fucto over doma G ad two separate fuctos for te doma G te frst for terva ( ad te secod for terva ISSN: Issue Voume 3 Jauary 8

6 Ramods Vums Adrs Buks ( H ecause of dfferet codtos o te e : W ( t V ( t d ( W ( t V ( t d ( (37 W ( t V ( t d ( H I ts case we use epoeta appromato te foowg form: V( t W( t p( t (38 cos s ( V( t W( t p( t (39 cos s ( Equates (38 (39 are cose suc way tat tey fuf tegra equates (37 (coservato of te eat eergy ad BC (3 at ad We use cojugato codtos (35 to fd ukow fuctos p p ad afterwards ota fuctos V V : V( t W( t CW( t W( t ( e (4 cos s ( C V( t W( t CW( t W( t (4 cos s ( ( We fd fucto p ad represetato of fucto V terva ( H from epresso (39 y meas of BC (34: V ( t W ( t C W ( t Θ( t ( ( (4 cos s ( ( H e C k( e Dscotuty for te temperature fed coud appear o te e Ts kd of dscotutes was cosdered papers [3] [4] We tegrate dffereta equatos (3 o te frst step of averagg order to ota equatos for te secod step We use represetatos (4 (4 (4 of te fuctos V V ad tegra equates (37 to make appromate aaytca reducto of D system to D system of parta dffereta equatos W D ( γ W k ( WW t (43 y ( W Θ B ( α ( W U r W D ( γ W k ( W W t (44 y ( W Θ B ( α ( W U r W ( γ W ( k D W Θ t (45 y ( W Θ B ( α ( W U r Ck s( D Cks( D As we metoed te troducto we cosder te quas-ear proem ere Ts proem sgfcaty dffers from te proem cosdered our papers [] [] We ave made te averagg procedure over te su-doma wt ear dffereta equato te earer statemet of te proem Terefore we w epa deeper te averagg procedure for te eft ad sde of te equato (43 (procedure for te equatos (44 (45 ca e reaed te same way I ts paper we use etapy form of te eat equato (see eg [5] capter 7 Ts form s sustatay more sutae for te use of te mea vaue teorem: [ ( V V] d t γ γ ( V Vod t [ ] t γ W γ γ( V V V( t It s posse to coose te mea vaue more or ess freey We propose to use te correspodg mdde pot e or averaged temperature: γ γ( W γ γ( W γ γ( W Aga oudary ad ta codtos are te same as te orga proem ecause of te earty: W W (46 ISSN: Issue Voume 3 Jauary 8

7 Ramods Vums Adrs Buks W ( Θ k W W ( Θ k W t t t H (47 W W W U cost (48 We aso ask for cotuty of te averaged temperature ad fues o te e Tat gves addtoa cojugato codtos: W W W W (49 44 Coservatve Averagg -drecto Fay we w make coservatve averagg procedure te -drecto We troduce tree ew fuctos for ts purpose: u( t W( t d u ( t W ( t d H u ( t W ( t d H (5 We use epoeta appromato te form W( t u( t q(cos t s ( W( t u( t q(cos t s ( (5 W( t u( t q(cos t s ( H q3( t s cos ( H We fuf te tegra equates (coservato of te eat eergy (5 ad te symmetry codtos (46 at y ts represetato Usg BC (47 ad cojugato codtos (49 we ca fd four ukow parameters te represetato (5 Ts gves: W( t u e( uθ cos s ( Wt ( u (5 e( u u e( uθ cos s( W( t u e3( u u e4( uθ cos s( H e5( u u e6( uθ s cos ( H u u ( t u u ( t u u ( t e are: were costats e e ke ( ( ( ( e e k e H e 7 e e ( H ( e e e 7 ( ( ( e ( H( e k( e ( e( H e 3 7 e ( H e ( e ( e ( H e 4 7 e ( H ( e k( e ( e e 5 7 e ( H ( e ( e e e ( ( e k e H ( ( H ( e ( e3( e( H After tegrato of equatos (43-(45 we fay ota system of ordary dffereta equatos: d D ( γ u ( uu E( u Θ dt (53 B α u U ( ( r d D y ( γ u ( u u ( uθ dt E e u u e u Θ B u U ( ( ( α ( r d ( ˆ γ u E( uu dt y E3 D ( u Θ ( α ( r B u U Here costats E E E E3 ad coeffcets γ : y e E e k s( E k( e3s( e5(cos( E H ( (54 (55 ISSN: Issue Voume 3 Jauary 8

8 Ramods Vums Adrs Buks E k( e4s( e6(cos( ( H ( W t ( W t ( W t 3 γ γ ˆ ˆ ( γ γ ( γ γ ( ˆ ( H or γ γ ( u( t γ γ ( u( t ˆ γ γ ( u ( t Ts system of tree ordary dffereta equatos must e suppemeted wt ta codtos: u u U (56 t t 45 Smpfed Averaged System of Ordary Dffereta Equatos Te ma goa of ts matematca mode s to predct tme efore metg of te matera te test su-doma G caused y admsse strog curret Accordg to epresso ( desty of te eectrca curret s H / tmes gger ts su-doma Ts reaso aows us to propose aoter mode esdes te frst oe As te secod step of te averagg we use te smpest appromato te -drecto appromato y costat We troduce averaged vaues: w( t V( t d (57 H w( t V( t d H We assume tat temperature s costat -drecto ecause t cages oy sgty comparso wt -drecto: w( t V( t (58 w( t V( t Itegrato of te dffereta equatos ( mmedatey gves system of two D parta dffereta equatos: w ( γ ( w w k t y ( w Θ B( α ( w Ur (59 w ( γ ( w w k t y ( wθ B( α ( wur H Boudary codtos rema te same: w w (6 Te secod cojugato codto cages sustatay ecause of covectve eat osses over [ H] : te surface { } w w w w ( ( k Hk H w Θ (6 Itegrato of te oudary codto ad cojugato codtos was made to ota prevous equato By te way suc type of te secod cojugato codto was used paper [4] Te ta codtos rema te same: w w U (6 t t As te ast step we w appy te coservatve averagg metod -drecto We w use epoeta appromato as te form used earer: ( w( t u( t p(cos t s (63 w( t u( t p(cos t s ( We ave troduced te average tegra vaues aga: u( t w( t d (64 u( t w( t d We ota parameters p ( t p ( t of te represetatos (63 from te cojugato codtos (6: p( t e[ u( t u( t ] p( t g( u u g( u Θ p( t e g3 e g( u u g( uθ p ( t e g3 Here H g k ( e g k ( e g ( H g3 g g g Fay we tegrate parta dffereta equatos (59 ad ota system of ordary dffereta equatos: ISSN: Issue Voume 3 Jauary 8

9 Ramods Vums Adrs Buks d G ( γ u ( g g ( u u g( u Θ dt y ( u Θ B( α ( u Ur (65 d G ( γ u g( u u g ( u dt Θ y ( uθ B( α ( uur H (66 Here γ γ w ( t or γ γ u ( t ( ( ( ( ( γ γ w ( t or γ γ u ( t k e G g3 It remas to add te ta codtos for te competeess of te fu statemet of te -D proem: u u U (67 t t 5 Fte Dfferece Metod for D Proem To mprove te accuracy of te coservatve averagg metod we ca use te fte dfferece metod for te umerca appromato of te system of two D eat equatos (59 5 Te Statemet of te D Proem Te system of two quas-ear D eat equatos as te form: w ( γ ( w w k f( t w t (68 w ( γ ( w w k f( t w t Here source fuctos f( tw ca pay te roe of te eat sources or eat sks depedg o vaues of te frst or te secod term epressos (69: f ( t w B α w U ( ( r y Θ f ( t w B w U ( w ( α ( r H ( w y Θ (69 Boudary codtos are take as te geeraato of te omogeeous oudary codtos (4: w w q( t q( t (7 Cojugato codtos dffer from te dea terma cotact codtos as we as from o-dea terma cotact codtos: w w w k (7 w Hk ( H ( w Θ Ita codtos are o-omogeeous: w w U ( (7 t t From matematca pot of vew mportat s a fact tat te fuctos f( tw (as we as fucto γ ( w fuf foowg estmatos: f j( t wj γ M j M wj wj Tese costrats guaratee te uqueess of te souto of te proem (68-(7 5 Te Costructo of te Fte Dfferece Sceme Te fte dfferece metod for eat trasfer proems are we epaed terature eg [8] Te fte dfferece souto of te D proem w e deoted as vj wj( t We w use uform tme step: t τ N ; te space step w e pece-wse costat: Δ ; Δ ( I Δ I I Δ We appromate eat coductvty term te foowg way (temporary we w omt te otato of te tme-eve: Λ v [ a( v v] I (73 Here we ave used tradtoa otatos eg [8]: v v v v v v Δ Δ were Δ Δ < < ; Δ Δ < < I For coeffcet av ( (73 severa equvaet ISSN: Issue Voume 3 Jauary 8

10 Ramods Vums Adrs Buks epressos te sese of te order of appromato O ( ca e apped eg Δ v v av ( k (74 or k( Δ v k( v av ( (75 Now we ca propose two-step predctor-correctortype fte dfferece sceme for te dffereta equatos (68 (t s mportat to sow te tme eve ere ut otato j of te su-segmet may e omtted: v v γ ( v [ a( v v] f( t v τ v v γ ( v (76 τ [ av ( v ] f( tv ; < < < < I I ( Now we w pay speca atteto to ota appromato of te oudary codtos (7 ad cojugatos codtos (7 (7 wt te same order of appromato O( Δ as te fte dfferece equatos (76 To guaraty te secod order of te appromato we empoy te dea of use of ma dffereta equato o te order [9] We start wt Tayor seres epasos for te fuctos v j as dfferetae fuctos of argumets t : v kv ± kv ±Δk v 3 k O( Δ Δ We draw te reader s atteto to foowg uace: te eat coductvty coeffcet k s take te fed pot Ts assumpto aows us to rewrte te ast formua te form: v kv ± kv ±Δ k (77 Δ v 3 k O( Δ Net two equates foow from (77: v v v Δ v k k k O( Δ Δ v v v v k k Δ k O( Δ Δ Te assumpto tat fuctos vt ( fuf dffereta equatos (68 gves foowg epressos for te frst dervatves: v v v k k Δ Δ ( γ v f t v O Δ t v v k k Δ Δ t ( γ ( ( v v f t v O Δ ( ( It remas to use oudary codtos (69 ad accordace wt dfferece sceme (76 we ota secod order fte dfferece appromato of ot oudary codtos We ave foowg dfferece equatos for te predctor step: Δ v v γ ( v a( v( v τ Δ f ( t v q ( t (77 Δ v I v I γ ( v I a( v I( v I τ Δ f ( t v I q ( t Te dfferece equatos for te corrector step are: Δ v v γ ( v a( v ( v τ Δ f ( t v q ( t (78 Δ v I v I γ ( v I a( v I ( v I τ Δ f ( I t v I q ( t We make smar costructo of te secod order appromato o te order etwee ot parts ( te pot Here we eed to e carefuy wt otato ad use dfferet dees for dffereces to te eft (ad rgt from te order pot Te secod cojugato codto (7 ca e rewrtte foowg equvaet form: ISSN: Issue Voume 3 Jauary 8

11 Ramods Vums Adrs Buks w χ w ( k k λ w Θ (79 ( H χ λ H H We appromate te eft ad sde fu of equato (79 for te predctor stage as foow: Δ v v χ γ( v f( t v τ χav ( ( v J We ota smar epresso for te rgt ad sde: av ( ( v λ( v Θ Δ v v γ ( v f( t v J τ Takg to accout te frst cojugato codto (7 (cotuty: v v fay we ave at te order: J J or suc equato for te predctor stage: Δ v v χ γ( v f( t v τ χav ( ( v av ( ( v (8 λ( v Θ Δ v v γ ( v f( t v τ We ave foowg equato for te corrector stage: Δ v v χ γ( v f( t v τ χav ( ( v av ( ( v (8 λ( v Θ Δ v v γ ( v f( t v τ Te dfferece equatos (77-(8 togeter wt sef evdet ta codtos v U ( (8 v U ( I are compete dfferece sceme of te secod order of appromato Automotve fuse of te oma curret 5A (Fg s take as a sampe Fg 5A Fuse wtout se Geometry s trasferred to our matematca mode (Fg9 Oe egt of te fuse s cosdered ecause of te symmetry Notatos of te dmesos are as paragraps 4 ad 5: 3mm 7mm mm 9mm H 8mm Dmesos are otaed y measurg te fuse Fuse s made of c Propertes of te matera deped o temperature Vaues are kow at some referece temperatures Spe s costructed from tem It s satsfactory to use ear spe (Fg Fg Fg Heat coductvty of c Fg Heat capacty of c (per voume Net fgures sow oter parameters Fg3 sows eat covecto coeffcet y ad Sod e s for te test part of te fuse ( ; das e s for te terva ( 6 Numerca Eampes 5A Fuse ISSN: Issue Voume 3 Jauary 8

12 Ramods Vums Adrs Buks Fg3 Heat covecto to te ar Net fgures sow eat produced y eectrca curret te ter part of te fuse ad te ades F at dfferet curret vaues F % of Rated Curret M Ma 6 % 4 s s 35 % s 7 s % s 6 s 35 % 6 s 8 s Tae Mama temperature s reaced te mdde of te fuse Tme to reac metg temperature s cacuated ad compared amog a tree matematca modes (Tae Fg % of Ratg D PDE-s [s] 3 ODE-s [s] ODE-s [s] 6 % % % % Tae Fg4 Heat produced y eectrca curret F Fg5 Heat produced y eectrca curret F It s vse from te fgures tat eat producto te ter part s more ta tmes arger ta te oter part of te fuse Numerca cacuatos are doe 3 dfferet ways Frst souto s otaed from te system of 3 ODE-s (53-(55 Secod cacuatos are doe from te system of ODE-s (65-(66 Trd D matematca proem tat cossts of PDE-s (68 ad addtoa codtos (7-(7 s soved y appyg dfferece sceme from te secto 5 Resuts are compared atogeter ad wt stadard DIN tat defe tme terva of te urout of te fuses (Tae Fg6 5A Fuse tme-curret curve Das es are tme mts from te DIN stadard Numerca resuts are approprate f curret s greater te % of te ratg Heat gve away y radato ad coducto over ades pays greater roe f te curret s cose to oma vaue ad rea fuse reakg tme s arger Ts s ot cosdered ts partcuar mode ut coud e added to orga 3D matematca mode Coservatve averagg coud e apped te same maer For eampe f we take to accout radato addtoa term soud e added to te oudary codtos (5-(7: U 4 4 k y( U Θ εσ ( U Θ (83 y y U 4 4 k ( U Θ εσ ( U Θ (84 U 4 4 k ( UΘ εσ ( U Θ H ISSN: Issue Voume 3 Jauary 8

13 Ramods Vums Adrs Buks U k ( U Θ [ H] 4 4 ( U εσ Θ [ H] (85 3D temperature dstruto coud e recostructed womever averagg s coused It s eoug to sow temperature oy ( pae ecause we ave assumpto aout costat temperature dstruto over y-dmeso Fg7 sows temperature recostructo after system of ODE-s s soved case of A (% curret s apped to te fuse Fg9 Net fgure (Fg cotas temperature dstruto o te e [ ] for a appromatos used Fg7 Smar grapc (Fg8 coud e otaed for te souto of 3 ODE-s y formuas (4-(4 (5 D PDE ODE-s 3 ODE-s Fg It takes aout oe mute o moder desktop computer to cacuate partcuar eampe at gve curret Cacuato of ODE-s s eve qucker It s more effcet to cacuate averaged matematca proems rater te fu 3D proems Fg8 Souto s dscotuous ecause dscotuous appromato fucto V ( t were used ((4- (4 atoug averaged vaues w ( t are more precse ta prevous case Souto of D PDE-s soud e used f temperature dstruto te fuse s aso mportat ad ot oy fuse reakg tme Fg9 sows temperature o te e [ ] 7 Cocusos We ave appromated 3D proem ad reduced ts souto to te souto of te tme-depedet oear system of two or tree ordary dffereta equatos Reducto was reaed two dfferet ways y dfferet assumptos Bot systems ave smar structure ut dfferet coeffcets Te systems of ordary dffereta equatos are sovae wt stadard tecques Appromate aaytca 3D souto coud e easy otaed from te souto of te trasformed proem afterwards Ackowedgemets: Researc was supported y Europea Soca Fud ad Couc of Sceces of atva (grat 555 Speca taks to Prof H-D ess from Uversty of te Budeswer Muc for usefu cosutatos aout pysca ackgroud of te automotve fuses ISSN: Issue Voume 3 Jauary 8

14 Ramods Vums Adrs Buks Refereces: [] Fuses for Automotve Appcato ttefuse Ic 8 East Nortwest Hwy Des Paes II66 USA [] Ker DQ Kraus AD Eteded Surface Heat Trasfer McGraw-H Book Compay 97 [3] Maoor M Heat Fow troug Eteded Surface Heat Ecagers Sprger-Verag: Ber ad New York 984 [4] Wood AS Tupome GE Batt MIH Heggs PJ Performace dcators for steadystate eat trasfer troug f assemes Tras ASME Joura of Heat Trasfer pp 3-36 [5] Ockedo J ao Apped Parta Dffereta Equatos Oford Uversty Press 999 [6] Buks A Aufgaesteug ud ősug eer Kasse vo Proeme der matematsce Pysk mt ctkasssce Zusatedguge Rostock Mat Kooq pp 53-6 (I Germa [7] Buks A Modeg of ftrato processes ayered porous meda y te coservatve averagg metod Dr Tess Pyscsmatematcs Kaa p (I Russa [8] Buks A Proems of matematca pyscs wt dscotuous coeffcets ad ter appcatos Rga p (I Russa upused ook [9] Vums R Estmates of appromato errors for coservatve averagg metod Master tess Rga 4 9 p (I atva [] Buks A Coservatve averagg as a appromate metod for souto of some drect ad verse eat trasfer proems Advaced Computatoa Metods Heat Trasfer IX WIT Press 6 p 3-3 [] Vums R Buks A Coservatve averagg metod for parta dffereta equatos wt dscotuous coeffcets WSEAS Trasactos o Heat ad Mass Trasfer Vo Issue 4 6 p [] Buke M Buks A Modeg of treedmesoa trasport processes asotropc ayered stratum y coservatve averagg metod WSEAS Trasactos of Heat ad Mass Trasfer 6 Issue 4 Vo p [3] Buke M Buks A System of varous matematca modes for trasport processes ayered Strata wt terayers WSEAS Trasactos o Matematcs 7 Issue 4 Vo 6 p [4] Buks A ess H-D Vums R Coservatve Averagg Metod for Cacuato of Heat Trasfer Cydrca Wre wt Isuato Matematca Modeg ad Aayss Astracts of te t Iteratoa Coferece MMA 5 5 p 48 [5] Buks A Buke M Cosed two-dmesoa souto for eat trasfer a perodca system wt a f Proceedgs of te atva Academy of Sceces Secto B Vo5 Nr5 998 pp8- [6] Buke M Smuato of steady-state eat process for te rectaguar f-cotag system Matematca Modeg ad Aayss 999 vo 4 pp [7] Mak MY Wood AS Buks A A appromate aaytca souto to a famar cojugate eat trasfer proem Iteratoa Joura of Pure ad Apped Matematcs Vo Nr 4 pp 9-7 [8] Samarsk AA Vascevc PN Computatoa Heat Trasfer Vo Matematca Modeg Jo Wey & Sos 995 [9] Samarsk AA Teory of Fte Dfferece Scemes Moscow Nauka 989 ISSN: Issue Voume 3 Jauary 8

A stopping criterion for Richardson s extrapolation scheme. under finite digit arithmetic.

A stopping criterion for Richardson s extrapolation scheme. under finite digit arithmetic. A stoppg crtero for cardso s extrapoato sceme uder fte dgt artmetc MAKOO MUOFUSHI ad HIEKO NAGASAKA epartmet of Lbera Arts ad Sceces Poytecc Uversty 4-1-1 Hasmotoda,Sagamara,Kaagawa 229-1196 JAPAN Abstract:

More information

Nonlinear Piecewise-Defined Difference Equations with Reciprocal Quadratic Terms

Nonlinear Piecewise-Defined Difference Equations with Reciprocal Quadratic Terms Joural of Matematcs ad Statstcs Orgal Researc Paper Nolear Pecewse-Defed Dfferece Equatos wt Recprocal Quadratc Terms Ramada Sabra ad Saleem Safq Al-Asab Departmet of Matematcs, Faculty of Scece, Jaza

More information

Monte Carlo simulation application to reliability assessment of an exemplary system operating at variable conditions

Monte Carlo simulation application to reliability assessment of an exemplary system operating at variable conditions Kołowrock Krzysztof Kugowska Ewa Soszyńska-Budy Joaa Martme Uversty Gdya Poad Joura of Posh Safety ad Reaty Assocato Summer Safety ad Reaty Semars Voume 6 Numer 25 Mote Caro smuato appcato to reaty assessmet

More information

General Method for Calculating Chemical Equilibrium Composition

General Method for Calculating Chemical Equilibrium Composition AE 6766/Setzma Sprg 004 Geeral Metod for Calculatg Cemcal Equlbrum Composto For gve tal codtos (e.g., for gve reactats, coose te speces to be cluded te products. As a example, for combusto of ydroge wt

More information

Asymptotic Formulas Composite Numbers II

Asymptotic Formulas Composite Numbers II Iteratoal Matematcal Forum, Vol. 8, 203, o. 34, 65-662 HIKARI Ltd, www.m-kar.com ttp://d.do.org/0.2988/mf.203.3854 Asymptotc Formulas Composte Numbers II Rafael Jakmczuk Dvsó Matemátca, Uversdad Nacoal

More information

Different Kinds of Boundary Elements for Solving the Problem of the Compressible Fluid Flow around Bodies-a Comparison Study

Different Kinds of Boundary Elements for Solving the Problem of the Compressible Fluid Flow around Bodies-a Comparison Study Proceedgs of the Word Cogress o Egeerg 8 Vo II WCE 8, Ju - 4, 8, Lodo, U.K. Dfferet Kds of Boudar Eemets for Sovg the Probem of the Compressbe Fud Fow aroud Bodes-a Comparso Stud Lumta Grecu, Gabrea Dema

More information

Band structure calculations

Band structure calculations Bad structure cacuatos group semar 00-0 Georg Wrth Isttut für Laser Physk Jauary 00 Motvato attce ad stab. aser are outcouped from SM-PM-fber Mcheso terferometer braches overap uder 90 attce forms overappg

More information

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES FDM: Appromato of Frst Order Dervatves Lecture APPROXIMATION OF FIRST ORDER DERIVATIVES. INTRODUCTION Covectve term coservato equatos volve frst order dervatves. The smplest possble approach for dscretzato

More information

CP 2 Properties of polygonal plane areas

CP 2 Properties of polygonal plane areas CP Propertes of polgoal plae areas Ket D. Hjelmstad Scool for Sustaale Egeerg ad te Bult Evromet Ira. Fulto Scools of Egeerg roa State Uverst Te propertes of cross sectos Cross Secto Cross Secto Logtudal

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics CS56 Itro to Computer Graphcs Geometrc Modelg art II Geometrc Modelg II hyscal Sples Curve desg pre-computers Cubc Sples Stadard sple put set of pots { } =, No dervatves specfed as put Iterpolate by cubc

More information

Plate Bending Analysis by Two-dimensional Non-linear Partial Differential Equations

Plate Bending Analysis by Two-dimensional Non-linear Partial Differential Equations Uversa Joura of Coputatoa Aass 1 013 1-8.papersceces.co Pate Bedg Aass b To-desoa No-ear Parta Dffereta Equatos E.G. Ladopouos Iterpaper Research Orgazato 8 Da Str. Athes GR - 106 7 Greece eadopouos@terpaper.org

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Joura of Mathematca Sceces: Advaces ad Appcatos Voume 4 umber 2 2 Pages 33-34 COVERGECE OF HE PROJECO YPE SHKAWA ERAO PROCESS WH ERRORS FOR A FE FAMY OF OSEF -ASYMPOCAY QUAS-OEXPASVE MAPPGS HUA QU ad S-SHEG

More information

Finsler Geometry & Cosmological constants

Finsler Geometry & Cosmological constants Avaabe oe at www.peaaresearchbrary.com Peaa esearch Lbrary Advaces Apped Scece esearch, 0, (6):44-48 Fser Geometry & Cosmooca costats. K. Mshra ad Aruesh Padey ISSN: 0976-860 CODEN (USA): AASFC Departmet

More information

On a Semi-symmetric Non-metric Connection Satisfying the Schur`s Theorem on a Riemannian Manifold

On a Semi-symmetric Non-metric Connection Satisfying the Schur`s Theorem on a Riemannian Manifold O a Sem-symmetrc No-metrc oecto Satsfy te Scur`s Teorem o a emaa Mafod Ho Ta Yu Facuty of Matematcs, Km I Su versty, D.P..K Abstract: 99, Aace ad ae troduced te cocet of a sem-symmetrc o-metrc coecto[].

More information

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation PGE 30: Formulato ad Soluto Geosystems Egeerg Dr. Balhoff Iterpolato Numercal Methods wth MATLAB, Recktewald, Chapter 0 ad Numercal Methods for Egeers, Chapra ad Caale, 5 th Ed., Part Fve, Chapter 8 ad

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Idea is to sample from a different distribution that picks points in important regions of the sample space. Want ( ) ( ) ( ) E f X = f x g x dx

Idea is to sample from a different distribution that picks points in important regions of the sample space. Want ( ) ( ) ( ) E f X = f x g x dx Importace Samplg Used for a umber of purposes: Varace reducto Allows for dffcult dstrbutos to be sampled from. Sestvty aalyss Reusg samples to reduce computatoal burde. Idea s to sample from a dfferet

More information

PART ONE. Solutions to Exercises

PART ONE. Solutions to Exercises PART ONE Soutos to Exercses Chapter Revew of Probabty Soutos to Exercses 1. (a) Probabty dstrbuto fucto for Outcome (umber of heads) 0 1 probabty 0.5 0.50 0.5 Cumuatve probabty dstrbuto fucto for Outcome

More information

Analysis of Lagrange Interpolation Formula

Analysis of Lagrange Interpolation Formula P IJISET - Iteratoal Joural of Iovatve Scece, Egeerg & Techology, Vol. Issue, December 4. www.jset.com ISS 348 7968 Aalyss of Lagrage Iterpolato Formula Vjay Dahya PDepartmet of MathematcsMaharaja Surajmal

More information

Online Publication Date: 12 December, 2011 Publisher: Asian Economic and Social Society

Online Publication Date: 12 December, 2011 Publisher: Asian Economic and Social Society Ole Publcato Date: December, Publsher: Asa Ecoomc ad Socal Socety Soluto Of A System Of Two Partal Dfferetal Equatos Of The Secod Order Usg Two Seres Hayder Jabbar Abood (Departmet of Mathematcs, College

More information

Sample Allocation under a Population Model and Stratified Inclusion Probability Proportionate to Size Sampling

Sample Allocation under a Population Model and Stratified Inclusion Probability Proportionate to Size Sampling Secto o Survey Researc Metods Sample Allocato uder a Populato Model ad Stratfed Icluso Probablty Proportoate to Sze Sampl Su Woo Km, Steve eera, Peter Soleberer 3 Statststcs, Douk Uversty, Seoul, Korea,

More information

Solving the Problem of the Compressible Fluid Flow around Obstacles by an Indirect Approach with Vortex Distribution and Linear Boundary Elements

Solving the Problem of the Compressible Fluid Flow around Obstacles by an Indirect Approach with Vortex Distribution and Linear Boundary Elements Lumta Grecu Sov the Probem of the ompressbe Fud Fow aroud Obstaces b a Idrect Approach wth Vorte Dstrbuto ad Lear Boudar Eemets LUMINITA GREU Departmet of Apped Sceces, Navato ad Evromet Protecto Facut

More information

FREQUENCY ANALYSIS OF A DOUBLE-WALLED NANOTUBES SYSTEM

FREQUENCY ANALYSIS OF A DOUBLE-WALLED NANOTUBES SYSTEM Joural of Appled Matematcs ad Computatoal Mecacs 04, 3(4), 7-34 FREQUENCY ANALYSIS OF A DOUBLE-WALLED NANOTUBES SYSTEM Ata Cekot, Stasław Kukla Isttute of Matematcs, Czestocowa Uversty of Tecology Częstocowa,

More information

Coding Theorems on New Fuzzy Information Theory of Order α and Type β

Coding Theorems on New Fuzzy Information Theory of Order α and Type β Progress Noear yamcs ad Chaos Vo 6, No, 28, -9 ISSN: 232 9238 oe Pubshed o 8 February 28 wwwresearchmathscorg OI: http://ddoorg/22457/pdacv6a Progress Codg Theorems o New Fuzzy Iormato Theory o Order ad

More information

NUMERICAL SIMULATION ON MELTING AND SOLIDIFICATION BASED ON LAGRANGIAN APPROACH

NUMERICAL SIMULATION ON MELTING AND SOLIDIFICATION BASED ON LAGRANGIAN APPROACH NUMERICAL SIMULATION ON MELTING AND SOLIDIFICATION BASED ON LAGRANGIAN APPROACH J-Bao Xog Hog-Ya Wag Xu Cheg Ya-Hua Yag Schoo of Nucear Scece ad Egeerg, Shagha Jao Tog Uversty 8 Dogchua Road Mhag Shagha

More information

Energy method in solving the problems of stability for a viscoelastic polymer rods

Energy method in solving the problems of stability for a viscoelastic polymer rods MATEC Web of Cofereces 19 51 (17) ICMTMTE 17 DOI: 1151/mateccof/171951 Eergy method sovg the probems of stabty for a vscoeastc poymer rods Serdar Yazyev 1 Mara Kozeskaya 1 Grgory Strekov 1 ad Stepa Ltvov

More information

Numerical Differentiation

Numerical Differentiation College o Egeerg ad Computer Scece Mecacal Egeerg Departmet Numercal Aalyss Notes November 4, 7 Istructor: Larry Caretto Numercal Deretato Itroducto Tese otes provde a basc troducto to umercal deretato

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

Runge-Kutta discontinuous Galerkin finite element method for one-dimensional multimedium compressible flow

Runge-Kutta discontinuous Galerkin finite element method for one-dimensional multimedium compressible flow SSN 746-7659, Eglad, K Joural of formato ad Computg Scece Vol. 3, No. 3, 008, pp. 5-4 Ruge-Kutta dscotuous Galerk fte elemet metod for oe-dmesoal multmedum compressble flow Rogsa Ce + Departmet of Matematcs,

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Evaluating new varieties of wheat with the application of Vague optimization methods

Evaluating new varieties of wheat with the application of Vague optimization methods Evauatg ew varetes of wheat wth the appcato of Vague optmzato methods Hogxu Wag, FuJ Zhag, Yusheg Xu,3 Coege of scece ad egeerg, Coege of eectroc formato egeerg, Qogzhou Uversty, aya Haa 570, Cha. zfj5680@63.com,

More information

Chapter 3. Differentiation 3.3 Differentiation Rules

Chapter 3. Differentiation 3.3 Differentiation Rules 3.3 Dfferetato Rules 1 Capter 3. Dfferetato 3.3 Dfferetato Rules Dervatve of a Costat Fucto. If f as te costat value f(x) = c, te f x = [c] = 0. x Proof. From te efto: f (x) f(x + ) f(x) o c c 0 = 0. QED

More information

Numerical Analysis Formulae Booklet

Numerical Analysis Formulae Booklet Numercal Aalyss Formulae Booklet. Iteratve Scemes for Systems of Lear Algebrac Equatos:.... Taylor Seres... 3. Fte Dfferece Approxmatos... 3 4. Egevalues ad Egevectors of Matrces.... 3 5. Vector ad Matrx

More information

1 Review and Overview

1 Review and Overview CS9T/STATS3: Statstcal Learg Teory Lecturer: Tegyu Ma Lecture #7 Scrbe: Bra Zag October 5, 08 Revew ad Overvew We wll frst gve a bref revew of wat as bee covered so far I te frst few lectures, we stated

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

The Lie Algebra of Smooth Sections of a T-bundle

The Lie Algebra of Smooth Sections of a T-bundle IST Iteratoal Joural of Egeerg Scece, Vol 7, No3-4, 6, Page 8-85 The Le Algera of Smooth Sectos of a T-udle Nadafhah ad H R Salm oghaddam Astract: I ths artcle, we geeralze the cocept of the Le algera

More information

x y exp λ'. x exp λ 2. x exp 1.

x y exp λ'. x exp λ 2. x exp 1. egecosmcd Egevalue-egevector of the secod dervatve operator d /d hs leads to Fourer seres (se, cose, Legedre, Bessel, Chebyshev, etc hs s a eample of a systematc way of geeratg a set of mutually orthogoal

More information

0 () t and an equation

0 () t and an equation DECETRALIZED ODEL REFERECE ADAPTIVE PRECIZE COTROL OF COPLEX OBJECTS S.D. Zemyakov, V.Yu. Rutkovsky, V.. Gumov ad V.. Sukhaov Isttute of Cotro Scece by V.A. Trapezkov Russa Academy of Scece 65 Profsoyuzaya,

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

DKA method for single variable holomorphic functions

DKA method for single variable holomorphic functions DKA method for sgle varable holomorphc fuctos TOSHIAKI ITOH Itegrated Arts ad Natural Sceces The Uversty of Toushma -, Mamhosama, Toushma, 770-8502 JAPAN Abstract: - Durad-Kerer-Aberth (DKA method for

More information

Beam Warming Second-Order Upwind Method

Beam Warming Second-Order Upwind Method Beam Warmg Secod-Order Upwd Method Petr Valeta Jauary 6, 015 Ths documet s a part of the assessmet work for the subject 1DRP Dfferetal Equatos o Computer lectured o FNSPE CTU Prague. Abstract Ths documet

More information

ABOUT ONE APPROACH TO APPROXIMATION OF CONTINUOUS FUNCTION BY THREE-LAYERED NEURAL NETWORK

ABOUT ONE APPROACH TO APPROXIMATION OF CONTINUOUS FUNCTION BY THREE-LAYERED NEURAL NETWORK ABOUT ONE APPROACH TO APPROXIMATION OF CONTINUOUS FUNCTION BY THREE-LAYERED NEURAL NETWORK Ram Rzayev Cyberetc Isttute of the Natoal Scece Academy of Azerbaa Republc ramrza@yahoo.com Aygu Alasgarova Khazar

More information

Centroids & Moments of Inertia of Beam Sections

Centroids & Moments of Inertia of Beam Sections RCH 614 Note Set 8 S017ab Cetrods & Momets of erta of Beam Sectos Notato: b C d d d Fz h c Jo L O Q Q = ame for area = ame for a (base) wdth = desgato for chael secto = ame for cetrod = calculus smbol

More information

Optimal Constants in the Rosenthal Inequality for Random Variables with Zero Odd Moments.

Optimal Constants in the Rosenthal Inequality for Random Variables with Zero Odd Moments. Optma Costats the Rosetha Iequaty for Radom Varabes wth Zero Odd Momets. The Harvard commuty has made ths artce opey avaabe. Pease share how ths access beefts you. Your story matters Ctato Ibragmov, Rustam

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS Course Project: Classcal Mechacs (PHY 40) Suja Dabholkar (Y430) Sul Yeshwath (Y444). Itroducto Hamltoa mechacs s geometry phase space. It deals

More information

Laboratory I.10 It All Adds Up

Laboratory I.10 It All Adds Up Laboratory I. It All Adds Up Goals The studet wll work wth Rema sums ad evaluate them usg Derve. The studet wll see applcatos of tegrals as accumulatos of chages. The studet wll revew curve fttg sklls.

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem Joural of Amerca Scece ;6( Cubc Nopolyomal Sple Approach to the Soluto of a Secod Order Two-Pot Boudary Value Problem W.K. Zahra, F.A. Abd El-Salam, A.A. El-Sabbagh ad Z.A. ZAk * Departmet of Egeerg athematcs

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uverst Mchael Bar Sprg 5 Mdterm xam, secto Soluto Thursda, Februar 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes exam.. No calculators of a kd are allowed..

More information

d dt d d dt dt Also recall that by Taylor series, / 2 (enables use of sin instead of cos-see p.27 of A&F) dsin

d dt d d dt dt Also recall that by Taylor series, / 2 (enables use of sin instead of cos-see p.27 of A&F) dsin Learzato of the Swg Equato We wll cover sectos.5.-.6 ad begg of Secto 3.3 these otes. 1. Sgle mache-fte bus case Cosder a sgle mache coected to a fte bus, as show Fg. 1 below. E y1 V=1./_ Fg. 1 The admttace

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Chapter 3. Differentiation 3.2 Differentiation Rules for Polynomials, Exponentials, Products and Quotients

Chapter 3. Differentiation 3.2 Differentiation Rules for Polynomials, Exponentials, Products and Quotients 3.2 Dfferetato Rules 1 Capter 3. Dfferetato 3.2 Dfferetato Rules for Polyomals, Expoetals, Proucts a Quotets Rule 1. Dervatve of a Costat Fucto. If f as te costat value f(x) = c, te f x = [c] = 0. x Proof.

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

COMPONENTWISE STABILITY OF 1D AND 2D LINEAR DISCRETE-TIME SINGULAR SYSTEMS

COMPONENTWISE STABILITY OF 1D AND 2D LINEAR DISCRETE-TIME SINGULAR SYSTEMS Proceedgs of te 8t WSEAS Iteratoal Coferece o Automato ad Iformato, Vacouver, Caada, Jue 9-2, 27 277 COMPONENTWISE STABILITY OF AN 2 LINEAR ISCRETE-TIME SINGULAR SYSTEMS H. Mejed*, N.H. MEJHE** ad A. HMAME

More information

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits Block-Based Compact hermal Modelg of Semcoductor Itegrated Crcuts Master s hess Defese Caddate: Jg Ba Commttee Members: Dr. Mg-Cheg Cheg Dr. Daqg Hou Dr. Robert Schllg July 27, 2009 Outle Itroducto Backgroud

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uversty Mchael Bar Sprg 5 Mdterm am, secto Soluto Thursday, February 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes eam.. No calculators of ay kd are allowed..

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

Module 7: Probability and Statistics

Module 7: Probability and Statistics Lecture 4: Goodess of ft tests. Itroducto Module 7: Probablty ad Statstcs I the prevous two lectures, the cocepts, steps ad applcatos of Hypotheses testg were dscussed. Hypotheses testg may be used to

More information

Solutions for HW4. x k n+1. k! n(n + 1) (n + k 1) =.

Solutions for HW4. x k n+1. k! n(n + 1) (n + k 1) =. Exercse 13 (a Proe Soutos for HW4 (1 + x 1 + x 2 1 + (1 + x 2 + x 2 2 + (1 + x + x 2 + by ducto o M(Sν x S x ν(x Souto: Frst ote that sce the mutsets o {x 1 } are determed by ν(x 1 the set of mutsets o

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Supplementary Material for Limits on Sparse Support Recovery via Linear Sketching with Random Expander Matrices

Supplementary Material for Limits on Sparse Support Recovery via Linear Sketching with Random Expander Matrices Joata Scarlett ad Volka Cever Supplemetary Materal for Lmts o Sparse Support Recovery va Lear Sketcg wt Radom Expader Matrces (AISTATS 26, Joata Scarlett ad Volka Cever) Note tat all ctatos ere are to

More information

Bivariate Vieta-Fibonacci and Bivariate Vieta-Lucas Polynomials

Bivariate Vieta-Fibonacci and Bivariate Vieta-Lucas Polynomials IOSR Joural of Mathematcs (IOSR-JM) e-issn: 78-78, p-issn: 19-76X. Volume 1, Issue Ver. II (Jul. - Aug.016), PP -0 www.osrjourals.org Bvarate Veta-Fboacc ad Bvarate Veta-Lucas Polomals E. Gokce KOCER 1

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM

EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM Jose Javer Garca Moreta Ph. D research studet at the UPV/EHU (Uversty of Basque coutry) Departmet of Theoretcal

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodyamcs I UNIT C: 2-D Arfols C-1: Aerodyamcs of Arfols 1 C-2: Aerodyamcs of Arfols 2 C-3: Pael Methods C-4: Th Arfol Theory AE301 Aerodyamcs I Ut C-3: Lst of Subects Problem Solutos?

More information

Reliability evaluation of distribution network based on improved non. sequential Monte Carlo method

Reliability evaluation of distribution network based on improved non. sequential Monte Carlo method 3rd Iteratoal Coferece o Mecatrocs, Robotcs ad Automato (ICMRA 205) Relablty evaluato of dstrbuto etwork based o mproved o sequetal Mote Carlo metod Je Zu, a, Cao L, b, Aog Tag, c Scool of Automato, Wua

More information

Module 1 : The equation of continuity. Lecture 5: Conservation of Mass for each species. & Fick s Law

Module 1 : The equation of continuity. Lecture 5: Conservation of Mass for each species. & Fick s Law Module : The equato of cotuty Lecture 5: Coservato of Mass for each speces & Fck s Law NPTEL, IIT Kharagpur, Prof. Sakat Chakraborty, Departmet of Chemcal Egeerg 2 Basc Deftos I Mass Trasfer, we usually

More information

ENGI 4421 Propagation of Error Page 8-01

ENGI 4421 Propagation of Error Page 8-01 ENGI 441 Propagato of Error Page 8-01 Propagato of Error [Navd Chapter 3; ot Devore] Ay realstc measuremet procedure cotas error. Ay calculatos based o that measuremet wll therefore also cota a error.

More information

Some Applications of the Resampling Methods in Computational Physics

Some Applications of the Resampling Methods in Computational Physics Iteratoal Joural of Mathematcs Treds ad Techoloy Volume 6 February 04 Some Applcatos of the Resampl Methods Computatoal Physcs Sotraq Marko #, Lorec Ekoom * # Physcs Departmet, Uversty of Korca, Albaa,

More information

Study of Correlation using Bayes Approach under bivariate Distributions

Study of Correlation using Bayes Approach under bivariate Distributions Iteratoal Joural of Scece Egeerg ad Techolog Research IJSETR Volume Issue Februar 4 Stud of Correlato usg Baes Approach uder bvarate Dstrbutos N.S.Padharkar* ad. M.N.Deshpade** *Govt.Vdarbha Isttute of

More information

Barycentric Interpolators for Continuous. Space & Time Reinforcement Learning. Robotics Institute, Carnegie Mellon University

Barycentric Interpolators for Continuous. Space & Time Reinforcement Learning. Robotics Institute, Carnegie Mellon University Barycetrc Iterpolators for Cotuous Space & Tme Reforcemet Learg Rem Muos & Adrew Moore Robotcs Isttute, Carege Mello Uversty Pttsburgh, PA 15213, USA. E-mal:fmuos, awmg@cs.cmu.edu Category : Reforcemet

More information

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK Far East Joural of Appled Mathematcs Volume, Number, 2008, Pages Ths paper s avalable ole at http://www.pphm.com 2008 Pushpa Publshg House ANALYSIS ON THE NATURE OF THE ASI EQUATIONS IN SYNERGETI INTER-REPRESENTATION

More information

Convergence of the Desroziers scheme and its relation to the lag innovation diagnostic

Convergence of the Desroziers scheme and its relation to the lag innovation diagnostic Covergece of the Desrozers scheme ad ts relato to the lag ovato dagostc chard Méard Evromet Caada, Ar Qualty esearch Dvso World Weather Ope Scece Coferece Motreal, August 9, 04 o t t O x x x y x y Oservato

More information

A New Family of Transformations for Lifetime Data

A New Family of Transformations for Lifetime Data Proceedgs of the World Cogress o Egeerg 4 Vol I, WCE 4, July - 4, 4, Lodo, U.K. A New Famly of Trasformatos for Lfetme Data Lakhaa Watthaacheewakul Abstract A famly of trasformatos s the oe of several

More information

Evolution Operators and Boundary Conditions for Propagation and Reflection Methods

Evolution Operators and Boundary Conditions for Propagation and Reflection Methods voluto Operators ad for Propagato ad Reflecto Methods Davd Yevck Departmet of Physcs Uversty of Waterloo Physcs 5/3/9 Collaborators Frak Schmdt ZIB Tlma Frese ZIB Uversty of Waterloo] atem l-refae Nortel

More information

Nonparametric Regression with Trapezoidal Fuzzy Data

Nonparametric Regression with Trapezoidal Fuzzy Data Iteratoal Joural o Recet ad Iovato reds Computg ad Commucato ISSN: 3-869 Volume: 3 Issue: 6 386-383 Noparametrc Regresso wt rapezodal Fuzzy Data. Razzaga Departmet of Statstcs Roudee Brac Islamc Azad Uversty

More information

13. Parametric and Non-Parametric Uncertainties, Radial Basis Functions and Neural Network Approximations

13. Parametric and Non-Parametric Uncertainties, Radial Basis Functions and Neural Network Approximations Lecture 7 3. Parametrc ad No-Parametrc Ucertates, Radal Bass Fuctos ad Neural Network Approxmatos he parameter estmato algorthms descrbed prevous sectos were based o the assumpto that the system ucertates

More information

QT codes. Some good (optimal or suboptimal) linear codes over F. are obtained from these types of one generator (1 u)-

QT codes. Some good (optimal or suboptimal) linear codes over F. are obtained from these types of one generator (1 u)- Mathematca Computato March 03, Voume, Issue, PP-5 Oe Geerator ( u) -Quas-Twsted Codes over F uf Ja Gao #, Qog Kog Cher Isttute of Mathematcs, Naka Uversty, Ta, 30007, Cha Schoo of Scece, Shadog Uversty

More information

Computational Investigation of Elastoplastic Deformation of a Sandwich Beam on the Elastic Foundation

Computational Investigation of Elastoplastic Deformation of a Sandwich Beam on the Elastic Foundation Amerca Joura of Apped Sceces 5 (): 69-7, 8 ISSN 546-99 8 Scece Pubcatos Computatoa Ivestgato of Eastopastc Deformato of a Sadwch Beam o the Eastc Foudato Moh'd Ishaq Abu Haawa Umar A Mukhtar Uversty, E-Beda,

More information

Research on Resampling Algorithms for Particle Filter

Research on Resampling Algorithms for Particle Filter d Iteratoa Coferece o Teacg ad Computatoa Scece (ICTCS 04) Researc o Resampg Agortms for Partce Fter Xaou Zeg, Ybg S Y La Scoo of Automato Egeerg,UESTC, Cegdu, Ca e-ma: uz003@6.com Motoroa (Ca) Soutos,

More information

Class 13,14 June 17, 19, 2015

Class 13,14 June 17, 19, 2015 Class 3,4 Jue 7, 9, 05 Pla for Class3,4:. Samplg dstrbuto of sample mea. The Cetral Lmt Theorem (CLT). Cofdece terval for ukow mea.. Samplg Dstrbuto for Sample mea. Methods used are based o CLT ( Cetral

More information

Fourth Order Four-Stage Diagonally Implicit Runge-Kutta Method for Linear Ordinary Differential Equations ABSTRACT INTRODUCTION

Fourth Order Four-Stage Diagonally Implicit Runge-Kutta Method for Linear Ordinary Differential Equations ABSTRACT INTRODUCTION Malasa Joural of Mathematcal Sceces (): 95-05 (00) Fourth Order Four-Stage Dagoall Implct Ruge-Kutta Method for Lear Ordar Dfferetal Equatos Nur Izzat Che Jawas, Fudzah Ismal, Mohamed Sulema, 3 Azm Jaafar

More information

Introduction to Numerical Differentiation and Interpolation March 10, !=1 1!=1 2!=2 3!=6 4!=24 5!= 120

Introduction to Numerical Differentiation and Interpolation March 10, !=1 1!=1 2!=2 3!=6 4!=24 5!= 120 Itroducto to Numercal Deretato ad Iterpolato Marc, Itroducto to Numercal Deretato ad Iterpolato Larr Caretto Mecacal Egeerg 9 Numercal Aalss o Egeerg stems Marc, Itroducto Iterpolato s te use o a dscrete

More information

Chapter Two. An Introduction to Regression ( )

Chapter Two. An Introduction to Regression ( ) ubject: A Itroducto to Regresso Frst tage Chapter Two A Itroducto to Regresso (018-019) 1 pg. ubject: A Itroducto to Regresso Frst tage A Itroducto to Regresso Regresso aalss s a statstcal tool for the

More information

New Bounds using the Solution of the Discrete Lyapunov Matrix Equation

New Bounds using the Solution of the Discrete Lyapunov Matrix Equation Iteratoa Joura of Cotro, Automato, ad Systems Vo., No. 4, December 2003 459 New Bouds usg the Souto of the Dscrete Lyapuov Matrx Euato Dog-G Lee, Gwag-Hee Heo, ad Jog-Myug Woo Abstract: I ths paper, ew

More information

Computational learning and discovery

Computational learning and discovery Computatoa earg ad dscover CSI 873 / MAH 689 Istructor: I. Grva Wedesda 7:2-1 pm Gve a set of trag data 1 1 )... ) { 1 1} fd a fucto that ca estmate { 1 1} gve ew ad mmze the frequec of the future error.

More information

A Conventional Approach for the Solution of the Fifth Order Boundary Value Problems Using Sixth Degree Spline Functions

A Conventional Approach for the Solution of the Fifth Order Boundary Value Problems Using Sixth Degree Spline Functions Appled Matheatcs, 1, 4, 8-88 http://d.do.org/1.4/a.1.448 Publshed Ole Aprl 1 (http://www.scrp.org/joural/a) A Covetoal Approach for the Soluto of the Ffth Order Boudary Value Probles Usg Sth Degree Sple

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Chapter 5. Curve fitting

Chapter 5. Curve fitting Chapter 5 Curve ttg Assgmet please use ecell Gve the data elow use least squares regresso to t a a straght le a power equato c a saturato-growthrate equato ad d a paraola. Fd the r value ad justy whch

More information