Lecture 9: Converse of Shannon s Capacity Theorem

Size: px
Start display at page:

Download "Lecture 9: Converse of Shannon s Capacity Theorem"

Transcription

1 Error Correctng Codes: Combnatorcs, Algorthms and Alcatons (Fall 2007) Lecture 9: Converse of Shannon s Caacty Theorem Setember 17, 2007 Lecturer: Atr Rudra Scrbe: Thanh-Nhan Nguyen & Atr Rudra In the last lecture, we stated Shannon s caacty theorem for the BSC, whch we restate here: Theorem 0.1. Let 0 < 1/2 be a real number. For every 0 < ε 1/2, the followng statements are true for large enough nteger n: () There exsts a real δ > 0, an encodng functon E : {0, 1} k {0, 1} n, and a decodng functon D : {0, 1} n {0, 1} k, where k (1 H( + ε))n such that the followng holds for every m {0, 1} k : P r [D(E(m) + e) m] 2 δn. nose e of BSC () If k (1 H() + ε)n then for every encodng and decodng functons E : {0, 1} k {0, 1} n and D : {0, 1} n {0, 1} k the followng s true for some m {0, 1} k : P r [D(E(m) + e) m] 1/2. nose e of BSC In today s lecture, we wll rove art () of Theorem Prelmnares Before we begn wth the roof we wll need a few results, whch we dscuss frst. 1.1 Chernoff Bound Chernoff bound states a bound on the tal of a certan dstrbuton that wll be useful for us. Here we state the verson of the Chernoff bound that we wll need. Prooston 1.1. For 1,, n, let X be a bnary random varable that takes a value of 1 wth robablty and a value of 0 wth robablty 1. Then the followng bounds are true: () P r [ n 1 X (1 + ε)n] e ε2 n/3 () P r [ n 1 X (1 ε)n] e ε2 n/3 Note that the exectaton of the sum n 1 X s n. The bound above states that the robablty mass s tghtly concentrated around the mean. 1

2 1.2 Volume of Hammng Balls We wll also need good uer and lower bounds on the volume of a Hammng ball. Recall that V ol q (0, n) B q (0, ρn) n ( n ) (q 1). We wll rove the followng result: Prooston 1.2. Let q 2 be an nteger and q () V ol q (0, n) q Hq()n () V ol q (0, n) q Hq()n o(n) where recall that H q (x) x log q (q 1) x log q x (1 x) log q (1 x). be a real. Then for large enough n: Proof. We start wth the roof of (). Consder the followng sequence of relatons: 1 ( + (1 )) n n (1 ) n (1) n (1 ) n (2) n ( ) ( ) n (q 1) (1 ) n q 1 n ( ( ) n )(q 1) (1 ) n (q 1)(1 ) n ( ( ) n n )(q 1) (1 ) n (3) (q 1)(1 ) n ( ) n (q 1) (1 ) (1 )n. (4) q 1 In the above, (1) follows from the bnomal exanson. (2) follows by drong some terms from the summaton and (3) follows from that facts that 1 (as q 2 and 1/2) and (q 1)(1 ) n 1 (for large enough ( n). Rest of the stes follow from rearrangng the terms. n As q Hq()n q 1) (1 ) (1 )n, (4) mles that 1 V ol q (0, n)q Hq()n, whch roves (). We now turn to the roof of art (). For ths art, we wll need Strlng s aroxmaton for n! ( n ) n 2πn e λ 1 (n) < n! < ( n ) n 2πn e λ 2 (n), e e 2

3 where 1 λ 1 (n) 12n + 1 and λ 2(n) 1 12n. By the Strlng s aroxmaton, we have the followng nequalty: n! n (n)!((1 )n)! (n/e) n > (n/e) n ((1 )n/e) 1 e λ 1(n) λ 2 (n) λ 2 ((1 )n) (1 )n 2π(1 )n 1 l(n), (5) n (1 ) (1 )n where l(n) eλ 1 (n) λ 2 (n) λ 2 ((1 )n) 2π(1 )n. Now consder the followng sequence of relatons that comlete the roof: V ol q (0, n) (q 1) n (6) n (q 1) n > l(n) (7) n (1 ) (1 )n q Hq()n o(n). (8) In the above (6) follows by only lookng at one term. (7) follows from (5) whle (8) follows from the defnton of H q ( ) and the fact that for large enough n, l(n) s q o(n). 2 Converse of Shannon s Caacty Theorem for BSC We wll now rove art () of Theorem 0.1: the roof of the other art wll be done n the next lecture. Frst, we note that there s nothng to rove f 0, so for the rest of the roof we wll assume that > 0. For the sake of contradcton, assume that the followng holds for every m {0, 1} k : P r [D(E(m) + e) m] 1/2. nose e of BSC Fx an arbtrary message m {0, 1} k. Defne D m to be the set of receved words that are decoded to m by D, that s, D m {y D(y) m}. Note that by our assumton, the followng s true (where from now on we omt the exlct deendence of the robablty on the BSC nose for clarty): P r [E(m) + e D m ] 1/2. (9) 3

4 Further, by the Chernoff bound, P r[e(m) + e S m ] 2 Ω(γ2 n), (10) where S m s the shell of radus [(1 γ)n, (1 + γ)n] around E(m), that s, S m B 2 (E(m), (1 + γ)n) \ B 2 (E(m), (1 γ)n). (We wll set γ > 0 n terms of ε and at the end of the roof.) (9) and (10) along wth the unon bound mly the followng: P r [E(m) + e D m S m ] Ω(γ2 n) 1 4, (11) where the last nequalty holds for large enough n. Next we uer bound the robablty above to obtan a lower bound on D m S m. It s easy to see that where P r [E(m) + e D m S m ] D m S m max, max max P r[e(m) + e y] max d (1 ) n d. y S m d [(1 γ)n,(1+γ)n] It s easy to check that d (1 ) n d s decreasng n d for 1/2. Thus, we have ( ) γn ( ) γn 1 1 max (1 γ)n (1 ) n (1 γ)n n (1 ) (1 )n 2 nh(). Thus, we have shown that ( ) γn 1 P r [E(m) + e D m S m ] D m S m 2 nh(), whch by (11) mles that D m S 1 ( ) γn nh(). (12) Next, we consder the followng sequence of relatons: 2 n D m (13) m {0,1} k D m S m {0,1} k 1 ( ) γn 1 (14) 4 m {0,1} k 2 H()n 2 k 2 H()n γ log(1/ 1)n 2 > 2 k+h()n εn. (15) 4

5 In the above (13) follows from the fact that for m 1 m 2, D m1 and D m2 are dsjont. (14) ε follows from (12). (15) follows for large enough n and f we ck γ 2 log( 1 1). (Note that as 0 < < 1/2, γ Θ(ε).) (15) mles that k < (1 H() + ε)n, whch s a contradcton. The roof of art () of Theorem 0.1 s comlete. Remark 2.1. It can be verfed that the roof above can also work f the decodng error robablty s bounded by 2 βn (nstead of the 1/2 n art () of Theorem 0.1) for small enough β β(ε) > 0. 5

Lecture 3: Shannon s Theorem

Lecture 3: Shannon s Theorem CSE 533: Error-Correctng Codes (Autumn 006 Lecture 3: Shannon s Theorem October 9, 006 Lecturer: Venkatesan Guruswam Scrbe: Wdad Machmouch 1 Communcaton Model The communcaton model we are usng conssts

More information

Lecture 14 (03/27/18). Channels. Decoding. Preview of the Capacity Theorem.

Lecture 14 (03/27/18). Channels. Decoding. Preview of the Capacity Theorem. Lecture 14 (03/27/18). Channels. Decodng. Prevew of the Capacty Theorem. A. Barg The concept of a communcaton channel n nformaton theory s an abstracton for transmttng dgtal (and analog) nformaton from

More information

Eigenvalues of Random Graphs

Eigenvalues of Random Graphs Spectral Graph Theory Lecture 2 Egenvalues of Random Graphs Danel A. Spelman November 4, 202 2. Introducton In ths lecture, we consder a random graph on n vertces n whch each edge s chosen to be n the

More information

find (x): given element x, return the canonical element of the set containing x;

find (x): given element x, return the canonical element of the set containing x; COS 43 Sprng, 009 Dsjont Set Unon Problem: Mantan a collecton of dsjont sets. Two operatons: fnd the set contanng a gven element; unte two sets nto one (destructvely). Approach: Canoncal element method:

More information

Randomness and Computation

Randomness and Computation Randomness and Computaton or, Randomzed Algorthms Mary Cryan School of Informatcs Unversty of Ednburgh RC 208/9) Lecture 0 slde Balls n Bns m balls, n bns, and balls thrown unformly at random nto bns usually

More information

Managing Capacity Through Reward Programs. on-line companion page. Byung-Do Kim Seoul National University College of Business Administration

Managing Capacity Through Reward Programs. on-line companion page. Byung-Do Kim Seoul National University College of Business Administration Managng Caacty Through eward Programs on-lne comanon age Byung-Do Km Seoul Natonal Unversty College of Busness Admnstraton Mengze Sh Unversty of Toronto otman School of Management Toronto ON M5S E6 Canada

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

Lecture 10: May 6, 2013

Lecture 10: May 6, 2013 TTIC/CMSC 31150 Mathematcal Toolkt Sprng 013 Madhur Tulsan Lecture 10: May 6, 013 Scrbe: Wenje Luo In today s lecture, we manly talked about random walk on graphs and ntroduce the concept of graph expander,

More information

Learning Theory: Lecture Notes

Learning Theory: Lecture Notes Learnng Theory: Lecture Notes Lecturer: Kamalka Chaudhur Scrbe: Qush Wang October 27, 2012 1 The Agnostc PAC Model Recall that one of the constrants of the PAC model s that the data dstrbuton has to be

More information

PARTIAL QUOTIENTS AND DISTRIBUTION OF SEQUENCES. Department of Mathematics University of California Riverside, CA

PARTIAL QUOTIENTS AND DISTRIBUTION OF SEQUENCES. Department of Mathematics University of California Riverside, CA PARTIAL QUOTIETS AD DISTRIBUTIO OF SEQUECES 1 Me-Chu Chang Deartment of Mathematcs Unversty of Calforna Rversde, CA 92521 mcc@math.ucr.edu Abstract. In ths aer we establsh average bounds on the artal quotents

More information

Supplementary Material for Spectral Clustering based on the graph p-laplacian

Supplementary Material for Spectral Clustering based on the graph p-laplacian Sulementary Materal for Sectral Clusterng based on the grah -Lalacan Thomas Bühler and Matthas Hen Saarland Unversty, Saarbrücken, Germany {tb,hen}@csun-sbde May 009 Corrected verson, June 00 Abstract

More information

Lecture 5 Decoding Binary BCH Codes

Lecture 5 Decoding Binary BCH Codes Lecture 5 Decodng Bnary BCH Codes In ths class, we wll ntroduce dfferent methods for decodng BCH codes 51 Decodng the [15, 7, 5] 2 -BCH Code Consder the [15, 7, 5] 2 -code C we ntroduced n the last lecture

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

The Number of Ways to Write n as a Sum of ` Regular Figurate Numbers

The Number of Ways to Write n as a Sum of ` Regular Figurate Numbers Syracuse Unversty SURFACE Syracuse Unversty Honors Program Capstone Projects Syracuse Unversty Honors Program Capstone Projects Sprng 5-1-01 The Number of Ways to Wrte n as a Sum of ` Regular Fgurate Numbers

More information

A NOTE ON THE DISCRETE FOURIER RESTRICTION PROBLEM

A NOTE ON THE DISCRETE FOURIER RESTRICTION PROBLEM A NOTE ON THE DISCRETE FOURIER RESTRICTION PROBLEM XUDONG LAI AND YONG DING arxv:171001481v1 [mathap] 4 Oct 017 Abstract In ths aer we establsh a general dscrete Fourer restrcton theorem As an alcaton

More information

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES SVANTE JANSON Abstract. We gve explct bounds for the tal probabltes for sums of ndependent geometrc or exponental varables, possbly wth dfferent

More information

arxiv: v1 [math.co] 1 Mar 2014

arxiv: v1 [math.co] 1 Mar 2014 Unon-ntersectng set systems Gyula O.H. Katona and Dánel T. Nagy March 4, 014 arxv:1403.0088v1 [math.co] 1 Mar 014 Abstract Three ntersecton theorems are proved. Frst, we determne the sze of the largest

More information

An application of generalized Tsalli s-havrda-charvat entropy in coding theory through a generalization of Kraft inequality

An application of generalized Tsalli s-havrda-charvat entropy in coding theory through a generalization of Kraft inequality Internatonal Journal of Statstcs and Aled Mathematcs 206; (4): 0-05 ISS: 2456-452 Maths 206; (4): 0-05 206 Stats & Maths wwwmathsjournalcom Receved: 0-09-206 Acceted: 02-0-206 Maharsh Markendeshwar Unversty,

More information

Lecture 3 January 31, 2017

Lecture 3 January 31, 2017 CS 224: Advanced Algorthms Sprng 207 Prof. Jelan Nelson Lecture 3 January 3, 207 Scrbe: Saketh Rama Overvew In the last lecture we covered Y-fast tres and Fuson Trees. In ths lecture we start our dscusson

More information

Genericity of Critical Types

Genericity of Critical Types Genercty of Crtcal Types Y-Chun Chen Alfredo D Tllo Eduardo Fangold Syang Xong September 2008 Abstract Ely and Pesk 2008 offers an nsghtful characterzaton of crtcal types: a type s crtcal f and only f

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Lecture 3. Ax x i a i. i i

Lecture 3. Ax x i a i. i i 18.409 The Behavor of Algorthms n Practce 2/14/2 Lecturer: Dan Spelman Lecture 3 Scrbe: Arvnd Sankar 1 Largest sngular value In order to bound the condton number, we need an upper bound on the largest

More information

On the Connectedness of the Solution Set for the Weak Vector Variational Inequality 1

On the Connectedness of the Solution Set for the Weak Vector Variational Inequality 1 Journal of Mathematcal Analyss and Alcatons 260, 15 2001 do:10.1006jmaa.2000.7389, avalable onlne at htt:.dealbrary.com on On the Connectedness of the Soluton Set for the Weak Vector Varatonal Inequalty

More information

Edge Isoperimetric Inequalities

Edge Isoperimetric Inequalities November 7, 2005 Ross M. Rchardson Edge Isopermetrc Inequaltes 1 Four Questons Recall that n the last lecture we looked at the problem of sopermetrc nequaltes n the hypercube, Q n. Our noton of boundary

More information

Excess Error, Approximation Error, and Estimation Error

Excess Error, Approximation Error, and Estimation Error E0 370 Statstcal Learnng Theory Lecture 10 Sep 15, 011 Excess Error, Approxaton Error, and Estaton Error Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton So far, we have consdered the fnte saple

More information

Computational and Statistical Learning theory Assignment 4

Computational and Statistical Learning theory Assignment 4 Coputatonal and Statstcal Learnng theory Assgnent 4 Due: March 2nd Eal solutons to : karthk at ttc dot edu Notatons/Defntons Recall the defnton of saple based Radeacher coplexty : [ ] R S F) := E ɛ {±}

More information

18.1 Introduction and Recap

18.1 Introduction and Recap CS787: Advanced Algorthms Scrbe: Pryananda Shenoy and Shjn Kong Lecturer: Shuch Chawla Topc: Streamng Algorthmscontnued) Date: 0/26/2007 We contnue talng about streamng algorthms n ths lecture, ncludng

More information

COS 511: Theoretical Machine Learning

COS 511: Theoretical Machine Learning COS 5: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #0 Scrbe: José Sões Ferrera March 06, 203 In the last lecture the concept of Radeacher coplexty was ntroduced, wth the goal of showng that

More information

Bernoulli Numbers and Polynomials

Bernoulli Numbers and Polynomials Bernoull Numbers and Polynomals T. Muthukumar tmk@tk.ac.n 17 Jun 2014 The sum of frst n natural numbers 1, 2, 3,..., n s n n(n + 1 S 1 (n := m = = n2 2 2 + n 2. Ths formula can be derved by notng that

More information

Derivatives of Value at Risk and Expected Shortfall

Derivatives of Value at Risk and Expected Shortfall Dervatves of Value at Rsk and Exected Shortfall November 2003 Hans Rau-Bredow hans.rau-bredow@mal.un-wuerzburg.de Dr. Hans Rau-Bredow Unversty of Cologne; Unversty of Würzburg Leo Wesmantel Str. 4 D-97074

More information

Error Probability for M Signals

Error Probability for M Signals Chapter 3 rror Probablty for M Sgnals In ths chapter we dscuss the error probablty n decdng whch of M sgnals was transmtted over an arbtrary channel. We assume the sgnals are represented by a set of orthonormal

More information

1 Definition of Rademacher Complexity

1 Definition of Rademacher Complexity COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #9 Scrbe: Josh Chen March 5, 2013 We ve spent the past few classes provng bounds on the generalzaton error of PAClearnng algorths for the

More information

Refined Coding Bounds for Network Error Correction

Refined Coding Bounds for Network Error Correction Refned Codng Bounds for Network Error Correcton Shenghao Yang Department of Informaton Engneerng The Chnese Unversty of Hong Kong Shatn, N.T., Hong Kong shyang5@e.cuhk.edu.hk Raymond W. Yeung Department

More information

Joint Decoding of Content-Replication Codes for Flash Memories

Joint Decoding of Content-Replication Codes for Flash Memories Ffty-thrd Annual Allerton Conference Allerton House, UIUC, Illnos, USA Setember 29 - October 2, 2015 Jont Decodng of Content-Relcaton Codes for Flash Memores Qng L, Huan Chang, Anxao (Andrew) Jang, and

More information

Advanced Topics in Optimization. Piecewise Linear Approximation of a Nonlinear Function

Advanced Topics in Optimization. Piecewise Linear Approximation of a Nonlinear Function Advanced Tocs n Otmzaton Pecewse Lnear Aroxmaton of a Nonlnear Functon Otmzaton Methods: M8L Introducton and Objectves Introducton There exsts no general algorthm for nonlnear rogrammng due to ts rregular

More information

1 The Mistake Bound Model

1 The Mistake Bound Model 5-850: Advanced Algorthms CMU, Sprng 07 Lecture #: Onlne Learnng and Multplcatve Weghts February 7, 07 Lecturer: Anupam Gupta Scrbe: Bryan Lee,Albert Gu, Eugene Cho he Mstake Bound Model Suppose there

More information

Non-Ideality Through Fugacity and Activity

Non-Ideality Through Fugacity and Activity Non-Idealty Through Fugacty and Actvty S. Patel Deartment of Chemstry and Bochemstry, Unversty of Delaware, Newark, Delaware 19716, USA Corresondng author. E-mal: saatel@udel.edu 1 I. FUGACITY In ths dscusson,

More information

What Independencies does a Bayes Net Model? Bayesian Networks: Independencies and Inference. Quick proof that independence is symmetric

What Independencies does a Bayes Net Model? Bayesian Networks: Independencies and Inference. Quick proof that independence is symmetric Bayesan Networks: Indeendences and Inference Scott Daves and ndrew Moore Note to other teachers and users of these sldes. ndrew and Scott would be delghted f you found ths source materal useful n gvng

More information

Algorithms for factoring

Algorithms for factoring CSA E0 235: Crytograhy Arl 9,2015 Instructor: Arta Patra Algorthms for factorng Submtted by: Jay Oza, Nranjan Sngh Introducton Factorsaton of large ntegers has been a wdely studed toc manly because of

More information

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora prnceton unv. F 13 cos 521: Advanced Algorthm Desgn Lecture 3: Large devatons bounds and applcatons Lecturer: Sanjeev Arora Scrbe: Today s topc s devaton bounds: what s the probablty that a random varable

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #16 Scribe: Yannan Wang April 3, 2014

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #16 Scribe: Yannan Wang April 3, 2014 COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #16 Scrbe: Yannan Wang Aprl 3, 014 1 Introducton The goal of our onlne learnng scenaro from last class s C comparng wth best expert and

More information

Spectral Graph Theory and its Applications September 16, Lecture 5

Spectral Graph Theory and its Applications September 16, Lecture 5 Spectral Graph Theory and ts Applcatons September 16, 2004 Lecturer: Danel A. Spelman Lecture 5 5.1 Introducton In ths lecture, we wll prove the followng theorem: Theorem 5.1.1. Let G be a planar graph

More information

Lecture Space-Bounded Derandomization

Lecture Space-Bounded Derandomization Notes on Complexty Theory Last updated: October, 2008 Jonathan Katz Lecture Space-Bounded Derandomzaton 1 Space-Bounded Derandomzaton We now dscuss derandomzaton of space-bounded algorthms. Here non-trval

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm The Expectaton-Maxmaton Algorthm Charles Elan elan@cs.ucsd.edu November 16, 2007 Ths chapter explans the EM algorthm at multple levels of generalty. Secton 1 gves the standard hgh-level verson of the algorthm.

More information

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014)

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014) 0-80: Advanced Optmzaton and Randomzed Methods Lecture : Convex functons (Jan 5, 04) Lecturer: Suvrt Sra Addr: Carnege Mellon Unversty, Sprng 04 Scrbes: Avnava Dubey, Ahmed Hefny Dsclamer: These notes

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2) 1/16 MATH 829: Introducton to Data Mnng and Analyss The EM algorthm (part 2) Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 20, 2016 Recall 2/16 We are gven ndependent observatons

More information

First day August 1, Problems and Solutions

First day August 1, Problems and Solutions FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 August 4, 997, Plovdv, BULGARIA Frst day August, 997 Problems and Solutons Problem. Let {ε n } n= be a sequence of postve

More information

Some congruences related to harmonic numbers and the terms of the second order sequences

Some congruences related to harmonic numbers and the terms of the second order sequences Mathematca Moravca Vol. 0: 06, 3 37 Some congruences related to harmonc numbers the terms of the second order sequences Neşe Ömür Sbel Koaral Abstract. In ths aer, wth hels of some combnatoral denttes,

More information

STEINHAUS PROPERTY IN BANACH LATTICES

STEINHAUS PROPERTY IN BANACH LATTICES DEPARTMENT OF MATHEMATICS TECHNICAL REPORT STEINHAUS PROPERTY IN BANACH LATTICES DAMIAN KUBIAK AND DAVID TIDWELL SPRING 2015 No. 2015-1 TENNESSEE TECHNOLOGICAL UNIVERSITY Cookevlle, TN 38505 STEINHAUS

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Mamum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models for

More information

Week 2. This week, we covered operations on sets and cardinality.

Week 2. This week, we covered operations on sets and cardinality. Week 2 Ths week, we covered operatons on sets and cardnalty. Defnton 0.1 (Correspondence). A correspondence between two sets A and B s a set S contaned n A B = {(a, b) a A, b B}. A correspondence from

More information

Online Classification: Perceptron and Winnow

Online Classification: Perceptron and Winnow E0 370 Statstcal Learnng Theory Lecture 18 Nov 8, 011 Onlne Classfcaton: Perceptron and Wnnow Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton In ths lecture we wll start to study the onlne learnng

More information

SUPPLEMENT TO ROP: MATRIX RECOVERY VIA RANK-ONE PROJECTIONS 1

SUPPLEMENT TO ROP: MATRIX RECOVERY VIA RANK-ONE PROJECTIONS 1 SUPPLEMENT TO ROP: MATRIX RECOVERY VIA RANK-ONE PROJECTIONS BY T. TONY CAI and ANRU ZHANG Deartment of Statstcs The Wharton School Unversty of Pennsylvana We rove n ths sulement the techncal lemmas used

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

A random variable is a function which associates a real number to each element of the sample space

A random variable is a function which associates a real number to each element of the sample space Introducton to Random Varables Defnton of random varable Defnton of of random varable Dscrete and contnuous random varable Probablty blt functon Dstrbuton functon Densty functon Sometmes, t s not enough

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Entropy Coding. A complete entropy codec, which is an encoder/decoder. pair, consists of the process of encoding or

Entropy Coding. A complete entropy codec, which is an encoder/decoder. pair, consists of the process of encoding or Sgnal Compresson Sgnal Compresson Entropy Codng Entropy codng s also known as zero-error codng, data compresson or lossless compresson. Entropy codng s wdely used n vrtually all popular nternatonal multmeda

More information

Maximizing the number of nonnegative subsets

Maximizing the number of nonnegative subsets Maxmzng the number of nonnegatve subsets Noga Alon Hao Huang December 1, 213 Abstract Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what s the maxmum

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probablty Mcroscopc propertes of matter: quantum mechancs, atomc and molecular propertes Macroscopc propertes of matter: thermodynamcs, E, H, C V, C p, S, A, G How do we relate these two propertes?

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Introduction to Random Variables

Introduction to Random Variables Introducton to Random Varables Defnton of random varable Defnton of random varable Dscrete and contnuous random varable Probablty functon Dstrbuton functon Densty functon Sometmes, t s not enough to descrbe

More information

Appendix B. Criterion of Riemann-Stieltjes Integrability

Appendix B. Criterion of Riemann-Stieltjes Integrability Appendx B. Crteron of Remann-Steltes Integrablty Ths note s complementary to [R, Ch. 6] and [T, Sec. 3.5]. The man result of ths note s Theorem B.3, whch provdes the necessary and suffcent condtons for

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

Self-complementing permutations of k-uniform hypergraphs

Self-complementing permutations of k-uniform hypergraphs Dscrete Mathematcs Theoretcal Computer Scence DMTCS vol. 11:1, 2009, 117 124 Self-complementng permutatons of k-unform hypergraphs Artur Szymańsk A. Paweł Wojda Faculty of Appled Mathematcs, AGH Unversty

More information

1 Bref Introducton Ths memo reorts artal results regardng the task of testng whether a gven bounded-degree grah s an exander. The model s of testng gr

1 Bref Introducton Ths memo reorts artal results regardng the task of testng whether a gven bounded-degree grah s an exander. The model s of testng gr On Testng Exanson n Bounded-Degree Grahs Oded Goldrech Det. of Comuter Scence Wezmann Insttute of Scence Rehovot, Israel oded@wsdom.wezmann.ac.l Dana Ron Det. of EE { Systems Tel Avv Unversty Ramat Avv,

More information

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem.

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem. prnceton u. sp 02 cos 598B: algorthms and complexty Lecture 20: Lft and Project, SDP Dualty Lecturer: Sanjeev Arora Scrbe:Yury Makarychev Today we wll study the Lft and Project method. Then we wll prove

More information

6) Derivatives, gradients and Hessian matrices

6) Derivatives, gradients and Hessian matrices 30C00300 Mathematcal Methods for Economsts (6 cr) 6) Dervatves, gradents and Hessan matrces Smon & Blume chapters: 14, 15 Sldes by: Tmo Kuosmanen 1 Outlne Defnton of dervatve functon Dervatve notatons

More information

EXPONENTIAL AND MOMENT INEQUALITIES FOR U-STATISTICS

EXPONENTIAL AND MOMENT INEQUALITIES FOR U-STATISTICS EXPONENTIAL AND MOMENT INEQUALITIES FOR U-STATISTICS EVARIST GINÉ, RAFA L LATA LA AND JOEL ZINN ABSTRACT A Bernsten-tye exonental nequalty for (generalzed) canoncal U-statstcs of order s obtaned and the

More information

Lecture 4: November 17, Part 1 Single Buffer Management

Lecture 4: November 17, Part 1 Single Buffer Management Lecturer: Ad Rosén Algorthms for the anagement of Networs Fall 2003-2004 Lecture 4: November 7, 2003 Scrbe: Guy Grebla Part Sngle Buffer anagement In the prevous lecture we taled about the Combned Input

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

11 Tail Inequalities Markov s Inequality. Lecture 11: Tail Inequalities [Fa 13]

11 Tail Inequalities Markov s Inequality. Lecture 11: Tail Inequalities [Fa 13] Algorthms Lecture 11: Tal Inequaltes [Fa 13] If you hold a cat by the tal you learn thngs you cannot learn any other way. Mark Twan 11 Tal Inequaltes The smple recursve structure of skp lsts made t relatvely

More information

Complex Numbers, Signals, and Circuits

Complex Numbers, Signals, and Circuits Complex Numbers, Sgnals, and Crcuts 3 August, 009 Complex Numbers: a Revew Suppose we have a complex number z = x jy. To convert to polar form, we need to know the magntude of z and the phase of z. z =

More information

A Mathematical Theory of Communication. Claude Shannon s paper presented by Kate Jenkins 2/19/00

A Mathematical Theory of Communication. Claude Shannon s paper presented by Kate Jenkins 2/19/00 A Mathematcal Theory of Communcaton Claude hannon s aer resented by Kate Jenkns 2/19/00 Publshed n two arts, July 1948 and October 1948 n the Bell ystem Techncal Journal Foundng aer of Informaton Theory

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

SELECTED SOLUTIONS, SECTION (Weak duality) Prove that the primal and dual values p and d defined by equations (4.3.2) and (4.3.3) satisfy p d.

SELECTED SOLUTIONS, SECTION (Weak duality) Prove that the primal and dual values p and d defined by equations (4.3.2) and (4.3.3) satisfy p d. SELECTED SOLUTIONS, SECTION 4.3 1. Weak dualty Prove that the prmal and dual values p and d defned by equatons 4.3. and 4.3.3 satsfy p d. We consder an optmzaton problem of the form The Lagrangan for ths

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

Vapnik-Chervonenkis theory

Vapnik-Chervonenkis theory Vapnk-Chervonenks theory Rs Kondor June 13, 2008 For the purposes of ths lecture, we restrct ourselves to the bnary supervsed batch learnng settng. We assume that we have an nput space X, and an unknown

More information

Matching Dyadic Distributions to Channels

Matching Dyadic Distributions to Channels Matchng Dyadc Dstrbutons to Channels G. Böcherer and R. Mathar Insttute for Theoretcal Informaton Technology RWTH Aachen Unversty, 5256 Aachen, Germany Emal: {boecherer,mathar}@t.rwth-aachen.de Abstract

More information

Lecture 4: Proof of Shannon s theorem and an explicit code

Lecture 4: Proof of Shannon s theorem and an explicit code CSE 533: Error-Correcting Codes (Autumn 006 Lecture 4: Proof of Shannon s theorem and an explicit code October 11, 006 Lecturer: Venkatesan Guruswami Scribe: Atri Rudra 1 Overview Last lecture we stated

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

Dimensionality Reduction Notes 1

Dimensionality Reduction Notes 1 Dmensonalty Reducton Notes 1 Jelan Nelson mnlek@seas.harvard.edu August 10, 2015 1 Prelmnares Here we collect some notaton and basc lemmas used throughout ths note. Throughout, for a random varable X,

More information

INTEGRAL p-adic HODGE THEORY, TALK 14 (COMPARISON WITH THE DE RHAMWITT COMPLEX)

INTEGRAL p-adic HODGE THEORY, TALK 14 (COMPARISON WITH THE DE RHAMWITT COMPLEX) INTEGRAL -ADIC HODGE THEORY, TALK 4 (COMPARISON WITH THE DE RHAMWITT COMPLEX) JOAQUIN RODRIGUES JACINTO (NOTES BY JAMES NEWTON). Recollectons and statement of theorem Let K be a erfectod eld of characterstc

More information

Determinants Containing Powers of Generalized Fibonacci Numbers

Determinants Containing Powers of Generalized Fibonacci Numbers 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol 19 (2016), Artcle 1671 Determnants Contanng Powers of Generalzed Fbonacc Numbers Aram Tangboonduangjt and Thotsaporn Thanatpanonda Mahdol Unversty Internatonal

More information

6.842 Randomness and Computation February 18, Lecture 4

6.842 Randomness and Computation February 18, Lecture 4 6.842 Randomness and Computaton February 18, 2014 Lecture 4 Lecturer: Rontt Rubnfeld Scrbe: Amartya Shankha Bswas Topcs 2-Pont Samplng Interactve Proofs Publc cons vs Prvate cons 1 Two Pont Samplng 1.1

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Lecture 19. Endogenous Regressors and Instrumental Variables

Lecture 19. Endogenous Regressors and Instrumental Variables Lecture 19. Endogenous Regressors and Instrumental Varables In the prevous lecture we consder a regresson model (I omt the subscrpts (1) Y β + D + u = 1 β The problem s that the dummy varable D s endogenous,.e.

More information

atri/courses/coding-theory/book/

atri/courses/coding-theory/book/ Foreword This chapter is based on lecture notes from coding theory courses taught by Venkatesan Guruswami at University at Washington and CMU; by Atri Rudra at University at Buffalo, SUNY and by Madhu

More information

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD Matrx Approxmaton va Samplng, Subspace Embeddng Lecturer: Anup Rao Scrbe: Rashth Sharma, Peng Zhang 0/01/016 1 Solvng Lnear Systems Usng SVD Two applcatons of SVD have been covered so far. Today we loo

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Lecture 14: Bandits with Budget Constraints

Lecture 14: Bandits with Budget Constraints IEOR 8100-001: Learnng and Optmzaton for Sequental Decson Makng 03/07/16 Lecture 14: andts wth udget Constrants Instructor: Shpra Agrawal Scrbed by: Zhpeng Lu 1 Problem defnton In the regular Mult-armed

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Numerical Algorithms for Visual Computing 2008/09 Example Solutions for Assignment 4. Problem 1 (Shift invariance of the Laplace operator)

Numerical Algorithms for Visual Computing 2008/09 Example Solutions for Assignment 4. Problem 1 (Shift invariance of the Laplace operator) Numercal Algorthms for Vsual Computng 008/09 Example Solutons for Assgnment 4 Problem (Shft nvarance of the Laplace operator The Laplace equaton s shft nvarant,.e., nvarant under translatons x x + a, y

More information

DECOMPOSITION OF SPACES OF DISTRIBUTIONS INDUCED BY HERMITE EXPANSIONS

DECOMPOSITION OF SPACES OF DISTRIBUTIONS INDUCED BY HERMITE EXPANSIONS DECOMPOSITION OF SPACES OF DISTRIBUTIONS INDUCED BY HERMITE EXPANSIONS PENCHO PETRUSHEV AND YUAN XU Abstract. Decomoston systems wth radly decayng elements needlets) based on Hermte functons are ntroduced

More information