Adaptive complex modified hybrid function projective synchronization of different dimensional complex chaos with uncertain complex parameters

Size: px
Start display at page:

Download "Adaptive complex modified hybrid function projective synchronization of different dimensional complex chaos with uncertain complex parameters"

Transcription

1 Nonlnea Dyn (26) 83:9 2 DOI.7/s ORIGINAL PAPER Adapve complex modfed hybd funcon pojecve synchonzaon of dffeen dmensonal complex chaos wh uncean complex paamees Jan Lu Shuang Lu Julen Clnon Spo Receved: 4 Febuay 2 / Acceped: Sepembe 2 / Publshed onlne: Sepembe 2 Spnge Scence+Busness Meda Dodech 2 Absac Ths pape focuses on he adapve modfed hybd funcon pojecve synchonzaon wh complex funcon ansfomaon max (CMHFPS) fo dffeen dmensonal chaoc (hypechaoc) sysems wh complex vaables and unknown complex paamees. The chaoc sysems ae consdeably dffeen fom hose n he exsng closely elaed leaue. Moeove, he ansfomaon max n hs ype of chaos synchonzaon s no a squae max, and s elemens ae complex funcons. In pacula, by consucng appopae Lyapunov funcons dependen on complex vaables, he adapve conolles ae desgned o synchonze dffeen dmensonal complex chaos (hypechaos) wh complex paamees n he sense of CMHFPS, and he complex updae laws fo esmang unknown complex paamees of complex chaoc sysems ae also gven. Fnally, wo examples ae pe- J. Lu (B) School of Mahemacal Scences, Unvesy of J nan, Jnan 222, Shandong, People s Rupublc of Chna e-mal: lujan99@63.com S. Lu School of Conol Scence and Engneeng, Shandong Unvesy, Jnan 26, Shandong, People s Rupublc of Chna e-mal: slu@sdu.edu.cn J. C. Spo Depamen of Physcs, Unvesy of Wsconsn-Madson, Madson, WI 376, USA e-mal: cspo@wsc.edu sened o llusae he effecveness and febly of he heoecal esuls. Keywods Complex chaos (hypechaos) Complex paamee Complex funcon ansfomaon max Dffeen dmensons Modfed hybd funcon pojecve synchonzaon Inoducon In 982, Fowle e al. [] deved ognally he Loenz equaons wh complex vaables and complex paamees o descbe a wo-laye model of he baoclnc nsably follows: ẋ = σ(y x), ẏ = x xz ay, () ż = 2 ( xy+ x ȳ) bz, whee he Raylegh numbe and paamee a ae complex numbes defned by = + j 2, a = jδ, and σ, b,, 2,δae eal and posve. The complex vaables x, y and eal vaable z of Eq. () ae elaed, especvely, o elecc feld and he aomc polazaon ampludes and he populaon nveson n a ng le sysem of wo-level aoms [2,3], an oveba denoes complex conjugae vaable and a do epesens devave wh espec o me, chaoc moon of Eq. () s shown n Fg.. Afewad, some eseach woks n complex felds have been acheved on dynamcs and conol of

2 J. Lu e al. Fg. Phe po of he aaco fo complex chaoc Loenz sysem () wh complex paamees σ = 2, = 6+.2 j, a =.6 j, b =.8 and nal values x() = j, y() = +.2 j, z() = z z x (a) on (x, z) plane y (b) on (y, z) plane chaos [4]. In 27, Mahmoud e al. [] suded bc popees and chaoc synchonzaon of he complex Loenz model follows: ẋ = σ(y x), ẏ = x xz y, (2) ż = 2 ( xy+ x ȳ) bz, whee σ >, >, b > ae eal paamees. The Loenz model (2) s embedded n () and can be ecoveed when 2 = δ =. In ecen ye, seveal ohe such examples have been poposed, noably he so-called complex Chen, Lü sysems [6] and complex hypechaoc Loenz, Lü sysem [7,8] and so on. Acually, many sysems whch nvolve complex vaables have played an mpoan ole n many ae, ncludng loadng of beams and plaes [9], opcal sysems [], plma physcs [], oo dynamcs [2] and hghenegy acceleaos [3] and secue communcaons [4]. Due o s mpoance and boad applcaons, he synchonzaon of complex chaoc sysems h aaced gea aenon n he l few decades well, such global synchonzaon (GS) [6,], complee synchonzaon (CS) [6,7], an-synchonzaon (AS) [8], lag synchonzaon (LS) [9,2], pojecve synchonzaon (PS) and modfed pojecve synchonzaon (MPS) [2], modfed funcon pojecve synchonzaon (MFPS) [22]. I s clea ha he scalng max s always chosen eal max o eal-valued funcon max n he above synchonzaon. In ode o ensue ha he ansmed sgnals have songe an-aack ably and ananslaed capably han ha ansmed by he usual ansmsson model, scalng max h been exended o he complex doman o ake no accoun of pojec synchonzaon vey ecenly. Zhang e al. [23] dscussed MPS wh complex scalng facos (CMPS) of uncean eal chaos and complex chaos. Mahmoud e al. [24] acheved CMPS of wo cean chaoc complex sysems. Sun e al. [2] noduced combnaon synchonzaon wh complex scalng max. Lu and Zhang [26] dscussed FPS wh complex funcon max (CFPS) of coupled chaoc complex sysem wh known eal paamees and s applcaons n secue communcaon. I should be noed ha he afoemenoned papes only consde chaoc synchonzaon of he same dmensonal complex-vaable sysems, and he saes of he dve and esponse sysems synchonze by a dagonal max, so each sae vaable of esponse sysem synchonzes one of dve sysem by a specal scalng faco. As a mae of fac, he synchonzaon can be caed ou hough dffeen dmensonal oscllaos, especally he sysems n communcaon [27], bologcal scence and socal scence [28], whee he dve and esponse sysems could synchonze by a desed ansfomaon max, no a squae max. By means of sae ansfomaon, mulple sae vaables n dve sysem wll be nvolved fo a coespondng sae vaable of esponse sysem by especve scalng facos (o funcons). I s obvous ha ansfomaon max s abay and moe unpedcable han dagonal scalng max. Theefoe, Luo and Wang [29] noduced hybd modfed funcon pojecve syn-

3 Adapve complex modfed hybd funcon pojecve chonzaon (MHFPS) of wo dffeen dmensonal complex chaoc sysems. Moeove, he complex funcon ansfomaon max s moe unpedcable han eal funcon ansfomaon max n [29], wll gealy ncee he complexy and dvesy of he synchonzaon. As a genealzaon of synchonzaon, dependng on he fom of he ansfomaon max, MHFPS wh complex funcon ansfomaon max (CMHFPS) conans MHFPS, MFPS, CFPS. Theefoe, s meanngful and valuable o sudy CMHFPS fo complex chaos. To he bes of ou knowledge, he CMHFPS of dffeen dmensonal complex sysems h aely been exploed. Fuhemoe, he above dscussed chaoc sysems have mosly been lmed o complex chaoc sysems wh eal paamees such sysem (2). Thee ae small numbe of papes dscussed chaos synchonzaon wh complex paamees. Fo nsance, Mahmoud e al. [] dscussed GS of complex nonlnea equaons fo deuned les wh cean complex paamees by sepaang eal and magnay p of complex vaables. Recenly, Lu e al. [3] dscussed modfed hybd pojec synchonzaon wh complex ansfomaon max (CMHPS) fo dffeen dmensonal hypechaoc and chaoc complex sysems wh complex paamees whou sepaang eal and magnay p of complex paamees. Howeve, fa he auhos know, CMHFPS of dffeen dmensonal chaoc complex sysems wh complex paamees s seldom epoed n he leaues. In addon, n eal physcal sysems, paamees of sysems ae pobably unknown o may change fom me o me. In hs ce, s well known ha he adapve conol s an effecve mehod o ealze he synchonzaon of chaoc sysems wh unknown paamees. I s woh nong ha adapve synchonzaon fo eal sysems o complex ones wh eal paamees have been developed [8]. Howeve, adapve synchonzaon of complex chaoc sysems wh uncean complex paamees s moe less. Only n [3], Lu e al. noduced adapve complex modfed pojecve synchonzaon (CMPS) of wo same dmensonal complex chaoc (hypechaoc) sysems wh uncean complex paamees. How o acheve CMHFPS, whch coves CMPS and CMHPS, beween wo dffeen dmensonal complex chaoc sysems wh uncean paamees va he adapve conol? Insped by he above dscusson, n hs pape, we focus on adapve CMHFPS of dffeen dmensonal chaoc sysems wh complex vaables and unknown complex paamees. In moe deal, he dsngushng feaue of hs pape ae efned follows. Fs, he sysems unde nvesgaon ae emakably moe geneal han hose n he closely elaed leaue [ 8,4,6,8,9,2 29]. Ths can be seen fom a compon beween sysems () and (2). A chaoc sysem wh complex vaables and unknown complex paamees poduces moe complex and unpedcable sgnals. I s well known ha he adopon of chaoc sysems wh complex vaables h been noduced fo secue communcaon, whee doublng he numbe of vaables by noducng complex sysem o enhance he conens and secuy of he ansmed nfomaon. Wha s moe, he sysem paamees ae unknown complex numbes, and have moe choce han eal paamees, whch make he sysems poduce moe unpedcable sgnals. Second, dffeen fom he eal-valued funcon max n pevous synchonzaon [22,29], he ansfomaon max s composed of complex-valued funcons n CMHFPS of dffeen dmensonal complex chaos. As a genealzaon of synchonzaon, dependng on he fom of he ansfomaon max, CMHFPS conans CFPS, CMHPS, CMPS, MHFPS, MFPS, and exend ecenly pevous woks [6,8,2 24,26,29 3]. Thd, unlke he schemes poposed n he leaue [ 8,4 26,29], we consuc appopae Lyapunov funcons dependen on complex vaables and do no sepaae eal and magnay p of he uncean complex paamees o complex vaables. The adapve conolle s desgned o synchonze dffeen dmensonal complex chaos wh complex paamees n he sense of CMHFPS, and he complex updae laws fo esmang unknown complex paamees ae also gven whou sepaang eal and magnay p of he complex paamees. The emande of hs pape s sucued follows. The defnon of CMHFPS s noduced fo dffeen dmensonal complex chaoc sysems wh uncean complex paamees n Sec. 2, followed by, he geneal schemes of adapve CMHFPS ae desgned n Sec. 3. Secon 4 s devoed o smulaon. The adapve CMHFPS beween complex chaoc Loenz dve sysem wh uncean complex paamees and complex hypechaoc Loenz esponse sysem wh uncean eal paamees well complex hypechaoc

4 2 J. Lu e al. Table Types of funcon synchonzaon Sengs he max D() D() = D () + jd () C m n, non-squae D() R m n, non-squae D() = D () + jd () C n n, non-dagonal D() R n n, non-dagonal D() = dag{d (), d 2 (),...,d n ()} R n n D() = dag{d(), d(),...,d()} C n n D() = dag{d(), d(),...,d()} R n n Type of synchonzaon CMHFPS MHFPS CMGFPS MGFPS MFPS CFPS FPS Lü dve sysem wh uncean eal paamees and complex Loenz esponse sysem wh uncean complex paamees ae aken wo examples o demonsae he effecveness and febly of he poposed scheme. Fnally, Sec. daws some conclusons. Noaon C n sands fo n dmensonal complex veco space. If z C n s a complex veco, hen z = z + jz, j = s he magnay un, supescps and sand fo he eal and magnay p of z, especvely, z H, z T ae he conjugae anspose and anspose of z, especvely and z mples he 2-nom of z.ifz s a complex scala, z ndcaes he modulus of z and z s he conjugae of z, whle M H () s he conjugae anspose of M(), povded ha M() s a complex max. 2 The defnon of CMHFPS of complex chaos (hypechaos) wh complex paamees and poblem descpons Fs, we consde he followng geneal m-dmensonal complex chaoc (hypechaoc) dve sysem ż() = H(z,), (3) and n-dmensonal complex chaoc (hypechaoc) esponse sysem ẇ() = R(w,) + v(z, w, ), (4) whee z = (z, z 2,..., z m ) T C m, w = (w, w 2,..., w n ) T C n ae complex sae veco, and v = v + jv C n s he conol npu. Nex, we noduce he defnon of CMHFPS wh complex funcon ansfomaon max of complex chaoc sysems wh complex paamees follows. Defnon Fo he dve sysem (3) and esponse sysem (4), s sad o be CMHFPS wh D() beween w() and z(), f hee exss a conolle v(z, w, ) such ha lm w() D()z() =, whee D() = + D () + jd (), he elemens of D() should be connuously dffeenal funcons wh bounded. Remak The n m max D() s called a complex funcon ansfomaon max. Seveal knds of funcon synchonzaon ae specal ces of CMHFPS, such complex modfed genealzed funcon pojecve synchonzaon (CMGFPS), complex funcon pojecve synchonzaon (CFPS), modfed hybd funcon pojecve synchonzaon (MHFPS), modfed genealzed funcon pojecve synchonzaon (MGFPS), modfed funcon pojecve synchonzaon (MFPS), funcon pojecve synchonzaon (FPS), see Table. Remak 2 If D() s a complex consan max, he poblem becomes CMHPS, CMPS and CPS fo complex dynamcal sysems [23,24,3,3]. The geneal m-dmensonal complex dve chaoc sysem wh unknown complex paamees s consdeed ż() = H(z,) = F(z)A + f(z), () whee z = z + jz C m and z = (z, z 2,...,z m )T, z = (z, z 2,...,z m )T. A = (a, a 2,..., a s ) T C s s a s complex veco of unknown paamees, F(z) s a m s complex max and s elemens ae funcons of complex sae vaables, and f = ( f, f 2,..., f m ) T s a m veco of complex nonlnea funcon. On he ohe hand, he n- dmensonal complex esponse chaoc sysem wh he conolle s depced ẇ() = R(w,) + v = G(w)B + g(w) + v, (6) whee w = w + jw C n and w = (w,w 2,..., wn )T, w = (w,w 2,...,w n )T. B = (b, b 2,...,

5 Adapve complex modfed hybd funcon pojecve 3 b q ) T C q s a q complex veco of unknown paamees, G(w) s a n q complex max and s elemens ae funcons of complex sae vaables, and g = (g, g 2,...,g n ) T s a n veco of complex nonlnea funcon. The conolle v = v + jv C n needs o be desgned. Remak 3 Mos of he well-suded complex chaoc and hypechaoc sysems can be wen he fom of sysem (), such complex Loenz sysem, complex Chen sysem, complex Lü sysem, complex Van de Pol oscllao, complex Duffng sysem, and complex hypechaoc Loenz sysem, complex hypechaoc Lü sysem. Remak 4 In many pevous woks, he numbes of vaables and paamees ae equal n chaoc sysems. In ou pape, he condon s no necessay. Tha s, m = s n sysem () and n = q n sysem (6). In hs pape, we dscuss he CMHFPS beween wo dffeen dmensonal complex chaoc sysems,.e. m > n o m < n. And CMHFPS eo s defned e() = w() D()z(), whee e() = e () + je () C n and e = (e, e 2,...,e n )T, e = (e, e 2,...,e n )T. The essenal conol goal s o desgn an adapve conolle v such ha synchonzaon eo ends o zeo,.e. lm e() = lm w() D()z() =. (7) Adapve CMHFPS schemes of dffeen dmensonal complex chaoc sysems wh uncean complex paamees Accodng o he defnon of CMHFPS, we have ė() = ẇ() d(d()z()) d = ẇ() (Ḋ()z() + D()ż()). (8) Se J(z, ) = d(d()z()) = (J d, J 2,...,J n ) T s a complex veco. Theoem Fo gven complex funcon ansfomaon max D() and nal condons w(),z(), f he adapve conolle s desgned v = R(w, ˆB, ) + J(z,Â, ) Ke = G(w) ˆB g(w) + Ḋ()z() + D()(F(z) + f(z)) Ke, (9) and he complex updae laws of complex paamees ae seleced {  = (D()F(z)) H e γ a Ã, () ˆB = G H (w) e γ b B, whee γ a = dag{γ a,γ a2,...,γ }, γ b = dag{γ b, γ b2,...,γ bq } and K = dag{k, k 2,...,k n } ae eal posve defne maces, k,( =, 2,...,n) ae couplng senghs, Â, ˆB ae paamee esmaons of he unknown vecos A and B, à =  A and B = ˆB B ae he paamee eo vecos, especvely, hen adapve CMHFPS beween he esponse sysem (6) and dve sysem () s acheved ympocally, and Â, ˆB convege o he ue values of he complex consan vecos A and B, especvely, () s called complex updae laws of unknown complex paamee vecos A and B. Poof Inseon of (), (6) and (9) no(8)gves ė() = ẇ() d(d()z()) d = ẇ() J(z, A, ) = R(w, B, ) +[ R(w, ˆB, ) + J(z,Â, ) Ke] J(z, A, ) = G(w)B + g(w) G(w) ˆB g(w) + Ḋ()z() +D()(F(z) + f(z)) Ke Ḋ()z() D()(F(z)A + f(z)) = D()F(z)( A) G(w)( ˆB B) Ke = D()F(z)à G(w) B Ke, () whee à =  A and B = ˆB B ae he paamee eo vecos, especvely. Inoducng he followng Lyapunov funcon canddae V (e, Ã, B, ) = ( ) e H e + à H à + B H B, (2) 2 fom complex updae laws () and à = Â, B = ˆB, he me devave of he V () along he ajecoes of he eos sysem () eads V () = [ (ė) H e+e H (ė)+ à H Ã+à H à + B H B + B H B ] 2 = 2 [((D()F(z))à G(w) B Ke) H e + e H (D()F(z)à G(w) B Ke) + (( D()F(z)) H e γ a Ã) H à + à H [( D()F(z)) H e γ a Ã]

6 4 J. Lu e al. + (G H (w) e γ b B) H B + B H (G H (w)e γ b B)] = e H Ke à H γ a à B H γ b B <. (3) Snce V () <, bed on he Lyapunov sably heoy, he eo veco e() +. So, one aves a CMHFPS wh desed complex funcon ansfomaon max D() beween wo dffeen dmensonal complex chaoc sysems () and (6) by usng he conolle (9) and complex updae laws (). Accodng o (), when +, he paamee eos à and B also convege o zeo, whch shows he esmaon of unknown complex paamee vecos  and ˆB n boh he dve and esponse sysems also convege o he seleced ue values. The poof s compleed. Theoem 2 Suppose he paamee B of he esponse sysem (6) s known a po. Then, fo gven complex funcon ansfomaon max D() and nal condons w(), z(), f he adapve conolle s desgned v = R(w, B, ) + J(z,Â, ) Ke = F(w)B g(w) + Ḋ()z() + D()(F(z) + f(z)) Ke, (4) and he complex updae law of complex paamee s seleced  = (D()F(z)) H e γ a Ã, () whee γ a = dag{γ a,γ a2,...,γ }, and K = dag{k, k 2,..., k n } ae eal posve defne maces, k,( =, 2,...,n) ae couplng senghs,  s paamee esmaon of he unknown veco A, à =  A s he paamee eo veco, especvely, hen adapve CMHFPS beween he esponse sysem (6) and dve sysem () s acheved ympocally, and esmaon  conveges o he ue value of he complex consan veco A. Poof Inoduce he followng Lyapunov funcon canddae V (e, Ã, ) = 2 (eh e + à H Ã). (6) Then s smla o he poof n Theoem and hus s omed. Theoem 3 Suppose he paamee A of he dve sysem () s known a po. Then, fo gven complex funcon ansfomaon max D() and nal condons w(), z(), f he adapve conolle s desgned v = R(w, ˆB, ) + J(z, A, ) Ke = G(w) ˆB g(w) + Ḋ()z() + D()(F(z)A + f(z)) Ke, (7) and he complex updae law of complex paamee s seleced ˆB = G H (w) e γ b B, (8) whee γ b = dag{γ b,γ b2,..., γ bq }, and K = dag{k, k 2,..., k n } ae eal posve defne maces, k,( =, 2,...,n) ae couplng senghs, ˆB s paamee esmaon of he unknown veco B, B = ˆB B s he paamee eo veco, especvely, hen adapve CMHFPS beween he esponse sysem (6) and dve sysem () s acheved ympocally, and ˆB conveges o he ue value of he complex consan veco B. Poof Inoduce he followng Lyapunov funcon canddae V (e, B, ) = 2 (eh e + B H B). (9) Then s smla o he poof n Theoem and hus s omed. Theoem 4 Suppose boh paamee vecos A and B ae known a po. Then, fo gven complex funcon ansfomaon max D() and nal condons w(), z(), f he adapve conolle s desgned v = R(w, B, ) + J(z, A, ) Ke = G(w)B g(w) + Ḋ()z() + D()(F(z)A + f(z)) Ke, (2) whee K = dag{k, k 2,..., k n } s eal posve defne max, k,( =, 2,...,n) ae couplng senghs, hen CMHFPS beween he esponse sysem (6) and dve sysem () s acheved ympocally. Poof Inoduce he followng Lyapunov funcon canddae V (e, ) = 2 eh e. Then s smla o he poof n Theoem and hus s omed. Remak Compaed wh po wok [ 8,6,8,2 24,26,29], we am a CMHFPS scheme of complex chaoc sysems wh uncean complex paamees,

7 Adapve complex modfed hybd funcon pojecve and desgn complex updae laws of uncean paamees and adapve conolle whou sepaang he eal and magnay p of he complex sae vaables o complex paamees; hus, he concluson s vey concse and ee o be appled. Remak 6 Noe ha he complex funcon ansfomaon max D() h no effec on he me devave V ; hus, one can adjus complex funcon ansfomaon max abaly whou aleng he conol obusness. Hence, he complex funcon ansfomaon max can be used nfomaon sgnal fo he communcaon scheme. In pacula, when D() s eal, Theoem 4 ae also appled o acheve MHFPS wh eal funcon ansfomaon max of complex chaoc sysems wh uncean paamees [29]. Remak 7 If ehe of he wo maces A, B s complex paamee veco, hen Theoem 4 ae also be appled o ealze CMHFPS of chaoc complex sysems wh paly complex paamees. In pacula, when paamee maces A and B ae eal paamee vecos, Theoem 4 ae also appled o acheve CMHFPS of chaoc complex sysems wh eal paamees. 4 Numecal examples Thoughou hs secon, n ode o demonsae he effecveness and febly of he poposed synchonzaon scheme n Sec. 3, examples ae shown fo wo knds of ces: CMHFPS beween wo dffeen dmensonal chaoc complex sysems bed on he nceed ode fo m < n and educed ode fo m > n, especvely. (23) 4. Adapve CMHFPS of complex chaoc Loenz whee ρ exp( jθ) = ρ(cos θ + j sn θ). Noe ha dve sysem wh complex paamees and z complex hypechaoc Loenz esponse sysem 3, w 3 R n sysems (2) and (22), we choose he scalng funcon d wh eal paamees 33 () R n (23) o make e 3 = w 3. cos(π/)z 3 R fo he convenence of eal dscusson. In ode o llusae adapve nceed ode CMHFPS, The conolle s consuced accodng o (9) n Theoem s sumed ha 3-dmensonal complex Loenz sys- ˆb (w 2 w )+(.π jz +.â (z 2 z )) exp( jπ/) k e v = ˆb 2 w + w 2 + w w 3 w 4 + (.π jz 2 + (â 2 z â 3 z 2 z z 3 )) exp( jπ/) k 2 e 2 ˆb 3 w 3 2 ( w w 2 + w w 2 ).πz 3 sn(π/) +[.( 2 ( z z 2 + z z 2 ) â 4 z 3 )] cos(π/) k 3 e 3, (24) em () wh unknown complex paamees dves 4- dmensonal complex hypechaoc Loenz sysem wh unknown eal paamees [7]. Theefoe, he dve chaoc Loenz sysem s gven ż = a (z 2 z ), ż 2 = a 2 z a 3 z 2 z z 3, (2) ż 3 = 2 ( z z 2 + z z 2 ) a 4 z 3, whee z = z + jz, z 2 = z 2 + jz 2 ae complex sae vaables and z 3 s a eal sae vaable, A = (a, a 2, a 3, a 4 ) T s unknown complex paamee veco. Equaon (2) s chaoc when a = 2, a 2 = j, a 3 =.6 j, a 4 =.8, see [] fo moe deals. The complex esponse hypechaoc Loenz sysem wh he conolle s wen ẇ = b (w 2 w ) + v, ẇ 2 = b 2 w w 2 w w 3 + w 4 + v 2, (22) ẇ 3 = b 3 w 3 + (/2)( w w 2 + w w 2 ) + v 3, ẇ 4 = b 4 w + b w 2 + v 4, whee w = w + jw, w 2 = w2 + jw 2 and w 4 = w4 + jw 4 ae complex sae vaables, and w 3 s a eal sae vaable, B = (b, b 2, b 3, b 4, b ) T s unknown eal paamee veco. Equaon (22) s chaoc when b = 4, b 2 = 3, b 3 = 3, b 4 =, b = 4and n he absence of he conolle v = (v,v 2,v 3,v 4 ) T, see [6] fo moe deals. The complex funcon ansfomaon max s aken D() =.exp( jπ/) exp( jπ/).cos(π/) 2exp( jπ/2) ˆb 4 w ˆb w 2 + (.π jz + 2â (z 2 z )) exp( jπ/2) k 4 e 4,

8 6 J. Lu e al. he complex updae laws of paamees ae gven accodng o ()  = (.exp( jπ/)e + 2exp( jπ/2)e 4 )( z 2 z ) γ a (â a ) exp( jπ/) z e 2 γ a2 (â 2 a 2 ) exp( jπ/) z 2 e 2 γ a3 (â 3 a 3 ). cos(π/)z 3 e 3 γ a4 (â 4 a 4 ), (2) and ( w 2 w )e γ b ( ˆb b ) w e 2 γ b2 ( ˆb 2 b 2 ) ˆB = w 3 e 3 γ b3 ( ˆb 3 b 3 ). (26) w e 4 γ b4 ( ˆb 4 b 4 ) w 2 e 4 γ b ( ˆb b ) In he numecal smulaons, he fouh-ode Runge Kua mehod s appled, he ue values of unknown paamees ae chosen A = (a, a 2, a 3, a 4 ) T = (2, j,.6 j,.8) T and B = (b, b 2, b 3, b 4, b ) T = (4, 3, 3,, 4) T, especvely. The nal condons of dve sysem (2) and esponse sysem (22) ae andomly aken z() = (2 +.2 j, +.2 j, ) T and w() = ( 2 j, 3 4 j,, 6 7 j) T. The nal values of esmaed paamees and conol sengh ae Â() = (â (), â 2 (), â 3 (), â 4 ()) T = (,,, ) T, ˆB() = ( ˆb (), ˆb 2 (), ˆb 3 (), ˆb 4 (), ˆb ()) T = (,,,, ) T, γ a = dag{γ a,γ a2,γ a3,γ a4 } = dag{6, 6,, 8}, γ b = dag{γ b,γ b2,γ b3,γ b4,γ b } = dag{, 2, 6,, 8} and K = dag{k, k 2, k 3, k 4 } = dag{, 2, 3, 4}. The adapve CMHFPS eos of sysems (2) and (22) convege ympocally o zeo demonsaednfg.2, whee he sold lne shows he eal pa of he eo and he doed lne pesens he magnay pa of he eo. The pocesses of paamees denfcaon of  and ˆB ae shown n Fgs. 3 and 4, especvely, whee he ed lne shows he eal pa of he paamee and he blue lne he magnay pa of he paamee. The esmaed values of he unknown paamees gadually convege o he seleced values A = (a, a 2, a 3, a 4 ) T = (2, j,.6 j,.8) T and B = (b, b 2, b 3, b 4, b ) T = (4, 3, 3,, 4) T, especvely. As expeced, he above esuls demonsae ha adapve CMHFPS h been acheved beween complex chaoc Loenz dve sysem (2) and complex hypechaoc Loenz esponse sysem (22), and ha all of unknown paamees n boh dve and esponse sysems ae denfed successfully wh he desgned conolle (24) and he complex updae laws (2) and (26) of paamees. 4.2 Adapve CMHFPS of complex hypechaoc Lü dve sysem wh eal paamees and complex Loenz esponse sysem wh complex paamees In ode o llusae adapve educed ode CMHFPS, s sumed ha 4-dmensonal complex hypechaoc Lü sysem wh unknown eal paamees [8]dves3- dmensonal complex Loenz sysem () wh unknown complex paamees. Theefoe, he dve sysem s wen ż = a (z 2 z ) + z 4, ż 2 = a 2 z 2 z z 3 + z 4, (27) ż 3 = a 3 z 3 + (/2)( z z 2 + z z 2 ), ż 4 = a 4 z 4 + (/2)( z z 2 + z z 2 ), whee z = z + jz, z 2 = z 2 + jz 2 ae complex sae vaables and z 3, z 4 ae eal sae vaable, e() e () e () e 2 () e 2 () e 3 () e 4 () e 4 () Fg. 2 The CMHFPS eo dynamc of sysems (2) and(22) wh he conolle (24), complex paamee updae laws (2), (26). Hee e = w.exp( jπ/)z, e 2 = w 2 exp( jπ/)z 2, e 3 = w 3.cos(π/)z 3, e 4 = w 4 2exp( jπ/2)z

9 Adapve complex modfed hybd funcon pojecve 7 Fg. 3 The denfcaon pocess of unknown paamee veco A of dve sysem (2) a ( ) a 3 ( ) 2 ( ) a ( ) a a ( ) 4 a ( ) a a 3 2 ( ) ( ) Fg. 4 The denfcaon pocess of unknown paamee veco B of esponse sysem (22) ( ) b ( ) b ( ) b 3 2 ( ) b 4 ( ) b 4 2 ( ) b ( ) b 2 ( ) b 3 ( ) b 4 ( ) b A = (a, a 2, a 3, a 4 ) T s unknown eal paamee veco. Equaon (27) s chaoc when a =, a 2 = 36, a 3 = 4., a 4 = 2, see [8] fo moe deals. The complex esponse sysem wh he conolle s gven ẇ = b (w 2 w ) + v, ẇ 2 = b 2 w b 3 w 2 w w 3 + v 2, (28) ẇ 3 = b 4 w 3 + (/2)( w w 2 + w w 2 ) + v 3, whee w = w + jw,w 2 = w2 + jw 2 ae complex sae vaables, and w 3 s a eal sae vaable,

10 8 J. Lu e al. B = (b, b 2, b 3, b 4 ) T s unknown complex paamee veco, and he conolle v = (v,v 2,v 3 ) T s o be desgned. The complex funcon ansfomaon max s seleced.exp( jπ/) D() = exp( jπ/),.2 + sn.2 + cos (29) Noe ha z 3, z 4,w 3 R n sysems (27) and (28), we choose he scalng funcons d 33 (), d 34 R n (29)o make e 3 = w 3 (.2 + sn )z 3 (.2 + cos )z 4 R fo convenence of eal dscusson. The conolle s consuced accodng o (9) n Theoem The adapve CMHFPS eos of sysems (27) and (28) convege ympocally o zeo demonsaed n Fg., whee he doed lne shows he eal pa of he eo and he sold lne pesens he magnay pa of he eo. The pocesses of paamees denfcaon of  and ˆB ae shown n Fgs. 6 and 7, especvely, whee he ed lne shows he eal pa of he paamee and he blue lne pesens he magnay pa of he paamee. The esmaed values of he unknown paamees gadually convege o he seleced values A = (a, a 2, a 3, a 4 ) T = (42, 2, 6, ) T and B = (b, b 2, b 3, b 4 ) T = (2, j,.6 j,.8) T, especvely. v = ˆb (w 2 w ) + (.π jz +.(â (z 2 z ) + z 4 )) exp( jπ/) k e, v 2 = ˆb 2 w + ˆb 3 w 2 + w w 3 + (.π jz 2 +â 2 z 2 + z 4 z z 3 ) exp( jπ/) k 2 e 2, v 3 = ˆb 4 w 3 2 ( w w 2 + w w 2 ) + (.2 + sn )( â 3 z 3 + (/2)( z z 2 + z z 2 )) +(.2 + cos )( â 4 z 4 + (/2)( z z 2 + z z 2 )) + z 3 cos z 4 sn k 3 e 3, (3) he complex updae laws of paamees ae gven accodng o ().exp( jπ/)( z 2 z )e γ a (â a )  = exp( jπ/) z 2 e 2 γ a2 (â 2 a 2 ) (.2 + sn )z 3 e 3 γ a3 (â 3 a 3 ) (.2 + cos )z 4 e 3 γ a4 (â 4 a 4 ) (3) and ( w 2 w )e γ b ( ˆb b ) w ˆB = e 2 γ b2 ( ˆb 2 b 2 ) w 2 e 2 γ b3 ( ˆb 3 b 3 ). (32) w 3 e 3 γ b4 ( ˆb 4 b 4 ) In he numecal smulaons, he ue values of unknown paamees ae chosen A = (a, a 2, a 3, a 4 ) T = (42, 2, 6, ) T and B = (b, b 2, b 3, b 4 ) T = (2, j,.6 j,.8) T, especvely. The nal condons of dve sysem (27) and esponse sysem (28) ae andomly chosen z() = (+ j, + 6 j, 2, 2) T and w() = (2 +.2 j, +.2 j, ) T. The nal values of esmaed paamees and conol sengh ae Â() = (â (), â 2 (), â 3 (), â 4 ()) T = (, 6, 7+ j, 8+ j) T, ˆB() = ( ˆb (), ˆb 2 (), ˆb 3 (), ˆb 4 ()) T = (,,, + j) T, γ a = dag{γ a,γ a2,γ a3, γ a4 } = dag{6, 8,, 8}, γ b = dag{γ b,γ b2, γ b3,γ b4 }=dag{, 2, 6, 8} and K = dag{k, k 2, k 3 }=dag{,, 2}. As expeced, he above esuls demonsae ha adapve CMHFPS h been acheved beween complex hypechaoc Lü dve sysem (27) wh unknown eal paamees and complex chaoc Loenz esponse sysem (28) wh unknown complex paamees, and ha all of unknown paamees n boh dve and esponse sysems ae denfed successfully wh he desgned conolle (3) and he complex updae laws (3) and (32) of paamees. e() Fg. The CMHFPS eo dynamc of sysems (27) and(28) wh he conolle (3) and complex paamee updae laws (3), (32). Hee e = w.exp( jπ/)z, e 2 = w 2 exp( jπ/)z 2, e 3 = w 3 (.2 + sn )z 3 (.2 + cos )z 4 e () e () e 2 () e 2 () e 3 ()

11 Adapve complex modfed hybd funcon pojecve 9 Fg. 6 The denfcaon pocess of unknown paamee veco A of dve sysem (27) a ( ) ( ) a.. 3 a ( ) 4 a ( ) a 2 ( ) a ( ) 4 a 3 ( ) a 2 ( ) 2 Fg. 7 The denfcaon pocess of unknown paamee veco B of esponse sysem (28) ( ) b ( ) b 2 ( ) b ( ) b b ( ) 4 b ( ) 3 ( ) b ( ) 3 b 4 Dscusson and conclusons In hs pape, CMHFPS s noduced fo wo dffeen dmensonal chaoc sysems wh complex vaables and complex paamees. Wh he pesen mehod, n he complex space, he esponse sysem s ympocally synchonzed dffeen dmensonal dve sysem by a desed complex funcon ansfomaon max,

12 2 J. Lu e al. no a squae max. The adapve conolle and updae laws of unknown complex paamees ae desgned o make he esponse sysem become a complex funcon pojecon of he dve sysem. The pesened synchonzaon scheme s smple and heoecally goous. I s woh ponng ou ha suffcen cea on adapve CMHFPS ae deved by consucng appopae Lyapunov funcons dependen on complex vaables and employng adapve conol echnque. Que dffeen fom he schemes poposed n he leaue, we do no sepaae he eal and magnay p of complex vaables o complex paamees. Ths goes beyond he known esuls, and we hope he pefomed wok wll seve a gudelne fo fuhe sudes n chaoc synchonzaon of complex nonlnea sysems. Moeove, he CMHFPS beween complex chaoc Loenz dve sysem wh uncean complex paamees and complex hypechaoc Loenz esponse sysem wh uncean eal paamees s mplemened an example o dscuss nceed ode synchonzaon, and CMHFPS beween complex hypechaoc Lü dve sysem wh uncean eal paamees and complex Loenz esponse sysem wh uncean complex paamees s mplemened an example o dscuss educed ode synchonzaon, well. Numecal esuls ae ploed o show he apd convegence of eos o zeo and of he esmaons of unknown complex paamees o he seleced ue values. The CMHFPS bdges he gap beween dffeen dmensonal complex chaos wh complex paamees by a complex funcon ansfomaon max. The ansfomaon max s composed of complex funcons, whch ncees he complexy and scope of he synchonzaon and decs hgh secuy and lage vaey of secue communcaons. Wha s moe, moe choces of boh conol paamees and scalng funcons ae povded o ealze secue communcaons by chaos synchonzaon, songe an-aack ably and moe an-anslaed capacy ae senghened fo ou mehod. Ou fndngs ndcae ha he poposed scheme s paculaly effcen and of wde eal-wold applcably, a moe bgh fuue s wang fo secue communcaon and nfomaon pocessng. Acknowledgmens The auhos ae vey gaeful o he edos and he evewes fo he consucve commens and suggesons. Ths eseach w suppoed n pa by he Naonal Naue Scence Foundaon of Chna (Gan Nos , , 633), he Naue Scence Foundaon of Shandong Povnce, Chna (No. ZR24FL), Docoal Reseach Foundaon of Unvesy of Jnan (No. XBS3) and he Foundaon fo Unvesy Young Key Teache Pogam of Shandong Povncal Educaon Depamen, Chna. Refeences. Fowle, A.C., Gbbon, J.D.: The complex Loenz equaons. Phys. D 4, (982) 2. Gbbon, J.D., McGunnes, M.J.: The eal and complex Loenz equaons n oang fluds and le. Phys. D, 8 22 (982) 3. Fowle, A.C., Gbbon, J.D., McGunnes, M.J.: The eal and complex Loenz equaons and he elevance o physcal sysems. Phys. D 7, 3 (983) 4. Mahmoud, G.M., Bouns, T.: The dynamcs of sysems of complex nonlnea oscllaos: a evew. In. J. bfuc. Chaos 4, (24). Mahmoud, G.M., Alkhf, M.A.: Bc popees and chaoc synchonzaon of complex Loenz sysem. In. J. Mod. Phys. C 8, (27) 6. Mahmoud, G.M., Bouns, T., Mahmoud, E.E.: Acve conol and global synchonzaon of complex Chen and Lü sysems. In J. Bfuc. Chaos 7, (27) 7. Mahmoud, E.E.: Dynamcs and synchonzaon of new hypechaoc complex Loenz sysem. Mah. Compu. Model, (22) 8. Mahmoud, G.M., Mahmoud, E.E., Ahmed, M.E.: On he hypechaoc complex Lü sysem. Nonlnea Dyn. 8, (29) 9. Nayfeh, A.H., Mook, D.T.: Nonlnea Oscllaons. Wley, New Yok (979). Newell, A.C., Moloney, J.V.: Nonlnea Opcs. Addson Wesley, Readng (992). Rozhansk, V.A., Tsendn, L.D.: Tanspo Phenomena n Paally Ionzed Plma. Taylo Fancs, London (2) 2. Cvecann, L.: Resonan vbaons of nonlnea oos. Mech. Mach. Theoy 3, 8 88 (99) 3. Dlao, R., Alves-Pes, R.: Nonlnea Dynamcs n Pacle Acceleaos. Wold Scenfc, Sngapoe (996) 4. Wu, X.J., Zhu, C.J., Kan, H.B.: An mpoved secue communcaon scheme bed psve synchonzaon of hypechaoc complex nonlnea sysem. Appl. Mah. Compu. 22, 2 24 (2). Mahmoud, G.M., Bouns, T., Al-Khf, M.A., Aly, S.A.: Dynamcal popees and synchonzaon of complex nonlnea equaons fo deuned les. Dyn. Sys. 24, (29) 6. Mahmoud, G.M., Mahmoud, E.E.: Complee synchonzaon of chaoc complex nonlnea sysems wh uncean paamees. Nonlnea Dyn. 62, (2) 7. Lu, S., Chen, L.Q.: Second-ode emnal sldng mode conol fo newoks synchonzaon. Nonlnea Dyn. 79, 2 23 (2) 8. Lu, S.T., Lu, P.: Adapve an-synchonzaon of chaoc complex nonlnea sysems wh uncean paamees. Nonlnea Anal. RWA 2, (2)

13 Adapve complex modfed hybd funcon pojecve 2 9. Mahmoud, G.M., Mahmoud, E.E.: Lag synchonzaon of hypechaoc complex nonlnea sysems. Nonlnea Dyn. 67, (22) 2. Cha, Y., Chen, L.Q.: Pojecve lag synchonzaon of spaoempoal chaos va acve sldng mode conol, Commun. Nonlnea Sc. Nume. Smula. 7, (22) 2. Mahmoud, G.M., Mahmoud, E.E.: Synchonzaon and conol of hypechaoc complex Loenz sysem. Mah. Compu. Smula. 8, (2) 22. Lu, P., Lu, S.T., L, X.: Adapve modfed funcon pojecve synchonzaon of geneal uncean chaoc complex sysems. Phys. Sc. 8, 3 (22) 23. Zhang, F.F., Lu, S.T., Yu, W.Y.: Modfed pojecve synchonzaon wh complex scalng facos of uncean eal chaos and complex chaos. Chn. Phys. B 22, 2 (23) 24. Mahmoud, G.M., Mahmoud, E.E.: Complex modfed pojecve synchonzaon of wo chaoc complex nonlnea sysems. Nonlnea Dyn. 73, (23) 2. Sun, J.W., Cu, G.Z., Wang, Y.F., Shen, Y.: Combnaon complex synchonzaon of hee chaoc complex sysems. Nonlnea Dyn. 79, (2) 26. Lu, S.T., Zhang, F.F.: Complex funcon pojecve synchonzaon of complex chaoc sysem and s applcaons n secue communcaon. Nonlnea Dyn. 2, (23) 27. Wu, Z.Y., Chen, G.R., Fu, X.C.: Synchonzaon of a newok coupled wh complex-vaable chaoc sysems. Chaos 22, 2327 (22) 28. Zhang, Y., Jang, J.J.: Nonlnea dynamc mechansm of vocal emo fom voce analyss and model smulaons. J. Sound Vb. 36, (28) 29. Luo, C., Wang, X.Y.: Hybd modfed funcon pojecve synchonzaon of wo dffeen dmensonal complex nonlnea sysems wh paamees denfcaon. J. Fankln I (3), (23) 3. Lu, J., Lu, S.T., Zhang, F.F.: A novel fou-wng hypechaoc complex sysem and s complex modfed hybd pojecve synchonzaon wh dffeen dmensons. Abs. Appl. Anal. 24, (24) 3. Lu, J., Lu, S.T., Yuan, C.H.: Adapve complex modfed pojecve synchonzaon of complex chaoc (hypechaoc) sysems wh uncean complex paamees. Nonlnea Dyn. 79, 3 47 (2)

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova The XIII Inenaonal Confeence Appled Sochasc Models and Daa Analyss (ASMDA-009) Jne 30-Jly 3, 009, Vlns, LITHUANIA ISBN 978-9955-8-463-5 L Sakalaskas, C Skadas and E K Zavadskas (Eds): ASMDA-009 Seleced

More information

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr.

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr. Moden Enegy Funconal fo Nucle and Nuclea Mae By: lbeo noosa Teas &M Unvesy REU Cycloon 008 Meno: D. Shalom Shlomo Oulne. Inoducon.. The many-body poblem and he aee-fock mehod. 3. Skyme neacon. 4. aee-fock

More information

Name of the Student:

Name of the Student: Engneeng Mahemacs 05 SUBJEC NAME : Pobably & Random Pocess SUBJEC CODE : MA645 MAERIAL NAME : Fomula Maeal MAERIAL CODE : JM08AM007 REGULAION : R03 UPDAED ON : Febuay 05 (Scan he above QR code fo he dec

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION HAPER : LINEAR DISRIMINAION Dscmnan-based lassfcaon 3 In classfcaon h K classes ( k ) We defned dsmnan funcon g () = K hen gven an es eample e chose (pedced) s class label as f g () as he mamum among g

More information

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( ) 5-1. We apply Newon s second law (specfcally, Eq. 5-). (a) We fnd he componen of he foce s ( ) ( ) F = ma = ma cos 0.0 = 1.00kg.00m/s cos 0.0 = 1.88N. (b) The y componen of he foce s ( ) ( ) F = ma = ma

More information

ScienceDirect. Behavior of Integral Curves of the Quasilinear Second Order Differential Equations. Alma Omerspahic *

ScienceDirect. Behavior of Integral Curves of the Quasilinear Second Order Differential Equations. Alma Omerspahic * Avalable onlne a wwwscencedeccom ScenceDec oceda Engneeng 69 4 85 86 4h DAAAM Inenaonal Smposum on Inellgen Manufacung and Auomaon Behavo of Inegal Cuves of he uaslnea Second Ode Dffeenal Equaons Alma

More information

Delay-Dependent Control for Time-Delayed T-S Fuzzy Systems Using Descriptor Representation

Delay-Dependent Control for Time-Delayed T-S Fuzzy Systems Using Descriptor Representation 82 Inenaonal Jounal of Conol Auomaon and Sysems Vol 2 No 2 June 2004 Delay-Dependen Conol fo me-delayed -S Fuzzy Sysems Usng Descpo Repesenaon Eun ae Jeung Do Chang Oh and Hong Bae ak Absac: hs pape pesens

More information

1 Constant Real Rate C 1

1 Constant Real Rate C 1 Consan Real Rae. Real Rae of Inees Suppose you ae equally happy wh uns of he consumpon good oday o 5 uns of he consumpon good n peod s me. C 5 Tha means you ll be pepaed o gve up uns oday n eun fo 5 uns

More information

FIRMS IN THE TWO-PERIOD FRAMEWORK (CONTINUED)

FIRMS IN THE TWO-PERIOD FRAMEWORK (CONTINUED) FIRMS IN THE TWO-ERIO FRAMEWORK (CONTINUE) OCTOBER 26, 2 Model Sucue BASICS Tmelne of evens Sa of economc plannng hozon End of economc plannng hozon Noaon : capal used fo poducon n peod (decded upon n

More information

STABILITY CRITERIA FOR A CLASS OF NEUTRAL SYSTEMS VIA THE LMI APPROACH

STABILITY CRITERIA FOR A CLASS OF NEUTRAL SYSTEMS VIA THE LMI APPROACH Asan Jounal of Conol, Vol. 6, No., pp. 3-9, Mach 00 3 Bef Pape SABILIY CRIERIA FOR A CLASS OF NEURAL SYSEMS VIA HE LMI APPROACH Chang-Hua Len and Jen-De Chen ABSRAC In hs pape, he asypoc sably fo a class

More information

Handling Fuzzy Constraints in Flow Shop Problem

Handling Fuzzy Constraints in Flow Shop Problem Handlng Fuzzy Consans n Flow Shop Poblem Xueyan Song and Sanja Peovc School of Compue Scence & IT, Unvesy of Nongham, UK E-mal: {s sp}@cs.no.ac.uk Absac In hs pape, we pesen an appoach o deal wh fuzzy

More information

Lecture 5. Plane Wave Reflection and Transmission

Lecture 5. Plane Wave Reflection and Transmission Lecue 5 Plane Wave Reflecon and Tansmsson Incden wave: 1z E ( z) xˆ E (0) e 1 H ( z) yˆ E (0) e 1 Nomal Incdence (Revew) z 1 (,, ) E H S y (,, ) 1 1 1 Refleced wave: 1z E ( z) xˆ E E (0) e S H 1 1z H (

More information

Simulation of Non-normal Autocorrelated Variables

Simulation of Non-normal Autocorrelated Variables Jounal of Moden Appled Sascal Mehods Volume 5 Issue Acle 5 --005 Smulaon of Non-nomal Auocoelaed Vaables HT Holgesson Jönöpng Inenaonal Busness School Sweden homasholgesson@bshse Follow hs and addonal

More information

( ) ( )) ' j, k. These restrictions in turn imply a corresponding set of sample moment conditions:

( ) ( )) ' j, k. These restrictions in turn imply a corresponding set of sample moment conditions: esng he Random Walk Hypohess If changes n a sees P ae uncoelaed, hen he followng escons hold: va + va ( cov, 0 k 0 whee P P. k hese escons n un mply a coespondng se of sample momen condons: g µ + µ (,,

More information

New Stability Condition of T-S Fuzzy Systems and Design of Robust Flight Control Principle

New Stability Condition of T-S Fuzzy Systems and Design of Robust Flight Control Principle 96 JOURNAL O ELECRONIC SCIENCE AND ECHNOLOGY, VOL., NO., MARCH 3 New Sably Conon of -S uzzy Sysems an Desgn of Robus lgh Conol Pncple Chun-Nng Yang, Ya-Zhou Yue, an Hu L Absac Unlke he pevous eseach woks

More information

Solution of Non-homogeneous bulk arrival Two-node Tandem Queuing Model using Intervention Poisson distribution

Solution of Non-homogeneous bulk arrival Two-node Tandem Queuing Model using Intervention Poisson distribution Volume-03 Issue-09 Sepembe-08 ISSN: 455-3085 (Onlne) RESEARCH REVIEW Inenaonal Jounal of Muldscplnay www.jounals.com [UGC Lsed Jounal] Soluon of Non-homogeneous bulk aval Two-node Tandem Queung Model usng

More information

Chapter 3: Vectors and Two-Dimensional Motion

Chapter 3: Vectors and Two-Dimensional Motion Chape 3: Vecos and Two-Dmensonal Moon Vecos: magnude and decon Negae o a eco: eese s decon Mulplng o ddng a eco b a scala Vecos n he same decon (eaed lke numbes) Geneal Veco Addon: Tangle mehod o addon

More information

CHAPTER 3 DETECTION TECHNIQUES FOR MIMO SYSTEMS

CHAPTER 3 DETECTION TECHNIQUES FOR MIMO SYSTEMS 4 CAPTER 3 DETECTION TECNIQUES FOR MIMO SYSTEMS 3. INTRODUCTION The man challenge n he paccal ealzaon of MIMO weless sysems les n he effcen mplemenaon of he deeco whch needs o sepaae he spaally mulplexed

More information

ajanuary't I11 F or,'.

ajanuary't I11 F or,'. ',f,". ; q - c. ^. L.+T,..LJ.\ ; - ~,.,.,.,,,E k }."...,'s Y l.+ : '. " = /.. :4.,Y., _.,,. "-.. - '// ' 7< s k," ;< - " fn 07 265.-.-,... - ma/ \/ e 3 p~~f v-acecu ean d a e.eng nee ng sn ~yoo y namcs

More information

MCTDH Approach to Strong Field Dynamics

MCTDH Approach to Strong Field Dynamics MCTDH ppoach o Song Feld Dynamcs Suen Sukasyan Thomas Babec and Msha Ivanov Unvesy o Oawa Canada Impeal College ondon UK KITP Sana Babaa. May 8 009 Movaon Song eld dynamcs Role o elecon coelaon Tunnel

More information

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1 ps 57 Machne Leann School of EES Washnon Sae Unves ps 57 - Machne Leann Assume nsances of classes ae lneal sepaable Esmae paamees of lnea dscmnan If ( - -) > hen + Else - ps 57 - Machne Leann lassfcaon

More information

STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE WEIBULL DISTRIBUTION

STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE WEIBULL DISTRIBUTION Inenaional Jounal of Science, Technology & Managemen Volume No 04, Special Issue No. 0, Mach 205 ISSN (online): 2394-537 STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE

More information

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy Arcle Inernaonal Journal of Modern Mahemacal Scences, 4, (): - Inernaonal Journal of Modern Mahemacal Scences Journal homepage: www.modernscenfcpress.com/journals/jmms.aspx ISSN: 66-86X Florda, USA Approxmae

More information

Chapter Finite Difference Method for Ordinary Differential Equations

Chapter Finite Difference Method for Ordinary Differential Equations Chape 8.7 Fne Dffeence Mehod fo Odnay Dffeenal Eqaons Afe eadng hs chape, yo shold be able o. Undesand wha he fne dffeence mehod s and how o se o solve poblems. Wha s he fne dffeence mehod? The fne dffeence

More information

Real-coded Quantum Evolutionary Algorithm for Global Numerical Optimization with Continuous Variables

Real-coded Quantum Evolutionary Algorithm for Global Numerical Optimization with Continuous Variables Chnese Jounal of Eleconcs Vol.20, No.3, July 2011 Real-coded Quanum Evoluonay Algohm fo Global Numecal Opmzaon wh Connuous Vaables GAO Hu 1 and ZHANG Ru 2 (1.School of Taffc and Tanspoaon, Souhwes Jaoong

More information

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation Global Journal of Pure and Appled Mahemacs. ISSN 973-768 Volume 4, Number 6 (8), pp. 89-87 Research Inda Publcaons hp://www.rpublcaon.com Exsence and Unqueness Resuls for Random Impulsve Inegro-Dfferenal

More information

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany Herarchcal Markov Normal Mxure models wh Applcaons o Fnancal Asse Reurns Appendx: Proofs of Theorems and Condonal Poseror Dsrbuons John Geweke a and Gann Amsano b a Deparmens of Economcs and Sascs, Unversy

More information

N 1. Time points are determined by the

N 1. Time points are determined by the upplemena Mehods Geneaon of scan sgnals In hs secon we descbe n deal how scan sgnals fo 3D scannng wee geneaed. can geneaon was done n hee seps: Fs, he dve sgnal fo he peo-focusng elemen was geneaed o

More information

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing Peenaon fo Theoecal Condened Mae Phyc n TU Beln Geen-Funcon and GW appoxmaon Xnzheng L Theoy Depamen FHI May.8h 2005 Elecon n old Oulne Toal enegy---well olved Sngle pacle excaon---unde developng The Geen

More information

Set of square-integrable function 2 L : function space F

Set of square-integrable function 2 L : function space F Set of squae-ntegable functon L : functon space F Motvaton: In ou pevous dscussons we have seen that fo fee patcles wave equatons (Helmholt o Schödnge) can be expessed n tems of egenvalue equatons. H E,

More information

University of California, Davis Date: June xx, PRELIMINARY EXAMINATION FOR THE Ph.D. DEGREE ANSWER KEY

University of California, Davis Date: June xx, PRELIMINARY EXAMINATION FOR THE Ph.D. DEGREE ANSWER KEY Unvesy of Calfona, Davs Dae: June xx, 009 Depamen of Economcs Tme: 5 hous Mcoeconomcs Readng Tme: 0 mnues PRELIMIARY EXAMIATIO FOR THE Ph.D. DEGREE Pa I ASWER KEY Ia) Thee ae goods. Good s lesue, measued

More information

ROBUST EXPONENTIAL ATTRACTORS FOR MEMORY RELAXATION OF PATTERN FORMATION EQUATIONS

ROBUST EXPONENTIAL ATTRACTORS FOR MEMORY RELAXATION OF PATTERN FORMATION EQUATIONS IJRRAS 8 () Augus www.apapess.com/olumes/ol8issue/ijrras_8.pdf ROBUST EXONENTIAL ATTRACTORS FOR EORY RELAXATION OF ATTERN FORATION EQUATIONS WANG Yuwe, LIU Yongfeng & A Qaozhen* College of ahemacs and

More information

MIMO Capacity for UWB Channel in Rectangular Metal Cavity

MIMO Capacity for UWB Channel in Rectangular Metal Cavity MMO Capacy o UB Channel n Recangula Meal Cavy Zhen u, Dalwnde ngh Depamen o Eleccal and Compue Engneeng Cene o Manuacung Reseach Tennessee Tech Unvesy zhu@nech.edu, dsngh@nech.edu Robe Qu (Conac Auho)

More information

A hybrid method to find cumulative distribution function of completion time of GERT networks

A hybrid method to find cumulative distribution function of completion time of GERT networks Jounal of Indusal Engneeng Inenaonal Sepembe 2005, Vol., No., - 9 Islamc Azad Uvesy, Tehan Souh Banch A hybd mehod o fnd cumulave dsbuon funcon of compleon me of GERT newos S. S. Hashemn * Depamen of Indusal

More information

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t Lecue 6: Fiis Tansmission Equaion and Rada Range Equaion (Fiis equaion. Maximum ange of a wieless link. Rada coss secion. Rada equaion. Maximum ange of a ada. 1. Fiis ansmission equaion Fiis ansmission

More information

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim Korean J. Mah. 19 (2011), No. 3, pp. 263 272 GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS Youngwoo Ahn and Kae Km Absrac. In he paper [1], an explc correspondence beween ceran

More information

The Unique Solution of Stochastic Differential Equations. Dietrich Ryter. Midartweg 3 CH-4500 Solothurn Switzerland

The Unique Solution of Stochastic Differential Equations. Dietrich Ryter. Midartweg 3 CH-4500 Solothurn Switzerland The Unque Soluon of Sochasc Dffeenal Equaons Dech Rye RyeDM@gawne.ch Mdaweg 3 CH-4500 Solohun Swzeland Phone +4132 621 13 07 Tme evesal n sysems whou an exenal df sngles ou he an-iô negal. Key wods: Sochasc

More information

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard Complex Analysis R.G. Halbud R.Halbud@ucl.ac.uk Depamen of Mahemaics Univesiy College London 202 The shoes pah beween wo uhs in he eal domain passes hough he complex domain. J. Hadamad Chape The fis fundamenal

More information

Exponential Synchronization of the Hopfield Neural Networks with New Chaotic Strange Attractor

Exponential Synchronization of the Hopfield Neural Networks with New Chaotic Strange Attractor ITM Web of Cofeeces, 0509 (07) DOI: 0.05/ mcof/070509 ITA 07 Expoeal Sychozao of he Hopfeld Neual Newos wh New Chaoc Sage Aaco Zha-J GUI, Ka-Hua WANG* Depame of Sofwae Egeeg, Haa College of Sofwae Techology,qogha,

More information

The Application of Fuzzy Comprehensive Evaluations in The College Education Informationization Level

The Application of Fuzzy Comprehensive Evaluations in The College Education Informationization Level IOSR Jounal of Reseach & Mehod n Educaon IOSR-JRME) e- ISSN: 3 7388,p-ISSN: 3 737X Volume 8, Issue 3 Ve IV May June 8), PP -7 wwwosjounalsog The Applcaon of Fuzzy Compehensve Evaluaons n The College Educaon

More information

Field due to a collection of N discrete point charges: r is in the direction from

Field due to a collection of N discrete point charges: r is in the direction from Physcs 46 Fomula Shee Exam Coulomb s Law qq Felec = k ˆ (Fo example, f F s he elecc foce ha q exes on q, hen ˆ s a un veco n he decon fom q o q.) Elecc Feld elaed o he elecc foce by: Felec = qe (elecc

More information

Computer Propagation Analysis Tools

Computer Propagation Analysis Tools Compue Popagaion Analysis Tools. Compue Popagaion Analysis Tools Inoducion By now you ae pobably geing he idea ha pedicing eceived signal sengh is a eally impoan as in he design of a wieless communicaion

More information

Suppose we have observed values t 1, t 2, t n of a random variable T.

Suppose we have observed values t 1, t 2, t n of a random variable T. Sppose we have obseved vales, 2, of a adom vaable T. The dsbo of T s ow o belog o a cea ype (e.g., expoeal, omal, ec.) b he veco θ ( θ, θ2, θp ) of ow paamees assocaed wh s ow (whee p s he mbe of ow paamees).

More information

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions Inenaional Mahemaical Foum, Vol 8, 03, no 0, 463-47 HIKARI Ld, wwwm-hikaicom Combinaoial Appoach o M/M/ Queues Using Hypegeomeic Funcions Jagdish Saan and Kamal Nain Depamen of Saisics, Univesiy of Delhi,

More information

Numerical Study of Large-area Anti-Resonant Reflecting Optical Waveguide (ARROW) Vertical-Cavity Semiconductor Optical Amplifiers (VCSOAs)

Numerical Study of Large-area Anti-Resonant Reflecting Optical Waveguide (ARROW) Vertical-Cavity Semiconductor Optical Amplifiers (VCSOAs) USOD 005 uecal Sudy of Lage-aea An-Reonan Reflecng Opcal Wavegude (ARROW Vecal-Cavy Seconduco Opcal Aplfe (VCSOA anhu Chen Su Fung Yu School of Eleccal and Eleconc Engneeng Conen Inoducon Vecal Cavy Seconduco

More information

s = rθ Chapter 10: Rotation 10.1: What is physics?

s = rθ Chapter 10: Rotation 10.1: What is physics? Chape : oaon Angula poson, velocy, acceleaon Consan angula acceleaon Angula and lnea quanes oaonal knec enegy oaonal nea Toque Newon s nd law o oaon Wok and oaonal knec enegy.: Wha s physcs? In pevous

More information

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s Ordnary Dfferenal Equaons n Neuroscence wh Malab eamples. Am - Gan undersandng of how o se up and solve ODE s Am Undersand how o se up an solve a smple eample of he Hebb rule n D Our goal a end of class

More information

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3 elave moon L4:1 To appl Newon's laws we need measuemens made fom a 'fed,' neal efeence fame (unacceleaed, non-oang) n man applcaons, measuemens ae made moe smpl fom movng efeence fames We hen need a wa

More information

Variability Aware Network Utility Maximization

Variability Aware Network Utility Maximization aably Awae Newok ly Maxmzaon nay Joseph and Gusavo de ecana Depamen of Eleccal and Compue Engneeng, he nvesy of exas a Ausn axv:378v3 [cssy] 3 Ap 0 Absac Newok ly Maxmzaon NM povdes he key concepual famewok

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

Energy in Closed Systems

Energy in Closed Systems Enegy n Closed Systems Anamta Palt palt.anamta@gmal.com Abstact The wtng ndcates a beakdown of the classcal laws. We consde consevaton of enegy wth a many body system n elaton to the nvese squae law and

More information

Fast Calibration for Robot Welding System with Laser Vision

Fast Calibration for Robot Welding System with Laser Vision Fas Calbaon fo Robo Weldng Ssem h Lase Vson Lu Su Mechancal & Eleccal Engneeng Nanchang Unves Nanchang, Chna Wang Guoong Mechancal Engneeng Souh Chna Unves of echnolog Guanghou, Chna Absac Camea calbaon

More information

Reflection and Refraction

Reflection and Refraction Chape 1 Reflecon and Refacon We ae now neesed n eplong wha happens when a plane wave avelng n one medum encounes an neface (bounday) wh anohe medum. Undesandng hs phenomenon allows us o undesand hngs lke:

More information

336 ERIDANI kfk Lp = sup jf(y) ; f () jj j p p whee he supemum is aken ove all open balls = (a ) inr n, jj is he Lebesgue measue of in R n, () =(), f

336 ERIDANI kfk Lp = sup jf(y) ; f () jj j p p whee he supemum is aken ove all open balls = (a ) inr n, jj is he Lebesgue measue of in R n, () =(), f TAMKANG JOURNAL OF MATHEMATIS Volume 33, Numbe 4, Wine 2002 ON THE OUNDEDNESS OF A GENERALIED FRATIONAL INTEGRAL ON GENERALIED MORREY SPAES ERIDANI Absac. In his pape we exend Nakai's esul on he boundedness

More information

A multiple-relaxation-time lattice Boltzmann model for simulating. incompressible axisymmetric thermal flows in porous media

A multiple-relaxation-time lattice Boltzmann model for simulating. incompressible axisymmetric thermal flows in porous media A mulple-elaxaon-me lace Bolmann model fo smulang ncompessble axsymmec hemal flows n poous meda Qng Lu a, Ya-Lng He a, Qng L b a Key Laboaoy of Themo-Flud Scence and Engneeng of Mnsy of Educaon, School

More information

On The Estimation of Two Missing Values in Randomized Complete Block Designs

On The Estimation of Two Missing Values in Randomized Complete Block Designs Mahemaical Theoy and Modeling ISSN 45804 (Pape ISSN 505 (Online Vol.6, No.7, 06 www.iise.og On The Esimaion of Two Missing Values in Randomized Complee Bloc Designs EFFANGA, EFFANGA OKON AND BASSE, E.

More information

Chapter 6: AC Circuits

Chapter 6: AC Circuits Chaper 6: AC Crcus Chaper 6: Oulne Phasors and he AC Seady Sae AC Crcus A sable, lnear crcu operang n he seady sae wh snusodal excaon (.e., snusodal seady sae. Complee response forced response naural response.

More information

Multistage Median Ranked Set Sampling for Estimating the Population Median

Multistage Median Ranked Set Sampling for Estimating the Population Median Jounal of Mathematcs and Statstcs 3 (: 58-64 007 ISSN 549-3644 007 Scence Publcatons Multstage Medan Ranked Set Samplng fo Estmatng the Populaton Medan Abdul Azz Jeman Ame Al-Oma and Kamaulzaman Ibahm

More information

Time-Dependent Density Functional Theory in Condensed Matter Physics

Time-Dependent Density Functional Theory in Condensed Matter Physics Exenal Revew on Cene fo Compuaonal Scences Unvesy of Tsukuba 013..18-0 Tme-Dependen Densy Funconal Theoy n Condensed Mae Physcs K. YABANA Cene fo Compuaonal Scences Unvesy of Tsukuba Collaboaos: G.F. Besch

More information

Cubic Bezier Homotopy Function for Solving Exponential Equations

Cubic Bezier Homotopy Function for Solving Exponential Equations Penerb Journal of Advanced Research n Compung and Applcaons ISSN (onlne: 46-97 Vol. 4, No.. Pages -8, 6 omoopy Funcon for Solvng Eponenal Equaons S. S. Raml *,,. Mohamad Nor,a, N. S. Saharzan,b and M.

More information

Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch. Rui Li, J. Bisognano, R. Legg, and R. Bosch

Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch. Rui Li, J. Bisognano, R. Legg, and R. Bosch Two-dimensional Effecs on he CS Ineacion Foces fo an Enegy-Chiped Bunch ui Li, J. Bisognano,. Legg, and. Bosch Ouline 1. Inoducion 2. Pevious 1D and 2D esuls fo Effecive CS Foce 3. Bunch Disibuion Vaiaion

More information

On Control Problem Described by Infinite System of First-Order Differential Equations

On Control Problem Described by Infinite System of First-Order Differential Equations Ausalian Jounal of Basic and Applied Sciences 5(): 736-74 ISS 99-878 On Conol Poblem Descibed by Infinie Sysem of Fis-Ode Diffeenial Equaions Gafujan Ibagimov and Abbas Badaaya J'afau Insiue fo Mahemaical

More information

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading Onlne Supplemen for Dynamc Mul-Technology Producon-Invenory Problem wh Emssons Tradng by We Zhang Zhongsheng Hua Yu Xa and Baofeng Huo Proof of Lemma For any ( qr ) Θ s easy o verfy ha he lnear programmng

More information

An axisymmetric incompressible lattice BGK model for simulation of the pulsatile ow in a circular pipe

An axisymmetric incompressible lattice BGK model for simulation of the pulsatile ow in a circular pipe INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS In. J. Nume. Meh. Fluds 005; 49:99 116 Publshed onlne 3 June 005 n Wley IneScence www.nescence.wley.com). DOI: 10.100/d.997 An axsymmec ncompessble

More information

Reinforcement learning

Reinforcement learning Lecue 3 Reinfocemen leaning Milos Hauskech milos@cs.pi.edu 539 Senno Squae Reinfocemen leaning We wan o lean he conol policy: : X A We see examples of x (bu oupus a ae no given) Insead of a we ge a feedback

More information

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Lecture 17: Kinetics of Phase Growth in a Two-component System: Lecue 17: Kineics of Phase Gowh in a Two-componen Sysem: descipion of diffusion flux acoss he α/ ineface Today s opics Majo asks of oday s Lecue: how o deive he diffusion flux of aoms. Once an incipien

More information

ON 3-DIMENSIONAL CONTACT METRIC MANIFOLDS

ON 3-DIMENSIONAL CONTACT METRIC MANIFOLDS Mem. Fac. Inegaed As and Sci., Hioshima Univ., Se. IV, Vol. 8 9-33, Dec. 00 ON 3-DIMENSIONAL CONTACT METRIC MANIFOLDS YOSHIO AGAOKA *, BYUNG HAK KIM ** AND JIN HYUK CHOI ** *Depamen of Mahemaics, Faculy

More information

Journal of Engineering Science and Technology Review 7 (1) (2014) Research Article

Journal of Engineering Science and Technology Review 7 (1) (2014) Research Article Jes Jounal o Engneeng Scence and echnology Revew 7 5 5 Reseach Acle JOURNAL OF Engneeng Scence and echnology Revew www.jes.og Sudy on Pedcve Conol o ajecoy ackng o Roboc Manpulao Yang Zhao Dep. o Eleconc

More information

8 Baire Category Theorem and Uniform Boundedness

8 Baire Category Theorem and Uniform Boundedness 8 Bae Categoy Theoem and Unfom Boundedness Pncple 8.1 Bae s Categoy Theoem Valdty of many esults n analyss depends on the completeness popety. Ths popety addesses the nadequacy of the system of atonal

More information

to Assess Climate Change Mitigation International Energy Workshop, Paris, June 2013

to Assess Climate Change Mitigation International Energy Workshop, Paris, June 2013 Decomposng he Global TIAM-Maco Maco Model o Assess Clmae Change Mgaon Inenaonal Enegy Wokshop Pas June 2013 Socaes Kypeos (PSI) & An Lehla (VTT) 2 Pesenaon Oulne The global ETSAP-TIAM PE model and he Maco

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

) from i = 0, instead of i = 1, we have =

) from i = 0, instead of i = 1, we have = Chape 3: Adjusmen Coss n he abou Make I Movaonal Quesons and Execses: Execse 3 (p 6): Illusae he devaon of equaon (35) of he exbook Soluon: The neempoal magnal poduc of labou s epesened by (3) = = E λ

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm H ( q, p, ) = q p L( q, q, ) H p = q H q = p H = L Equvalen o Lagrangan formalsm Smpler, bu

More information

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation Lecue 8: Kineics of Phase Gowh in a Two-componen Sysem: geneal kineics analysis based on he dilue-soluion appoximaion Today s opics: In he las Lecues, we leaned hee diffeen ways o descibe he diffusion

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes] ENGI 44 Avance alculus fo Engineeing Faculy of Engineeing an Applie cience Poblem e 9 oluions [Theoems of Gauss an okes]. A fla aea A is boune by he iangle whose veices ae he poins P(,, ), Q(,, ) an R(,,

More information

Optimized Braking Force Distribution during a Braking-in- Turn Maneuver for Articulated Vehicles

Optimized Braking Force Distribution during a Braking-in- Turn Maneuver for Articulated Vehicles 56 Opmzed Bakng Foce Dsbuon dung a Bakng-n- Tun Maneuve o Aculaed Vehcles E. Esmalzadeh, A. Goodaz and M. Behmad 3 Downloaded om www.us.ac. a 3:04 IRST on Fday Novembe 3d 08,* Faculy o Engneeng and Appled

More information

Physics 2A Chapter 11 - Universal Gravitation Fall 2017

Physics 2A Chapter 11 - Universal Gravitation Fall 2017 Physcs A Chapte - Unvesal Gavtaton Fall 07 hese notes ae ve pages. A quck summay: he text boxes n the notes contan the esults that wll compse the toolbox o Chapte. hee ae thee sectons: the law o gavtaton,

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm Hqp (,,) = qp Lqq (,,) H p = q H q = p H L = Equvalen o Lagrangan formalsm Smpler, bu wce as

More information

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain Lecue-V Sochasic Pocesses and he Basic Tem-Sucue Equaion 1 Sochasic Pocesses Any vaiable whose value changes ove ime in an unceain way is called a Sochasic Pocess. Sochasic Pocesses can be classied as

More information

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005.

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005. Techc Appedx fo Iveoy geme fo Assemy Sysem wh Poduc o Compoe eus ecox d Zp geme Scece 2005 Lemm µ µ s c Poof If J d µ > µ he ˆ 0 µ µ µ µ µ µ µ µ Sm gumes essh he esu f µ ˆ > µ > µ > µ o K ˆ If J he so

More information

Nanoparticles. Educts. Nucleus formation. Nucleus. Growth. Primary particle. Agglomeration Deagglomeration. Agglomerate

Nanoparticles. Educts. Nucleus formation. Nucleus. Growth. Primary particle. Agglomeration Deagglomeration. Agglomerate ucs Nucleus Nucleus omaon cal supesauaon Mng o eucs, empeaue, ec. Pmay pacle Gowh Inegaon o uson-lme pacle gowh Nanopacles Agglomeaon eagglomeaon Agglomeae Sablsaon o he nanopacles agans agglomeaon! anspo

More information

Molecular dynamics modeling of thermal and mechanical properties

Molecular dynamics modeling of thermal and mechanical properties Molecula dynamcs modelng of hemal and mechancal popees Alejando Sachan School of Maeals Engneeng Pudue Unvesy sachan@pudue.edu Maeals a molecula scales Molecula maeals Ceamcs Meals Maeals popees chas Maeals

More information

Low Probability Identification Performance in Radar Network System by using Fuzzy Chance-Constrained Programming

Low Probability Identification Performance in Radar Network System by using Fuzzy Chance-Constrained Programming Lo obably denfcaon efomance n Rada eok Sysem by usng Fuzzy Chance-Consaned ogammng 1 M..Saln M.Sc., M.hl., Ms.S..Subha M.E., 3 M. D.M.huchean, 1 Reseach Schola, Depamen of Mahemacs, L..Gov.College onne,

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Mau Lkelhood aon Beln Chen Depaen of Copue Scence & Infoaon ngneeng aonal Tawan oal Unvey Refeence:. he Alpaydn, Inoducon o Machne Leanng, Chape 4, MIT Pe, 4 Saple Sac and Populaon Paaee A Scheac Depcon

More information

Comparison of Differences between Power Means 1

Comparison of Differences between Power Means 1 In. Journal of Mah. Analyss, Vol. 7, 203, no., 5-55 Comparson of Dfferences beween Power Means Chang-An Tan, Guanghua Sh and Fe Zuo College of Mahemacs and Informaon Scence Henan Normal Unversy, 453007,

More information

Chapter Fifiteen. Surfaces Revisited

Chapter Fifiteen. Surfaces Revisited Chapte Ffteen ufaces Revsted 15.1 Vecto Descpton of ufaces We look now at the vey specal case of functons : D R 3, whee D R s a nce subset of the plane. We suppose s a nce functon. As the pont ( s, t)

More information

Rotations.

Rotations. oons j.lbb@phscs.o.c.uk To s summ Fmes of efeence Invnce une nsfomons oon of wve funcon: -funcons Eule s ngles Emple: e e - - Angul momenum s oon geneo Genec nslons n Noehe s heoem Fmes of efeence Conse

More information

Distinct 8-QAM+ Perfect Arrays Fanxin Zeng 1, a, Zhenyu Zhang 2,1, b, Linjie Qian 1, c

Distinct 8-QAM+ Perfect Arrays Fanxin Zeng 1, a, Zhenyu Zhang 2,1, b, Linjie Qian 1, c nd Intenatonal Confeence on Electcal Compute Engneeng and Electoncs (ICECEE 15) Dstnct 8-QAM+ Pefect Aays Fanxn Zeng 1 a Zhenyu Zhang 1 b Lnje Qan 1 c 1 Chongqng Key Laboatoy of Emegency Communcaton Chongqng

More information

Basic molecular dynamics

Basic molecular dynamics 1.1, 3.1, 1.333,. Inoducon o Modelng and Smulaon Spng 11 Pa I Connuum and pacle mehods Basc molecula dynamcs Lecue Makus J. Buehle Laboaoy fo Aomsc and Molecula Mechancs Depamen of Cvl and Envonmenal Engneeng

More information

Modeling Background from Compressed Video

Modeling Background from Compressed Video Modelng acgound fom Compessed Vdeo Weqang Wang Daong Chen Wen Gao Je Yang School of Compue Scence Canege Mellon Unvesy Psbugh 53 USA Insue of Compung echnology &Gaduae School Chnese Academy of Scences

More information

8. HAMILTONIAN MECHANICS

8. HAMILTONIAN MECHANICS 8. HAMILTONIAN MECHANICS In ode o poceed fom he classcal fomulaon of Maxwell's elecodynamcs o he quanum mechancal descpon a new mahemacal language wll be needed. In he pevous secons he elecomagnec feld

More information

APPLICATIONS OF SEMIGENERALIZED -CLOSED SETS

APPLICATIONS OF SEMIGENERALIZED -CLOSED SETS Intenatonal Jounal of Mathematcal Engneeng Scence ISSN : 22776982 Volume Issue 4 (Apl 202) http://www.mes.com/ https://stes.google.com/ste/mesounal/ APPLICATIONS OF SEMIGENERALIZED CLOSED SETS G.SHANMUGAM,

More information

2/20/2013. EE 101 Midterm 2 Review

2/20/2013. EE 101 Midterm 2 Review //3 EE Mderm eew //3 Volage-mplfer Model The npu ressance s he equalen ressance see when lookng no he npu ermnals of he amplfer. o s he oupu ressance. I causes he oupu olage o decrease as he load ressance

More information

ON THE FRESNEL SINE INTEGRAL AND THE CONVOLUTION

ON THE FRESNEL SINE INTEGRAL AND THE CONVOLUTION IJMMS 3:37, 37 333 PII. S16117131151 http://jmms.hndaw.com Hndaw Publshng Cop. ON THE FRESNEL SINE INTEGRAL AND THE CONVOLUTION ADEM KILIÇMAN Receved 19 Novembe and n evsed fom 7 Mach 3 The Fesnel sne

More information

Machine Learning. Spectral Clustering. Lecture 23, April 14, Reading: Eric Xing 1

Machine Learning. Spectral Clustering. Lecture 23, April 14, Reading: Eric Xing 1 Machne Leanng -7/5 7/5-78, 78, Spng 8 Spectal Clusteng Ec Xng Lectue 3, pl 4, 8 Readng: Ec Xng Data Clusteng wo dffeent ctea Compactness, e.g., k-means, mxtue models Connectvty, e.g., spectal clusteng

More information

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING MEEN 67 Handou # MODAL ANALYSIS OF MDOF Sysems wih VISCOS DAMPING ^ Symmeic Moion of a n-dof linea sysem is descibed by he second ode diffeenial equaions M+C+K=F whee () and F () ae n ows vecos of displacemens

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 0 Canoncal Transformaons (Chaper 9) Wha We Dd Las Tme Hamlon s Prncple n he Hamlonan formalsm Dervaon was smple δi δ Addonal end-pon consrans pq H( q, p, ) d 0 δ q ( ) δq ( ) δ

More information

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle 1 PHYS 705: Classcal Mechancs Devaton of Lagange Equatons fom D Alembet s Pncple 2 D Alembet s Pncple Followng a smla agument fo the vtual dsplacement to be consstent wth constants,.e, (no vtual wok fo

More information

Efficient Bayesian Network Learning for System Optimization in Reliability Engineering

Efficient Bayesian Network Learning for System Optimization in Reliability Engineering Qualy Technology & Quanave Managemen Vol. 9, No., pp. 97-, 202 QTQM ICAQM 202 Effcen Bayesan Newok Leanng fo Sysem Opmzaon n Relably Engneeng A. Gube and I. Ben-Gal Depamen of Indusal Engneeng, Faculy

More information

ESS 265 Spring Quarter 2005 Kinetic Simulations

ESS 265 Spring Quarter 2005 Kinetic Simulations SS 65 Spng Quae 5 Knec Sulaon Lecue une 9 5 An aple of an lecoagnec Pacle Code A an eaple of a knec ulaon we wll ue a one denonal elecoagnec ulaon code called KMPO deeloped b Yohhau Oua and Hoh Mauoo.

More information