CONGRUENCES CONCERNING LEGENDRE POLYNOMIALS III

Size: px
Start display at page:

Download "CONGRUENCES CONCERNING LEGENDRE POLYNOMIALS III"

Transcription

1 rerit: October 1, 01 CONGRUENCES CONCERNING LEGENDRE POLYNOMIALS III Zhi-Hog Su arxiv:101.v [math.nt] 5 Oct 01 School of Mathematical Scieces, Huaiyi Normal Uiversity, Huaia, Jiagsu 001, PR Chia zhihogsu@yahoo.com Homeage: htt:// Abstract. Let > be a rime, ad let R be the set of ratioal umbers whose deomiator is corime to. Let {P x} be the Legedre olyomials. I this aer we maily show that for m,,t R with m 0 mod, ]t 1 x x+t mod, 1 x +mx+ m [/] m +7 mod, 1 m where a is the Legedre symbol ad [x] is the greatest iteger fuctio. As a alicatio we solve some cojectures of Z.W. Su ad the author cocerig 1 /m mod, where m is a iteger ot divisible by. MSC: Primary 11A07, Secodary C5, 11E5, 11L10, 05A10 Keywords: Cogruece; Legedre olyomial; character sum; biary quadratic form; ellitic curve 1. Itroductio. Let {P x} be the Legedre olyomials give by P 0 x 1, P 1 x x, +1P +1 x +1xP x P 1 x 1. It is well ow that see [B,. 151], [G,.1-.1] 1.1 P x 1 From 1.1 we see that [/] 1 x 1! d dx x P x 1 P x, P m ad P m 0 1m m We also have the followig formula due to Murhy [G,.15]: + x 1 + x P x 1 m. m

2 + We remar that +. Let Z be the set of itegers, ad for a rime let R be the set of ratioal umbers whose deomiator is corime to. Let [x] be the greatest iteger ot exceedig x, ad let a be the Legedre symbol. I [S-S] the author showed that for ay rime > ad t R, P 1t ] t ] t 1 1 x t +x+tt 9 mod, x t+5 1 x+9t+7 mod, x +t 5x+t 1t+11 mod. I the aer, by usig elemetary ad straightforward argumets we rove that 1.7 ] t 1 x x+t mod. Moreover, for m, R with m 0 mod we have 1.8 ad 1 1 x +mx+ x +mx+ m m 1 m+1 m [/] m ] m ] m mod if 1 mod, m mod if mod m +7 1 m mod. It is well ow that see for examle [S,.1-] the umber of oits o the curve y x +mx+ over the field F with elemets is give by 1 x #E x +mx+ +mx For ositive itegers a,b ad, if ax +by for some itegers x ad y, we briefly say that ax + by. Recetly the author s brother Zhi-Wei Su[Su1,Su] ad the author[s] osed some cojectures for 1 /m modulo, where > is a rime ad m Z with m. For examle, Zhi-Wei Su cojectured that [Su, Cojecture.8] for ay rime >, { 0 mod if 19 1, x mod if 19 1 ad so x +19y.

3 Usig 1.8 ad ow character sums we determie ] x mod for 11 values of x see Corollaries.1-.11, ad 1 /m mod for m 00, 580, 90, 9, 15,0,,55,5000, Thus we solve some cojectures i [Su1,Su] ad [S]. For examle, we cofirm 1.9 i the case 19 1 ad rove 1.9 whe 19 1 ad the modulus is relaced by. Let > be a rime. I the aer we also determie 1 /8 mod ad establish the geeral cogruece x1 x 1 x mod, ad ose some cojectures o suercogrueces.. Cogrueces for ] x mod. Lemma.1. Let be a odd rime. The i ii iii 1 mod for 0,1,..., 1, mod for 0,1,..., [ ], [ ] mod for ad 0,1,..., [ ]. Proof. For {0,1,..., 1 1 } we have holds. Now suose {0,1,...,[ 1 ]}. It is clear that 1 mod. Thus i 1 1 1!! +1+ 1!! +1+!!!! mod. Thus ii is true. iii was give by the author i [S, the roof of Lemma.]. The roof is ow comlete. Lemma.. Let > be a rime ad {0,1,...,[ 1 ]}. The [ ] [ ] [ ] 1 [ 1 ] +1 + [ ] [ ] + 1 mod.

4 Proof. Usig Lemma.1i we see that [ ] [ ] [ [ ] ]! [![ ]![ ]! ] [ [ ] ] 1 [ ] [ [ ] ] 1 1 [ ] [ ] [ ] If 1 mod, usig Lemma.1i we see that ! [ mod. ]![+1 ]+! ! 1 1 1! 1 mod.! Thus, from the above ad Lemma.1 we deduce that [ ] [ ] [ ] [ ] + 1! 1! 1! 1 +! 1 [ ]+ 1 [ ]+ / / 7 7 [ ] 1 [ ] [ ] mod. If mod, usig Lemma.1i we see that ! !! 1 1! +1 5! mod.! Thus, from the above ad Lemma.1 we deduce that [ ] [ ] [ ] [ ] + 1!! +1 1! +! 1 [ ]+ [ ]+ / / 7 This comletes the roof. + 7 [ ] 1 [ ] +1 [ ] mod.

5 Theorem.1. Let > be a rime ad m, R with m 0 mod. The 1 x +mx+ m 1 m ] m mod if 1 mod, +1 m m m m mod if mod. ] Proof. For ay ositive iteger it is well ow that see [IR, Lemma,.5] 1 { 1 mod if 1, x 0 mod if 1. For,r Z with 0 r 1 we have 0 +r 1. Thus, ad therefore.1 1 { 1 mod if 1 r, x +r 0 mod if 1 r 1 x +mx / r / 1/ 1/ r 1/ 1/ 1/ r0 1 1 r 1/ x +mx 1 r0 x r mx r 1 r m r 1 r 1/ 1 r 1 r r 1/ 1 r 1 r r 1 x +r m 1 r r 1 m 1 r r 1 mod. If 0 mod, from the above we deduce that { 1 x 1 +mx+ 1 1 x +mx+ 1 1 m mod if 1, 0 mod if. Thus alyig 1. ad Lemma. with [ 1 ] we get ] 0 { 1 [ [ 1 ] ] [ 1 [ 1 ] 1 ] mod if 1, 0 if. 5

6 Hece the result is true for 0 mod. Now we assume 0 mod. From.1 we see that 1 x +mx+ 1 x +mx+ 1 1/ r O the other had, where ] m m [ [ 1 ] [ ] ] [ 1 ] 1 [ 1 r 1 ] [ ] 1 [ ] m [ m [ [ 1 ] [ ] ] [ 1 ] m [ ] m [ 1 [ 1 ] [ 1 ] [ ] ] [ ] m [ ] m δm, 1 [ 1 [ 1 ] 1 ] [ ] δm, Hece, by the above ad Lemma. we get δm, ] m m 1 [ 1 ] [ ] [ ] 1 r r 1 r m + [ ] + 1 m mod. [ ] 1 1 ] [ ] 7 [ 1 ] m 7 [ m 7 [ m m 1 if 1 mod, m +1 m if mod. ] 1 ] mod, Sice [ 1 ] 1 1 [ ] +1 [ ] [ ] 1 [ 1 ] [ ] 1 [ ] +1 1 [ ] 1 ]+[ [ 7 ] [ ] [ ] [ ] [ ]+1 / 1 [ ] 1 ]+[ 7 [ ] mod. m 1 [ 1 ]+[ ] 1 1 [+1 ] 1 [ 1 ] 1 mod, 1 1

7 from the above we deduce that m δm, ] m This comletes the roof. [ 1 ] [ ] [ ] + 1 m x +mx+ mod. Remar.1 The cogruece.1 has bee give by the author i [S]. Corollary.1. Let,,11 be a rime. The { 1 1 ] a mod if 1, a +b ad a 1, 11 0 mod if mod.. Proof. By [S5, Corollary.1 ad.] we have 1 x 11x+1 { 1 x x 1 + a if 1, a +b ad a 1, 0 if mod. Thus, taig m 11 ad 1 i Theorem.1 we obtai the result. Corollary.. Let > 5 be a rime. The 7 10 ] 5 1 d c mod if 8 1, c +d ad c 1, 5 5 d 10 mod if 8, c +d ad d 1, 0 mod if 5,7 mod 8. Proof. Usig [S, Lemma.] we see that 1 x 0x+5 1 x 0 x if 5,7 mod 8. 1 x 0x c if 1 mod 8, c +d ad c 1, 1 8 c if mod 8, c +d ad c 1, By [S,.117] we have { c 1 1 [ ] d mod if c +d 1 mod 8, 1 c 1 d 8 c 1 d 8 c mod if c +d mod 8 with c d. Now taig m 0 ad 5 i Theorem.1 ad alyig the above we deduce the result. 7

8 Corollary.. Let > 5 be a rime. The 11 5 ] A mod if 1 1, A +B ad A 1, 5 5 A 5 mod if 1 7, A +B ad A 1, 0 mod if mod. Proof. By [S, Lemma.] or [S5, Corollary.1 with t 5/ ad.] we have 1 x. 15x+ { A if 1, A +B ad A 1, 0 if mod. Thus, taig m 15 ad i Theorem.1 we obtai the result. Corollary.. Let > 5 be a rime. The L mod 5 10 ] 800 if 1 1, L +7M ad L 1, L 10 mod if 1 7, L +7M ad L 1, 0 mod if mod. Proof. From [S, Corollary.] we ow that 1 x 10x+50 {. L if 1, L +7M ad L 1, 0 if mod. Thus taig m 10 ad 50 i Theorem.1 we deduce the result. Corollary.5. Let > 7 be a rime. The C mod 105 ] 5 if 1,9,5 mod 8, C +7D ad C 1, D 105 mod if 11,15, mod 8, C +7D ad D 1, 0 mod if,5, mod 7. Proof. Sice x 7 5 x 7+98 x +1x +11x, from [R1,R] we see that 1 x 5x x +1x +11x.5 { 1 +1 C 7 C if 1,, mod 7 ad C +7D, 0 if,5, mod 7. Suose 1,, mod 7 ad so C +7D. By [S,.117] we have { C. 7 [ ] mod if 1,9,5 mod 8 ad C 1 mod, 7 C 7 D C mod if 11,15, mod 8 ad D 1 mod. Now taig m 5 ad 98 i Theorem.1 ad alyig all the above we deduce the result. 8

9 Corollary.. Let be a rime such that,,5,7,17. i If,5, mod 7, the ] mod. ii If 1,, mod 7 ad so C +7D for some C,D Z, the { C mod if 1 ad C 1, ] D 1785 mod if ad D 1. Proof. From [W,.9] we ow that 1 x +x+x +1x { C 7 C if 1,, mod 7 ad C +7D, if,5, mod 7. As x +x+x +1x x +/x+10/x +/x, we see that 1 x +x+x +1x 1 +/x+10/x +/x 1 +x+10x +x x1 x1 1 +8x+0x +x 1 x + 51 x +17x+ 1 x1 ad 1 x + 51 x +17x+ 1 x x x x +17x x 595x+558 x x+ Now combiig all the above we deduce.7 { 1 x 595x C C 7 if C +7D 1,, mod 7, 0 if,5, mod 7. Taig m 595 ad 558 i Theorem.1 ad the alyig.7 ad. we deduce the result. 9.

10 Corollary.7. Let,,11 be a rime. i If,,7,8,10 mod 11, the ] 7 0 mod. ii If 1,,,5,9 mod 11 ad hece u +11v for some u,v Z, the 1 u mod if 1 ad u 1, 7 ] 1 u mod if 1 ad 8 u, v mod if ad v 1, v mod if ad 8 v. Proof. It is ow that see [RP] ad [JM] 1 x 9 11x {.8 u 11 u if 11 1 ad u +11v, 0 if Thus alyig Theorem.1 we deduce ] 7 1 u 11 u mod if 11 1, 1 ad u +11v, u 11 u mod if 11 1, ad u +11v, 0 mod if Now assume 11 1 ad so u +11v. If u v 1 mod, by [S, Theorem.] we have { u 11 [ ] mod if 1 mod, 11 u 11 v u mod if mod. If u v 0 mod, by [S, Corollary.] we have { u 11 [ ] 11 mod if 1 mod ad 8 u, u 11 v mod if mod ad 8 v. u Now combiig all the above we derive the result. From [RPR], [JM] ad [PV] we ow that for ay rime >,.9 1 x 8 19x+ 19 { u 19 u if 19 1 ad u +19v, 0 if 19 1, 1 x 80 x+ { u u if 1 ad u +v, 0 if 1, 1 x 0 7x+ 7 { u 7 u if 7 1 ad u +7v, 0 if 7 1, 1 x x { u 1 u if 1 1 ad u +1v, 0 if

11 Thus, usigthemethoditheroofofcorollary.7oecasimilarlydetermie ] 5 100, P [ ] , P[ ] mod. Lemma.. Let be a rime greater tha, ad let x be a variable. The ] x [/] 1 x mod. 8 Proof. Suose that r {1,5} is give by r mod. The clearly [ ]+ r + r + 1 r +1! + r+ r +r! 1 r r r rr+ +r! Hece.10 1! 9 15! 1!!!!!! mod.!! [ ] [ ]+ [ ]+ This together with 1. yields the result. mod. Theorem.. Let > be a rime ad m, R with m 0 mod. The ] 11, ] m [/] m 1 m m 1 x m x+ mod. Proof. Relacig m by m i Theorem.1 ad the alyig Lemma. we deduce the result. For ositive itegers a 1,a,a,a let q 1 q a1 1 q a 1 q a 1 q a 1 ca 1,a,a,a ;q q < 1. For a 1,a,a,a 1,1,11,11,,,10,10,1,,5,15,1,,7,1 ad,,8,8 it is ow that see [MO, Theorem 1] are weight ewforms. fz 1 ca 1,a,a,a ;q q e πiz 1 11

12 Corollary.8. Let be a odd rime. The 19 [/] c1,1,11,11; ] mod. Proof. It is easy to see that the result holds for,11. Now assume,11. By the well ow wor of Eichler i 195, we have Sice we obtai {x,y F F : y +y x x } c1,1,11,11;. {x,y F F : y +y x x } { x,y F F : y + 1 x x + 1 { x,y F F : y x x + 1 } x x x 1 19 x x 1x+8, } x+ 1 x x 1 x c1,1,11,11; 1 x 1x+8. Usig Theorem. we see that c1,1,11,11; 1 x 1x+8 From 1. ad Lemma. we have 19 ] 1 [ ] P 8 [ ] 1 1 [/] mod. 5 [/] 19 ] mod /8 8 Thus the result follows. 1

13 Cojecture.1. Let > be a rime. The c,,10,10; 1 x 1x 11, c,,,1; 1 x 9x 70, c1,,5,15; 1 x x, c1,,7,1; 1 x 75x 50, c,,8,8; 1 x 99x 78. If > is a rime of the form +, from Cojecture.1 ad [S, Theorem.8] we deduce that +1 c,,10,10; 1 x 1x #E x 1x 11 { N 1 δ if 7 mod 1, N δ if 11 mod 1, where N is the umber of a {0,1,..., 1} such that x x +x a mod is solvable, ad 0 if 7, mod 0, δ 1 if,7,1,9 mod 0, if 11,19 mod 0. Hece.1 c,,10,10; 5+1 N +δ for mod. Theorem.. Let > be a rime, ad let t be a variable. The.1 ] t 1 x x+t 1 mod. Proof. Taig m 1 ad t i Theorem. we see that.1 is true for t 0,1,..., 1. Sice both sides of.1 are olyomials i t with degree less tha 1/, alyig Lagrage s theorem we see that.1 holds whe t is a variable. 1

14 Theorem.. Let > be a rime ad let t be a variable. i If t + 0 mod, the t + P 1t ] t t 1 t +1 t + ii If t+5 0 mod, the t+10 1 t + mod if 1 mod, ] tt 9 ] tt 9 t + t + mod if mod. ] 9t+7 t+10 t t+10 ] 9t+7 t+10 t+5 mod if 1 mod, t+5 mod if mod. Proof. Sice both sides are olyomials of t with degree at most. It suffices to show that the cogrueces are true for t R. Now combiig with Theorem.1 we deduce the result. Corollary.9. Let > be a rime ad m R with m 0 mod. The ad P 1m m m m m ] m [/] m 5 m ] m 1/ m m 9m m+18 mod 8m m ] m [/] [/] m 19 m+1m mod. 8m Proof. Taig t m i Theorem.i ad the alyig [S,.] ad Lemma. we deduce the first cogruece. Taig t m 5/ i Theorem.ii ad the alyig [S5, Theorem.1ii] ad Lemma. we deduce the secod cogruece. Theorem.5. Let > be a rime ad let t be a variable. The ] t 5 t 1 ] t 1t+11 5 t 5 t mod if 1 mod, +1 5 t 5 t t ] 1t+11 5 t 5 t mod if mod. Proof. Sice both sides are olyomials i t with degree at most. It suffices to show that the cogruece is true for all t R with t 5 mod. Set m t 5 ad t 1t+11. The m m t 1t+11 5 t 5 t. 1

15 Thus, by 1. ad Theorem.1 we have ] t 1 x +mx+ 1 95t t ] 1t+11 5 t 5 t mod if 1, 95t t ] t 1t+11 5 t 5 t mod if. For 1 mod we have mod, For mod we have mod. Thus the result follows. Corollary.10. Let > be a rime ad m R with m 0 mod. The 5 m m m +18m 7 ] P [ ] 8m m [/] [/] m 1 1 m+1 m mod. 8 m Proof. Taig t 5 m i Theorem.5 ad the alyig [S, Lemma.] ad Lemma. we deduce the result. Corollary.11. Let > be a rime. The 7± { ] a ± 1 mod if 1 mod ad a +b with a 1 mod, 0 mod if mod. Proof. Set t 7± /. The t 1t Thus, from Theorem.5 ad the cogruece for ] 0 i the roof of Theorem.1 we deduce { 7± 1 9 ] ± mod if 1 mod, 0 mod if mod. It is well ow that 1 1 a mod for 1 mod see [BEW,.9]. Thus the corollary is roved. Theorem.. Let > be a rime ad m, R with m 0 mod. The 1 x +mx+ { 1 m m +1 m [/1] [ 1 ] [/1] [ [ 5 1 ] m +7 m mod if 1, 1 ] [ 5 1 ] m +7 mod if. m 15

16 Proof. Let P α,β x be the Jacobi olyomial defied by +α P α,β x 1 It is ow that see [AAR,.15] +β x+1 x 1..1 P x P 0, 1 x 1 ad P +1 x xp 0,1 x 1. From [B,.170] we ow that Thus, P α,β x.15 P 0,β x +α +α+β +1 1 x α+1! +α α β 1 x 1. 1 α Hece, if 1 mod, the [ ] [ 1 ] ad so m ] P 0, 1 m [ 1 ] 7 1 m [ 1 ] [ 1 ] 1 β 1 1 x. [ 1 ] [ 1 ] [ 1 ] m +7 m 1 [ 1 ] [ 1 ] [ 5 1 ] m +7 mod ; m if mod, the [ ] [ ]+1 ad so 1 m ] m P 0,1 m m m m m m m m [ 1 ]+1 [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] 7 1 m [ 1 ] 1 7 m [ 1 ] m +7 m 1 7 m [ 1 ] [ 1 ] [ 5 1 ] m +7 mod. m Now combiig the above with Theorem.1 we deduce the result. 1

17 . A geeral cogruece modulo. Lemma.1. For ay oegative iteger we have Proof. Let m be a oegative iteger. For {0,1,...,m} set F 1 m, m, m m m F m,. m m For {0,1,...,m+1} set G 1 m, 18 m+m+1 +1 G m, 1 m m +19m +11 m + m +1 m +1. m +1 m +1 For i 1, ad {0,1,...,m}, it is easy to chec that m, m+ m+ F i m+, m+18m +5m+1F i m+1, +07m+1m+1m+5F i m, G i m,+1 G i m,. Set S i F i, for 0,1,,... The m+ S i m+ F i m+,m+ F i m+,m+1 m+18m +5m+1S i m+1 F i m+1,m+1 +07m+1m+1m+5S i m m m m+ F i m+, m+18m +5m+1 F i m+1, +07m+1m+1m+5 m F i m, m G i m, +1 G i m, G i m,m+1 G i m,0 G i m,m+1. Thus, for i 1, ad m 0,1,,...,. m+ S i m+ m+18m +5m+1S i m+1 +07m+1m+1m+5S i m G i m,m+1+m+ F i m+,m++f i m+,m+1 m+18m +5m+1F i m+1,m+1 0. Sice S S 0 ad S S 1, from. we deduce S 1 S for all 0,1,,... This comletes the roof. For give rime ad iteger, if α but α+1, we say that α. 17

18 Lemma.. Let be a odd rime ad,r {0,1,..., 1} with +r. The r r r r 0 mod. Proof. If > 5, the 5!,!,! ad so!!!! 0 mod. If < 5, the <, < 5,!,!,! ad so!!!! 0 mod. If < <, the < <, < <,!,!,! ad so!!!! 0 mod. If <, the < <,!,!,! ad! so!!! 0 mod. If < <, the < < ad so!!!! 0 mod. From the above we see that for >. Therefore, if > ad r >, the r r r r 0 mod. If r < 5, the r > ad so by the above. If <, the r > 5 ad so r r r r by the above. Now uttig all the above together we rove the lemma. Theorem.1. Let be a odd rime ad let x be a variable. The 1 x1 x 1 x mod. Proof. It is clear that m0 x1 x mi{m, 1} x m x r0 x r r m. m Suose m ad 0 1. If, the <,,!,! ad so!!! 0 mod. If < <, the <, >,! ad! ad so! 0 mod. If!! <, the m > ad so m 0. Thus, from the above ad Lemma.1 18

19 we deduce that 1 1 m0 1 m x m m x m m x1 x x 1 m m m m m m m m m m m 1 x r0 x 1 r0 r r r r 1 x By Lemma. we have Thus 1 r r r r r r r x 1 r x r x r 1 r 1 x x m r r r r r r r x r r r x r mod. r for 0 1 ad r 1. r r r r Now combiig all the above we obtai the result. x r 0 mod. Corollary.1. Let be a rime greater tha ad m R with m 0 mod. The 1 m /m mod. 8 Proof. Taig x /m 8 i Theorem.1 we deduce the result. Lemma.. Let be a rime of the form + 1 ad a + b a,b Z with a 1 mod. The 1 a if 1 mod 1 ad a, ] 0 [ 1 ] a if 1 mod 1 ad a, b if 5 mod 1 ad a b. Proof. By Lemma.1i ad the roof of Theorem.1 we have 1 [ ] 0 ] 1 1 [ 1 ] [ 1 ] [ 1 ] mod.

20 By Gauss cogruece [BEW,.9], 1 a mod. By [S1, Theorem.], 1 1 mod if 1 mod 1 ad a, 1 1 mod if 1 mod 1 ad a, b a a b mod if 5 mod 1 ad b a mod. Thus the result follows. Let > be a rime. By the wor of Morteso[M] ad Zhi-Wei Su[Su],. 1 { a mod if a +b 1 mod ad a, mod if mod. I [Su1] Zhi-Wei Su cojectured that 1 0 mod if 7,11 mod 1, 1 [a 8 ] a a mod if 1 1, a +b ad a 1, ab b b mod if 1 5, a +b ad a 1. I [Su], Zhi-Wei Su cofirmed the cojecture i the case mod. Now we rove the above cojecture for rimes 1 mod. Theorem.. Let be a rime of the form +1 ad so a +b with a,b Z ad a 1. The 1 a a mod if 1 mod 1 ad a, a+ 8 a mod if 1 mod 1 ad a, b b mod if 5 mod 1 ad a b. Proof. From Lemma. we have ] 0 r mod, where a if 1 mod 1 ad a, r a if 1 mod 1 ad a, b if 5 mod 1 ad a b. By the roof of Lemma. we have for > >. Thus, alyig Lemma. ad the above we get Set [/] 8 ] 0 r mod. r +q. Usig Corollary.1 we see that r +q 8 r +rq mod. Thus, alyig. we obtai a r + rq mod. Hece q 1 r mod ad the roof is comlete. 0

21 . Cogrueces for 1 /m. Theorem.1. Let > be a rime, m R, m 0 mod ad t 1 178/m. The 1 1 P m [ ] t x x+t 1 mod. Moreover, if ] t 0 mod or 1 x x+t 1 0 mod, the mod. m Proof. Sice 1 t 1 t m, by Theorem.1 we have 1 t 1 m 1 8 mod. From the roof of Lemma. we ow that for [ ] < <. Thus, usig Lemma. ad Theorem. we see that 1 1 t P[ 8 ] t 1 x x+t 1 mod. This together with.1 yields the result. Theorem.. Let > be a rime ad m, R with m 0 mod. The x +mx+ m 1 Moreover, if 1 +mx+ x 1 m 1 [/] 0, the m +7 Proof. By the roof of Lemma. we have m +7 0 mod. As x +mx+ x m 1 x +mx+ 1 x m x+ 1 t t0 m +7 1 m m +7 1 m 0 mod. m m m 1 1 m mod. for < <. We first assume x+ m mod we see that x m 1 m mod. x m

22 Sice m 0 mod we have 0 mod ad so 1 +mx+ m 0. x Thus the result holds i this case. Now we assume m +7 0 mod. Set t m m ad m m m +7. The t m 1. From Theorems.1 ad.1 we have 1 x +mx+ 1 m P[ ] t If 1 +mx+ x so 1 m 1 m 1 mod. 0, usig Theorems.1 ad.1 we see that ] t 0 mod ad 0 mod. This comletes the roof. m 1 Theorem. [Su, Cojecture.7]. Let,11 be a rime. The 1 { 0 mod if 11 1, x mod if 11 1 ad so x +11y. Proof. Taig m 9 11 ad i Theorem. ad the alyig.8 we deduce the result. Theorem. [Su, Cojecture.8]. Let,,19 be a rime. The 1 9 { 0 mod if 19 1, x mod if 19 1 ad so x +19y. Proof. Taig m 8 19 ad 19 i Theorem. ad the alyig.9 we deduce the result. Theorem.5 [Su, Cojecture.9]. Let,,5, be a rime. The 1 90 { 0 mod if 1, 15 x mod if 1 ad so x +y. Proof. Taig m 80 ad i Theorem. ad the alyig.9 we deduce the result. Theorem. [Su, Cojecture.9]. Let be a rime such that,,5,11,7. The { 1 0 mod if 7 1, x mod if 7 1 ad so x +7y. Proof. Taig m 0 7 ad 7 i Theorem. ad the alyig.9 we deduce the result.

23 Theorem.7 [Su, Cojecture.10]. Let be a rime with,,5,,9,1. The 1 { 0 mod 00 if 1 1, x mod if 1 1 ad so x +1y. Proof. Taig m ad i Theorem. ad the alyig.9 we deduce the result. Theorem.8 [S, Cojecture.8]. Let > 7 be a rime. The 1 15 { 0 mod if,5, mod 7, 15 C mod if C +7D 1,, mod 7. Proof. Taig m 5 ad 98 i Theorem. ad the alyig.5 we deduce the result. Theorem.9 [S, Cojecture.9]. Let > 7 be a rime ad 17. The 1 { 0 mod if,5, mod 7, C mod if C +7D 1,, mod 7. Proof. Taig m 595 ad 558 i Theorem. ad the alyig.7 we deduce the result. Theorem.10 [S, Cojecture.]. Let be a rime such that,,11. The 1 { 0 mod if mod, a mod if a +b 1 mod ad a. Proof. Taig m 11 ad 1 i Theorem. ad the alyig. we deduce the result. Theorem.11 [S, Cojecture.5]. Let > 5 be a rime. The 1 { 0 mod if 5,7 mod 8, 0 5 c mod if c +d 1, mod 8. Proof. Taig m 0 ad 5 i Theorem. ad the alyig the result i the roof of Corollary. we deduce the result. Theorem.1 [S, Cojecture.]. Let > 5 be a rime. The { 0 mod if mod, 5 A mod if A +B 1 mod. Proof. Taig m 15 ad i Theorem. ad the alyig. we deduce the result.

24 Theorem.1 [S, Cojecture.7]. Let > 5 be a rime. The { 0 mod if, 10 L mod if 1 ad so L +7M. Proof. Taig m 10 ad 50 i Theorem. ad the alyig. we deduce the result. Remar.1 From [O] we ow that the oly j-ivariats of ellitic curves over ratioal field Q with comlex multilicatio are give by 0,1, 15,0,, 0,, 9, 10,55, 90, 580, 00, coicidig with the values of m i. ad Theorems Some cojectures o suercogrueces. Cojecture 5.1. Let > 5 be a rime. The mod, 55 8 mod for 17, 5 mod, 5 mod for 11, 15 mod, 0 1 mod. Cojecture 5.1 is similar to some cojectures i [Su1].

25 Cojecture 5.. Let > be a rime. The mod 5 for > 5, mod, 1 mod for 5, mod, mod for 5, 15 1 mod 7 for 7, 11 mod for 5,1. 9 Cojecture 5.. Let > be a rime. The mod, mod for 7, mod 7 for 7, 1 17 mod, mod for 1, 1 58 mod for 7,1. For a iteger m ad odd rime with m let 5

26 1 Z m 0 m. The we have the followig cojectures cocerig Z m modulo. Cojecture 5.. Let be a odd rime. The x mod if x +y 1 mod 1 with y, x mod if x +y 1 mod 1 with x, Z 1 xy xy mod if x +y 5 mod 1, 0 mod if mod. Cojecture 5.5. Let be a odd rime. The Z 9 { x mod if x +y 1, mod 8, 0 mod if 5,7 mod 8. Cojecture 5.. Let > 5 be a rime. The { x mod if x +y 1 mod, Z Z 50 0 mod if mod. Cojecture 5.7. Let > 5 be a rime. The x mod if 1,9 mod 0 ad so x +5y, Z 1 x mod if,7 mod 0 ad so x +5y, 0 mod if 11,1,17,19 mod 0. Cojecture 5.8. Let > be a rime. The x mod if 1,7 mod ad so x +y, Z 8x mod if 5,11 mod ad so x +y, 0 mod if 1,17,19, mod. Cojecture 5.9. Let > 7 be a rime. The x mod if x +15y 1,19 mod 0, Z 5 Z 9 1x mod if x +5y 17, mod 0, 0 mod if 7,11,1,9 mod 0.

27 Cojecture Let b {7,11,19,1,59} ad let fb 11, 00, 70, 0, 1100 accordig as b 7,11,19,1,59. If is a rime with,,b ad fb, the x mod if x +by, 1x mod if x +by, Z fb x mod if x +by, x mod if x +by, 0 mod if b 1. Cojecture Let b {5,7,1,17} ad fb 0,89,1000,900 accordig as b 5,7,1,17. If is a rime with,,b ad fb, the x mod if x +by, 8x mod if x +by, Z fb 1x mod if x +by, x mod if x +by, 0 mod if b 1. Refereces [AAR] G. Adrews, R. Asey, R. Roy, Secial Fuctios,, Ecycloedia Math. Al., vol. 71, Cambridge Uiv. Press, Cambridge, [B] H. Batema, Higher Trascedetal Fuctios Vol. I, McGraw-Hill Boo Com. Ic., US, 195. [BEW] B.C. Berdt, R.J. Evas ad K.S. Williams, Gauss ad Jacobi Sums, Joh Wiley & Sos, New Yor, [G] H.W. Gould, Combiatorial Idetities, A Stadardized Set of Tables Listig 500 Biomial Coefficiet Summatios, Morgatow, W. Va., 197. [IR] K. Irelad ad M. Rose, A Classical Itroductio to Moder Number Theory d editio, Grad. Texts i Math. 8, Sriger, New Yor, [JM] A. Joux et F. Morai, Sur les sommes de caractères liées aux courbes ellitiques à multilicatio comlexe, J. Number Theory , [MO] Y. Marti ad K. Oo, Eta-quotiets ad ellitic curves, Proc. Amer. Math. Soc , [M] E. Morteso, Suercogrueces for trucated +1 F hyergeometric series with alicatios to certai weight three ewforms, Proc. Amer. Math. Soc , 1-0. [PV] R. Padma ad S. Veatarama, Ellitic curves with comlex multilicatio ad a character sum, J. Number Theory 1 199, 7-8. [RP] A.R. Rajwade ad J.C. Parami, A ew cubic character sum, Acta Arith , 7-5. [R1] A.R. Rajwade, The Diohatie equatio y xx + 1Dx + 11D ad the cojectures of Birch ad Swierto-Dyer, J. Austral. Math. Soc. Ser. A 1977, [R] A.R. Rajwade, O a cojecture of Williams, Bull. Soc. Math. Belg. Ser. B 198, 1-. [RPR] D.B. Rishi, J.C. Parami ad A.R. Rajwade, Evaluatio of a cubic character sum usig the 19 divisio oits of the curve y x 19x + 19, J. Number Theory , [S1] Z.H. Su, Sulemets to the theory of quartic residues, Acta Arith , [S] Z.H. Su, O the umber of icogruet residues of x +ax +bx modulo, J. Number Theory , [S] Z.H. Su, O the quadratic character of quadratic uits, J. Number Theory ,

28 [S] Z.H. Su, Cogrueces cocerig Legedre olyomials, Proc. Amer. Math. Soc , [S5] Z.H. Su, Cogrueces cocerig Legedre olyomials II, arxiv: v. htt://arxiv.org/ abs/ [S] Z.H. Su, Cogrueces ivolvig, J. Number Theory, to aear, htt://arxiv.org/ abs/ [Su1] Z.W. Su, Oe cojectures o cogrueces, arxiv: v59. htt://arxiv.org/abs/ [Su] Z.W. Su, Suer cogruecesad elliticcurvesover F, rerit, arxiv: htt://arxiv. org/abs/ [Su] Z.W. Su, O sums ivolvig roducts of three biomial coefficiets, rerit, arxiv: htt://arxiv.org/abs/ [Su] Z.W. Su, Cojectures ad results o x mod with x + dy, Proceedigs of Number Theory ad Related Fields, to aear, arxiv:110.5v7. htt://arxiv. org/abs/ [W] K.S. Williams, Evaluatio of character sums coected with ellitic curves, Proc. Amer. Math. Soc ,

GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES

GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES J. Nuber Theory 0, o., 9-9. GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES Zhi-Hog Su School of Matheatical Scieces, Huaiyi Noral Uiversity, Huaia, Jiagsu 00, PR Chia Eail: zhihogsu@yahoo.co

More information

Super congruences concerning Bernoulli polynomials. Zhi-Hong Sun

Super congruences concerning Bernoulli polynomials. Zhi-Hong Sun It J Numer Theory 05, o8, 9-404 Super cogrueces cocerig Beroulli polyomials Zhi-Hog Su School of Mathematical Scieces Huaiyi Normal Uiversity Huaia, Jiagsu 00, PR Chia zhihogsu@yahoocom http://wwwhytceduc/xsjl/szh

More information

Legendre polynomials and Jacobsthal sums

Legendre polynomials and Jacobsthal sums Legendre olynomials and Jacobsthal sums Zhi-Hong Sun( Huaiyin Normal University( htt://www.hytc.edu.cn/xsjl/szh Notation: Z the set of integers, N the set of ositive integers, [x] the greatest integer

More information

arxiv: v57 [math.nt] 24 Aug 2011

arxiv: v57 [math.nt] 24 Aug 2011 arxiv:09.5665 OPEN CONJECTURES ON CONGRUENCES arxiv:09.5665v57 [math.nt] 24 Aug 20 Zhi-Wei Su Deartmet of Mathematics, Najig Uiversity Najig 2009, Peole s Reublic of Chia zwsu@ju.edu.c htt://math.ju.edu.c/

More information

CONGRUENCES CONCERNING LUCAS SEQUENCES ZHI-HONG SUN

CONGRUENCES CONCERNING LUCAS SEQUENCES ZHI-HONG SUN Int. J. Number Theory 004, no., 79-85. CONGRUENCES CONCERNING LUCAS SEQUENCES ZHI-HONG SUN School of Mathematical Sciences Huaiyin Normal University Huaian, Jiangsu 00, P.R. China zhihongsun@yahoo.com

More information

ON SUPERSINGULAR ELLIPTIC CURVES AND HYPERGEOMETRIC FUNCTIONS

ON SUPERSINGULAR ELLIPTIC CURVES AND HYPERGEOMETRIC FUNCTIONS ON SUPERSINGULAR ELLIPTIC CURVES AND HYPERGEOMETRIC FUNCTIONS KEENAN MONKS Abstract The Legedre Family of ellitic curves has the remarkable roerty that both its eriods ad its suersigular locus have descritios

More information

arxiv: v1 [math.nt] 28 Apr 2014

arxiv: v1 [math.nt] 28 Apr 2014 Proof of a supercogruece cojectured by Z.-H. Su Victor J. W. Guo Departmet of Mathematics, Shaghai Key Laboratory of PMMP, East Chia Normal Uiversity, 500 Dogchua Rd., Shaghai 0041, People s Republic of

More information

On Divisibility concerning Binomial Coefficients

On Divisibility concerning Binomial Coefficients A talk give at the Natioal Chiao Tug Uiversity (Hsichu, Taiwa; August 5, 2010 O Divisibility cocerig Biomial Coefficiets Zhi-Wei Su Najig Uiversity Najig 210093, P. R. Chia zwsu@ju.edu.c http://math.ju.edu.c/

More information

Proof of a conjecture of Amdeberhan and Moll on a divisibility property of binomial coefficients

Proof of a conjecture of Amdeberhan and Moll on a divisibility property of binomial coefficients Proof of a cojecture of Amdeberha ad Moll o a divisibility property of biomial coefficiets Qua-Hui Yag School of Mathematics ad Statistics Najig Uiversity of Iformatio Sciece ad Techology Najig, PR Chia

More information

ON MONOTONICITY OF SOME COMBINATORIAL SEQUENCES

ON MONOTONICITY OF SOME COMBINATORIAL SEQUENCES Publ. Math. Debrece 8504, o. 3-4, 85 95. ON MONOTONICITY OF SOME COMBINATORIAL SEQUENCES QING-HU HOU*, ZHI-WEI SUN** AND HAOMIN WEN Abstract. We cofirm Su s cojecture that F / F 4 is strictly decreasig

More information

A generalization of Morley s congruence

A generalization of Morley s congruence Liu et al. Advaces i Differece Euatios 05 05:54 DOI 0.86/s366-05-0568-6 R E S E A R C H Ope Access A geeralizatio of Morley s cogruece Jiaxi Liu,HaoPa ad Yog Zhag 3* * Correspodece: yogzhag98@63.com 3

More information

PERIODS OF FIBONACCI SEQUENCES MODULO m. 1. Preliminaries Definition 1. A generalized Fibonacci sequence is an infinite complex sequence (g n ) n Z

PERIODS OF FIBONACCI SEQUENCES MODULO m. 1. Preliminaries Definition 1. A generalized Fibonacci sequence is an infinite complex sequence (g n ) n Z PERIODS OF FIBONACCI SEQUENCES MODULO m ARUDRA BURRA Abstract. We show that the Fiboacci sequece modulo m eriodic for all m, ad study the eriod i terms of the modulus.. Prelimiaries Defiitio. A geeralized

More information

Equations and Inequalities Involving v p (n!)

Equations and Inequalities Involving v p (n!) Equatios ad Iequalities Ivolvig v (!) Mehdi Hassai Deartmet of Mathematics Istitute for Advaced Studies i Basic Scieces Zaja, Ira mhassai@iasbs.ac.ir Abstract I this aer we study v (!), the greatest ower

More information

On Cesáro means for Fox-Wright functions

On Cesáro means for Fox-Wright functions Joural of Mathematics ad Statistics: 4(3: 56-6, 8 ISSN: 549-3644 8 Sciece Publicatios O Cesáro meas for Fox-Wright fuctios Maslia Darus ad Rabha W. Ibrahim School of Mathematical Scieces, Faculty of Sciece

More information

Proc. Amer. Math. Soc. 139(2011), no. 5, BINOMIAL COEFFICIENTS AND THE RING OF p-adic INTEGERS

Proc. Amer. Math. Soc. 139(2011), no. 5, BINOMIAL COEFFICIENTS AND THE RING OF p-adic INTEGERS Proc. Amer. Math. Soc. 139(2011, o. 5, 1569 1577. BINOMIAL COEFFICIENTS AND THE RING OF p-adic INTEGERS Zhi-Wei Su* ad Wei Zhag Departmet of Mathematics, Naig Uiversity Naig 210093, People s Republic of

More information

PROBLEM SET 5 SOLUTIONS. Solution. We prove that the given congruence equation has no solutions. Suppose for contradiction that. (x 2) 2 1 (mod 7).

PROBLEM SET 5 SOLUTIONS. Solution. We prove that the given congruence equation has no solutions. Suppose for contradiction that. (x 2) 2 1 (mod 7). PROBLEM SET 5 SOLUTIONS 1 Fid every iteger solutio to x 17x 5 0 mod 45 Solutio We rove that the give cogruece equatio has o solutios Suose for cotradictio that the equatio x 17x 5 0 mod 45 has a solutio

More information

Some Extensions of the Prabhu-Srivastava Theorem Involving the (p, q)-gamma Function

Some Extensions of the Prabhu-Srivastava Theorem Involving the (p, q)-gamma Function Filomat 31:14 2017), 4507 4513 https://doi.org/10.2298/fil1714507l Published by Faculty of Scieces ad Mathematics, Uiversity of Niš, Serbia Available at: http://www.pmf.i.ac.rs/filomat Some Extesios of

More information

An analog of the arithmetic triangle obtained by replacing the products by the least common multiples

An analog of the arithmetic triangle obtained by replacing the products by the least common multiples arxiv:10021383v2 [mathnt] 9 Feb 2010 A aalog of the arithmetic triagle obtaied by replacig the products by the least commo multiples Bair FARHI bairfarhi@gmailcom MSC: 11A05 Keywords: Al-Karaji s triagle;

More information

[ 47 ] then T ( m ) is true for all n a. 2. The greatest integer function : [ ] is defined by selling [ x]

[ 47 ] then T ( m ) is true for all n a. 2. The greatest integer function : [ ] is defined by selling [ x] [ 47 ] Number System 1. Itroductio Pricile : Let { T ( ) : N} be a set of statemets, oe for each atural umber. If (i), T ( a ) is true for some a N ad (ii) T ( k ) is true imlies T ( k 1) is true for all

More information

On Some Identities and Generating Functions for Mersenne Numbers and Polynomials

On Some Identities and Generating Functions for Mersenne Numbers and Polynomials Turish Joural of Aalysis ad Number Theory, 8, Vol 6, No, 9-97 Available olie at htt://ubsscieubcom/tjat/6//5 Sciece ad Educatio Publishig DOI:69/tjat-6--5 O Some Idetities ad Geeratig Fuctios for Mersee

More information

Approximation properties of (p, q)-bernstein type operators

Approximation properties of (p, q)-bernstein type operators Acta Uiv. Saietiae, Mathematica, 8, 2 2016 222 232 DOI: 10.1515/ausm-2016-0014 Aroximatio roerties of, -Berstei tye oerators Zoltá Fita Deartmet of Mathematics, Babeş-Bolyai Uiversity, Romaia email: fzolta@math.ubbcluj.ro

More information

VIETA-LIKE PRODUCTS OF NESTED RADICALS

VIETA-LIKE PRODUCTS OF NESTED RADICALS VIETA-IKE PRODUCTS OF ESTED RADICAS Thomas J. Osler athematics Deartmet Rowa Uiversity Glassboro, J 0808 Osler@rowa.edu Itroductio The beautiful ifiite roduct of radicals () π due to Vieta [] i 9, is oe

More information

Some identities involving Fibonacci, Lucas polynomials and their applications

Some identities involving Fibonacci, Lucas polynomials and their applications Bull. Math. Soc. Sci. Math. Roumaie Tome 55103 No. 1, 2012, 95 103 Some idetities ivolvig Fiboacci, Lucas polyomials ad their applicatios by Wag Tigtig ad Zhag Wepeg Abstract The mai purpose of this paper

More information

CERTAIN CONGRUENCES FOR HARMONIC NUMBERS Kotor, Montenegro

CERTAIN CONGRUENCES FOR HARMONIC NUMBERS Kotor, Montenegro MATHEMATICA MONTISNIGRI Vol XXXVIII (017) MATHEMATICS CERTAIN CONGRUENCES FOR HARMONIC NUMBERS ROMEO METROVIĆ 1 AND MIOMIR ANDJIĆ 1 Maritie Faculty Kotor, Uiversity of Moteegro 85330 Kotor, Moteegro e-ail:

More information

Ramanujan s Famous Partition Congruences

Ramanujan s Famous Partition Congruences Ope Sciece Joural of Mathematics ad Applicatio 6; 4(): - http://wwwopescieceoliecom/joural/osjma ISSN:8-494 (Prit); ISSN:8-494 (Olie) Ramauja s Famous Partitio Cogrueces Md Fazlee Hossai, Nil Rata Bhattacharjee,

More information

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467a: Crytograhy ad Comuter Security Notes 16 (rev. 1 Professor M. J. Fischer November 3, 2008 68 Legedre Symbol Lecture Notes 16 ( Let be a odd rime,

More information

Some p-adic congruences for p q -Catalan numbers

Some p-adic congruences for p q -Catalan numbers Some p-adic cogrueces for p q -Catala umbers Floria Luca Istituto de Matemáticas Uiversidad Nacioal Autóoma de México C.P. 58089, Morelia, Michoacá, México fluca@matmor.uam.mx Paul Thomas Youg Departmet

More information

Harmonic Number Identities Via Euler s Transform

Harmonic Number Identities Via Euler s Transform 1 2 3 47 6 23 11 Joural of Iteger Sequeces, Vol. 12 2009), Article 09.6.1 Harmoic Number Idetities Via Euler s Trasform Khristo N. Boyadzhiev Departmet of Mathematics Ohio Norther Uiversity Ada, Ohio 45810

More information

APPROXIMATION OF CONTIONUOUS FUNCTIONS BY VALLEE-POUSSIN S SUMS

APPROXIMATION OF CONTIONUOUS FUNCTIONS BY VALLEE-POUSSIN S SUMS italia joural of ure ad alied mathematics 37 7 54 55 54 APPROXIMATION OF ONTIONUOUS FUNTIONS BY VALLEE-POUSSIN S SUMS Rateb Al-Btoush Deartmet of Mathematics Faculty of Sciece Mutah Uiversity Mutah Jorda

More information

arxiv: v1 [math.co] 3 Feb 2013

arxiv: v1 [math.co] 3 Feb 2013 Cotiued Fractios of Quadratic Numbers L ubomíra Balková Araka Hrušková arxiv:0.05v [math.co] Feb 0 February 5 0 Abstract I this paper we will first summarize kow results cocerig cotiued fractios. The we

More information

Fibonacci numbers and orthogonal polynomials

Fibonacci numbers and orthogonal polynomials Fiboacci umbers ad orthogoal polyomials Christia Berg April 10, 2006 Abstract We prove that the sequece (1/F +2 0 of reciprocals of the Fiboacci umbers is a momet sequece of a certai discrete probability,

More information

Formulas for the Approximation of the Complete Elliptic Integrals

Formulas for the Approximation of the Complete Elliptic Integrals Iteratioal Mathematical Forum, Vol. 7, 01, o. 55, 719-75 Formulas for the Approximatio of the Complete Elliptic Itegrals N. Bagis Aristotele Uiversity of Thessaloiki Thessaloiki, Greece ikosbagis@hotmail.gr

More information

The log-behavior of n p(n) and n p(n)/n

The log-behavior of n p(n) and n p(n)/n Ramauja J. 44 017, 81-99 The log-behavior of p ad p/ William Y.C. Che 1 ad Ke Y. Zheg 1 Ceter for Applied Mathematics Tiaji Uiversity Tiaji 0007, P. R. Chia Ceter for Combiatorics, LPMC Nakai Uivercity

More information

A Note on Bilharz s Example Regarding Nonexistence of Natural Density

A Note on Bilharz s Example Regarding Nonexistence of Natural Density Iteratioal Mathematical Forum, Vol. 7, 0, o. 38, 877-884 A Note o Bilharz s Examle Regardig Noexistece of Natural Desity Cherg-tiao Perg Deartmet of Mathematics Norfolk State Uiversity 700 Park Aveue,

More information

THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION

THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION MATHEMATICA MONTISNIGRI Vol XXVIII (013) 17-5 THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION GLEB V. FEDOROV * * Mechaics ad Matheatics Faculty Moscow State Uiversity Moscow, Russia

More information

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play.

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play. Number Theory Math 5840 otes. Sectio 1: Axioms. I umber theory we will geerally be workig with itegers, though occasioally fractios ad irratioals will come ito play. Notatio: Z deotes the set of all itegers

More information

The Asymptotic Expansions of Certain Sums Involving Inverse of Binomial Coefficient 1

The Asymptotic Expansions of Certain Sums Involving Inverse of Binomial Coefficient 1 Iteratioal Mathematical Forum, 5, 2, o. 6, 76-768 The Asymtotic Easios of Certai Sums Ivolvig Iverse of Biomial Coefficiet Ji-Hua Yag Deartmet of Mathematics Zhoukou Normal Uiversity, Zhoukou 466, P.R.

More information

A q-analogue of some binomial coefficient identities of Y. Sun

A q-analogue of some binomial coefficient identities of Y. Sun A -aalogue of some biomial coefficiet idetities of Y. Su arxiv:008.469v2 [math.co] 5 Apr 20 Victor J. W. Guo ad Da-Mei Yag 2 Departmet of Mathematics, East Chia Normal Uiversity Shaghai 200062, People

More information

Factors of sums and alternating sums involving binomial coefficients and powers of integers

Factors of sums and alternating sums involving binomial coefficients and powers of integers Factors of sums ad alteratig sums ivolvig biomial coefficiets ad powers of itegers Victor J. W. Guo 1 ad Jiag Zeg 2 1 Departmet of Mathematics East Chia Normal Uiversity Shaghai 200062 People s Republic

More information

SOME TRIBONACCI IDENTITIES

SOME TRIBONACCI IDENTITIES Mathematics Today Vol.7(Dec-011) 1-9 ISSN 0976-38 Abstract: SOME TRIBONACCI IDENTITIES Shah Devbhadra V. Sir P.T.Sarvajaik College of Sciece, Athwalies, Surat 395001. e-mail : drdvshah@yahoo.com The sequece

More information

A New Sifting function J ( ) n+ 1. prime distribution. Chun-Xuan Jiang P. O. Box 3924, Beijing , P. R. China

A New Sifting function J ( ) n+ 1. prime distribution. Chun-Xuan Jiang P. O. Box 3924, Beijing , P. R. China A New Siftig fuctio J ( ) + ω i prime distributio Chu-Xua Jiag. O. Box 94, Beijig 00854,. R. Chia jiagchuxua@vip.sohu.com Abstract We defie that prime equatios f (, L, ), L, f (, L ) (5) are polyomials

More information

Prime Number Theorem Steven Finch. April 27, 2007

Prime Number Theorem Steven Finch. April 27, 2007 Prime Number Theorem Steve Fich April 7, 007 Let π(x) = P p x, the umber of primes p ot exceedig x. GaussadLegedre cojectured a asymptotic expressio for π(x). Defie the Möbius mu fuctio μ() = if =, ( )

More information

Chapter 8. Euler s Gamma function

Chapter 8. Euler s Gamma function Chapter 8 Euler s Gamma fuctio The Gamma fuctio plays a importat role i the fuctioal equatio for ζ(s) that we will derive i the ext chapter. I the preset chapter we have collected some properties of the

More information

x 2 a mod m. has a solution. Theorem 13.2 (Euler s Criterion). Let p be an odd prime. The congruence x 2 1 mod p,

x 2 a mod m. has a solution. Theorem 13.2 (Euler s Criterion). Let p be an odd prime. The congruence x 2 1 mod p, 13. Quadratic Residues We now turn to the question of when a quadratic equation has a solution modulo m. The general quadratic equation looks like ax + bx + c 0 mod m. Assuming that m is odd or that b

More information

On the distribution of coefficients of powers of positive polynomials

On the distribution of coefficients of powers of positive polynomials AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 49 (2011), Pages 239 243 O the distributio of coefficiets of powers of positive polyomials László Major Istitute of Mathematics Tampere Uiversity of Techology

More information

Sketch of Dirichlet s Theorem on Arithmetic Progressions

Sketch of Dirichlet s Theorem on Arithmetic Progressions Itroductio ad Defiitios Sketch of o Arithmetic Progressios Tom Cuchta 24 February 2012 / Aalysis Semiar, Missouri S&T Outlie Itroductio ad Defiitios 1 Itroductio ad Defiitios 2 3 Itroductio ad Defiitios

More information

Weil Conjecture I. Yichao Tian. Morningside Center of Mathematics, AMSS, CAS

Weil Conjecture I. Yichao Tian. Morningside Center of Mathematics, AMSS, CAS Weil Cojecture I Yichao Tia Morigside Ceter of Mathematics, AMSS, CAS [This is the sketch of otes of the lecture Weil Cojecture I give by Yichao Tia at MSC, Tsighua Uiversity, o August 4th, 20. Yuaqig

More information

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA.

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA. INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 2008, #A05 Q-BINOMIALS AND THE GREATEST COMMON DIVISOR Keith R. Slavi 8474 SW Chevy Place, Beaverto, Orego 97008, USA slavi@dsl-oly.et Received:

More information

[ 11 ] z of degree 2 as both degree 2 each. The degree of a polynomial in n variables is the maximum of the degrees of its terms.

[ 11 ] z of degree 2 as both degree 2 each. The degree of a polynomial in n variables is the maximum of the degrees of its terms. [ 11 ] 1 1.1 Polyomial Fuctios 1 Algebra Ay fuctio f ( x) ax a1x... a1x a0 is a polyomial fuctio if ai ( i 0,1,,,..., ) is a costat which belogs to the set of real umbers ad the idices,, 1,...,1 are atural

More information

arxiv: v5 [math.nt] 22 Aug 2013

arxiv: v5 [math.nt] 22 Aug 2013 Prerint, arxiv:1308900 ON SOME DETERMINANTS WITH LEGENDRE SYMBOL ENTRIES arxiv:1308900v5 [mathnt] Aug 013 Zhi-Wei Sun Deartment of Mathematics, Nanjing University Nanjing 10093, Peole s Reublic of China

More information

Bijective Proofs of Gould s and Rothe s Identities

Bijective Proofs of Gould s and Rothe s Identities ESI The Erwi Schrödiger Iteratioal Boltzmagasse 9 Istitute for Mathematical Physics A-1090 Wie, Austria Bijective Proofs of Gould s ad Rothe s Idetities Victor J. W. Guo Viea, Preprit ESI 2072 (2008 November

More information

FLOOR AND ROOF FUNCTION ANALOGS OF THE BELL NUMBERS. H. W. Gould Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

FLOOR AND ROOF FUNCTION ANALOGS OF THE BELL NUMBERS. H. W. Gould Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A58 FLOOR AND ROOF FUNCTION ANALOGS OF THE BELL NUMBERS H. W. Gould Departmet of Mathematics, West Virgiia Uiversity, Morgatow, WV

More information

Chapter 8. Euler s Gamma function

Chapter 8. Euler s Gamma function Chapter 8 Euler s Gamma fuctio The Gamma fuctio plays a importat role i the fuctioal equatio for ζ(s that we will derive i the ext chapter. I the preset chapter we have collected some properties of the

More information

(6), (7) and (8) we have easily, if the C's are cancellable elements of S,

(6), (7) and (8) we have easily, if the C's are cancellable elements of S, VIOL. 23, 1937 MA THEMA TICS: H. S. VANDIVER 555 where the a's belog to S'. The R is said to be a repetitive set i S, with respect to S', ad with multiplier M. If S cotais a idetity E, the if we set a,

More information

EISENSTEIN S CRITERION, FERMAT S LAST THEOREM, AND A CONJECTURE ON POWERFUL NUMBERS arxiv: v6 [math.ho] 13 Feb 2018

EISENSTEIN S CRITERION, FERMAT S LAST THEOREM, AND A CONJECTURE ON POWERFUL NUMBERS arxiv: v6 [math.ho] 13 Feb 2018 EISENSTEIN S CRITERION, FERMAT S LAST THEOREM, AND A CONJECTURE ON POWERFUL NUMBERS arxiv:174.2885v6 [math.ho] 13 Feb 218 PIETRO PAPARELLA Abstract. Give itegers l > m >, moic polyomials X, Y, ad Z are

More information

Journal of Ramanujan Mathematical Society, Vol. 24, No. 2 (2009)

Journal of Ramanujan Mathematical Society, Vol. 24, No. 2 (2009) Joural of Ramaua Mathematical Society, Vol. 4, No. (009) 199-09. IWASAWA λ-invariants AND Γ-TRANSFORMS Aupam Saikia 1 ad Rupam Barma Abstract. I this paper we study a relatio betwee the λ-ivariats of a

More information

CSE 1400 Applied Discrete Mathematics Number Theory and Proofs

CSE 1400 Applied Discrete Mathematics Number Theory and Proofs CSE 1400 Applied Discrete Mathematics Number Theory ad Proofs Departmet of Computer Scieces College of Egieerig Florida Tech Sprig 01 Problems for Number Theory Backgroud Number theory is the brach of

More information

Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers

Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers 3 47 6 3 Joural of Iteger Sequeces, Vol. 5 (0), Article..7 Series with Cetral Biomial Coefficiets, Catala Numbers, ad Harmoic Numbers Khristo N. Boyadzhiev Departmet of Mathematics ad Statistics Ohio Norther

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

GENERATING IDENTITIES FOR FIBONACCI AND LUCAS TRIPLES

GENERATING IDENTITIES FOR FIBONACCI AND LUCAS TRIPLES GENERATING IDENTITIES FOR FIBONACCI AND UCAS TRIPES RODNEY T. HANSEN Motaa State Uiversity, Bozema, Motaa Usig the geeratig fuctios of {F A f ad { x f, + m + m where F ^ _ deotes the ( + m) Fiboacci umber

More information

Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers

Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers Quadratic Trasformatios of Hypergeometric Fuctio ad Series with Harmoic Numbers Marti Nicholso I this brief ote, we show how to apply Kummer s ad other quadratic trasformatio formulas for Gauss ad geeralized

More information

k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c 1. Introduction

k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c 1. Introduction Acta Math. Uiv. Comeiaae Vol. LXXXVI, 2 (2017), pp. 279 286 279 k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c N. IRMAK ad M. ALP Abstract. The k-geeralized Fiboacci sequece { F (k)

More information

The Structure of Z p when p is Prime

The Structure of Z p when p is Prime LECTURE 13 The Structure of Z p whe p is Prime Theorem 131 If p > 1 is a iteger, the the followig properties are equivalet (1) p is prime (2) For ay [0] p i Z p, the equatio X = [1] p has a solutio i Z

More information

MDIV. Multiple divisor functions

MDIV. Multiple divisor functions MDIV. Multiple divisor fuctios The fuctios τ k For k, defie τ k ( to be the umber of (ordered factorisatios of ito k factors, i other words, the umber of ordered k-tuples (j, j 2,..., j k with j j 2...

More information

Math 4400/6400 Homework #7 solutions

Math 4400/6400 Homework #7 solutions MATH 4400 problems. Math 4400/6400 Homewor #7 solutios 1. Let p be a prime umber. Show that the order of 1 + p modulo p 2 is exactly p. Hit: Expad (1 + p) p by the biomial theorem, ad recall from MATH

More information

BINOMIAL PREDICTORS. + 2 j 1. Then n + 1 = The row of the binomial coefficients { ( n

BINOMIAL PREDICTORS. + 2 j 1. Then n + 1 = The row of the binomial coefficients { ( n BINOMIAL PREDICTORS VLADIMIR SHEVELEV arxiv:0907.3302v2 [math.nt] 22 Jul 2009 Abstract. For oegative itegers, k, cosider the set A,k = { [0, 1,..., ] : 2 k ( ). Let the biary epasio of + 1 be: + 1 = 2

More information

A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II 1. INTRODUCTION

A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II 1. INTRODUCTION A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II C. T. LONG J. H. JORDAN* Washigto State Uiversity, Pullma, Washigto 1. INTRODUCTION I the first paper [2 ] i this series, we developed certai properties

More information

MATH 304: MIDTERM EXAM SOLUTIONS

MATH 304: MIDTERM EXAM SOLUTIONS MATH 304: MIDTERM EXAM SOLUTIONS [The problems are each worth five poits, except for problem 8, which is worth 8 poits. Thus there are 43 possible poits.] 1. Use the Euclidea algorithm to fid the greatest

More information

Solutions to Problem Set 7

Solutions to Problem Set 7 8.78 Solutios to Problem Set 7. If the umber is i S, we re doe sice it s relatively rime to everythig. So suose S. Break u the remaiig elemets ito airs {, }, {4, 5},..., {, + }. By the Pigeohole Pricile,

More information

Math 609/597: Cryptography 1

Math 609/597: Cryptography 1 Math 609/597: Cryptography 1 The Solovay-Strasse Primality Test 12 October, 1993 Burt Roseberg Revised: 6 October, 2000 1 Itroductio We describe the Solovay-Strasse primality test. There is quite a bit

More information

k-equitable mean labeling

k-equitable mean labeling Joural of Algorithms ad Comutatio joural homeage: htt://jac.ut.ac.ir k-euitable mea labelig P.Jeyathi 1 1 Deartmet of Mathematics, Govidammal Aditaar College for Wome, Tiruchedur- 628 215,Idia ABSTRACT

More information

A REFINEMENT OF JENSEN S INEQUALITY WITH APPLICATIONS. S. S. Dragomir 1. INTRODUCTION

A REFINEMENT OF JENSEN S INEQUALITY WITH APPLICATIONS. S. S. Dragomir 1. INTRODUCTION TAIWANESE JOURNAL OF MATHEMATICS Vol. 14, No. 1,. 153-164, February 2010 This aer is available olie at htt://www.tjm.sysu.edu.tw/ A REFINEMENT OF JENSEN S INEQUALITY WITH APPLICATIONS FOR f-divergence

More information

Problem 4: Evaluate ( k ) by negating (actually un-negating) its upper index. Binomial coefficient

Problem 4: Evaluate ( k ) by negating (actually un-negating) its upper index. Binomial coefficient Problem 4: Evaluate by egatig actually u-egatig its upper idex We ow that Biomial coefficiet r { where r is a real umber, is a iteger The above defiitio ca be recast i terms of factorials i the commo case

More information

A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS. Mircea Merca

A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS. Mircea Merca Idia J Pure Appl Math 45): 75-89 February 204 c Idia Natioal Sciece Academy A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS Mircea Merca Departmet of Mathematics Uiversity

More information

GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION

GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION J Korea Math Soc 44 (2007), No 2, pp 487 498 GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION Gi-Sag Cheo ad Moawwad E A El-Miawy Reprited from the Joural of the Korea Mathematical

More information

Proof of Fermat s Last Theorem by Algebra Identities and Linear Algebra

Proof of Fermat s Last Theorem by Algebra Identities and Linear Algebra Proof of Fermat s Last Theorem by Algebra Idetities ad Liear Algebra Javad Babaee Ragai Youg Researchers ad Elite Club, Qaemshahr Brach, Islamic Azad Uiversity, Qaemshahr, Ira Departmet of Civil Egieerig,

More information

TRIGONOMETRIC POLYNOMIALS WITH MANY REAL ZEROS AND A LITTLEWOOD-TYPE PROBLEM. Peter Borwein and Tamás Erdélyi. 1. Introduction

TRIGONOMETRIC POLYNOMIALS WITH MANY REAL ZEROS AND A LITTLEWOOD-TYPE PROBLEM. Peter Borwein and Tamás Erdélyi. 1. Introduction TRIGONOMETRIC POLYNOMIALS WITH MANY REAL ZEROS AND A LITTLEWOOD-TYPE PROBLEM Peter Borwei ad Tamás Erdélyi Abstract. We examie the size of a real trigoometric polyomial of degree at most havig at least

More information

and each factor on the right is clearly greater than 1. which is a contradiction, so n must be prime.

and each factor on the right is clearly greater than 1. which is a contradiction, so n must be prime. MATH 324 Summer 200 Elemetary Number Theory Solutios to Assigmet 2 Due: Wedesday July 2, 200 Questio [p 74 #6] Show that o iteger of the form 3 + is a prime, other tha 2 = 3 + Solutio: If 3 + is a prime,

More information

A Note on Sums of Independent Random Variables

A Note on Sums of Independent Random Variables Cotemorary Mathematics Volume 00 XXXX A Note o Sums of Ideedet Radom Variables Pawe l Hitczeko ad Stehe Motgomery-Smith Abstract I this ote a two sided boud o the tail robability of sums of ideedet ad

More information

Elliptic Curves Spring 2017 Problem Set #1

Elliptic Curves Spring 2017 Problem Set #1 18.783 Ellitic Curves Srig 017 Problem Set #1 These roblems are related to the material covered i Lectures 1-3. Some of them require the use of Sage; you will eed to create a accout at the SageMathCloud.

More information

arxiv: v1 [math.nt] 10 Dec 2014

arxiv: v1 [math.nt] 10 Dec 2014 A DIGITAL BINOMIAL THEOREM HIEU D. NGUYEN arxiv:42.38v [math.nt] 0 Dec 204 Abstract. We preset a triagle of coectios betwee the Sierpisi triagle, the sum-of-digits fuctio, ad the Biomial Theorem via a

More information

An operator equality involving a continuous field of operators and its norm inequalities

An operator equality involving a continuous field of operators and its norm inequalities Available olie at www.sciecedirect.com Liear Algebra ad its Alicatios 49 (008) 59 67 www.elsevier.com/locate/laa A oerator equality ivolvig a cotiuous field of oerators ad its orm iequalities Mohammad

More information

Interesting Series Associated with Central Binomial Coefficients, Catalan Numbers and Harmonic Numbers

Interesting Series Associated with Central Binomial Coefficients, Catalan Numbers and Harmonic Numbers 3 47 6 3 Joural of Iteger Sequeces Vol. 9 06 Article 6.. Iterestig Series Associated with Cetral Biomial Coefficiets Catala Numbers ad Harmoic Numbers Hogwei Che Departmet of Mathematics Christopher Newport

More information

EVALUATION OF SUMS INVOLVING PRODUCTS OF GAUSSIAN q-binomial COEFFICIENTS WITH APPLICATIONS

EVALUATION OF SUMS INVOLVING PRODUCTS OF GAUSSIAN q-binomial COEFFICIENTS WITH APPLICATIONS EALATION OF SMS INOLING PRODCTS OF GASSIAN -BINOMIAL COEFFICIENTS WITH APPLICATIONS EMRAH KILIÇ* AND HELMT PRODINGER** Abstract Sums of products of two Gaussia -biomial coefficiets are ivestigated oe of

More information

DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS

DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS VERNER E. HOGGATT, JR. Sa Jose State Uiversity, Sa Jose, Califoria 95192 ad CALVIN T. LONG Washigto State Uiversity, Pullma, Washigto 99163

More information

An Elementary and Simple Proof of Fermat s Last Theorem

An Elementary and Simple Proof of Fermat s Last Theorem A Elemetary ad Simple Proof of Fermat s Last Theorem Mie Wiler Faultät für Mathemati, Ruhr-Uiversität Bochum mie.wiler@ruhr-ui-bochum.de www.miewiler.co.f March 19, 2018 Abstract Fermat s Last Theorem

More information

Factors of alternating sums of products of binomial and q-binomial coefficients

Factors of alternating sums of products of binomial and q-binomial coefficients ACTA ARITHMETICA 1271 (2007 Factors of alteratig sums of products of biomial ad q-biomial coefficiets by Victor J W Guo (Shaghai Frédéric Jouhet (Lyo ad Jiag Zeg (Lyo 1 Itroductio I 1998 Cali [4 proved

More information

On the Inverse of a Certain Matrix Involving Binomial Coefficients

On the Inverse of a Certain Matrix Involving Binomial Coefficients It. J. Cotemp. Math. Scieces, Vol. 3, 008, o. 3, 5-56 O the Iverse of a Certai Matrix Ivolvig Biomial Coefficiets Yoshiari Iaba Kitakuwada Seior High School Keihokushimoyuge, Ukyo-ku, Kyoto, 60-0534, Japa

More information

Chapter 2. Periodic points of toral. automorphisms. 2.1 General introduction

Chapter 2. Periodic points of toral. automorphisms. 2.1 General introduction Chapter 2 Periodic poits of toral automorphisms 2.1 Geeral itroductio The automorphisms of the two-dimesioal torus are rich mathematical objects possessig iterestig geometric, algebraic, topological ad

More information

Weak and Strong Convergence Theorems of New Iterations with Errors for Nonexpansive Nonself-Mappings

Weak and Strong Convergence Theorems of New Iterations with Errors for Nonexpansive Nonself-Mappings doi:.36/scieceasia53-874.6.3.67 ScieceAsia 3 (6: 67-7 Weak ad Strog Covergece Theorems of New Iteratios with Errors for Noexasive Noself-Maigs Sorsak Thiawa * ad Suthe Suatai ** Deartmet of Mathematics

More information

The log-concavity and log-convexity properties associated to hyperpell and hyperpell-lucas sequences

The log-concavity and log-convexity properties associated to hyperpell and hyperpell-lucas sequences Aales Mathematicae et Iformaticae 43 2014 pp. 3 12 http://ami.etf.hu The log-cocavity ad log-covexity properties associated to hyperpell ad hyperpell-lucas sequeces Moussa Ahmia ab, Hacèe Belbachir b,

More information

Math 4400/6400 Homework #8 solutions. 1. Let P be an odd integer (not necessarily prime). Show that modulo 2,

Math 4400/6400 Homework #8 solutions. 1. Let P be an odd integer (not necessarily prime). Show that modulo 2, MATH 4400 roblems. Math 4400/6400 Homework # solutions 1. Let P be an odd integer not necessarily rime. Show that modulo, { P 1 0 if P 1, 7 mod, 1 if P 3, mod. Proof. Suose that P 1 mod. Then we can write

More information

Shivley s Polynomials of Two Variables

Shivley s Polynomials of Two Variables It. Joural of Math. Aalysis, Vol. 6, 01, o. 36, 1757-176 Shivley s Polyomials of Two Variables R. K. Jaa, I. A. Salehbhai ad A. K. Shukla Departmet of Mathematics Sardar Vallabhbhai Natioal Istitute of

More information

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer.

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer. 6 Itegers Modulo I Example 2.3(e), we have defied the cogruece of two itegers a,b with respect to a modulus. Let us recall that a b (mod ) meas a b. We have proved that cogruece is a equivalece relatio

More information

Sequences of Definite Integrals, Factorials and Double Factorials

Sequences of Definite Integrals, Factorials and Double Factorials 47 6 Joural of Iteger Sequeces, Vol. 8 (5), Article 5.4.6 Sequeces of Defiite Itegrals, Factorials ad Double Factorials Thierry Daa-Picard Departmet of Applied Mathematics Jerusalem College of Techology

More information

(2) F j+2 = F J+1 + F., F ^ = 0, F Q = 1 (j = -1, 0, 1, 2, ). Editorial notes This is not our standard Fibonacci sequence.

(2) F j+2 = F J+1 + F., F ^ = 0, F Q = 1 (j = -1, 0, 1, 2, ). Editorial notes This is not our standard Fibonacci sequence. ON THE LENGTH OF THE EUCLIDEAN ALGORITHM E. P. IV1ERKES ad DAVSD MEYERS Uiversity of Ciciati, Ciciati, Ohio Throughout this article let a ad b be itegers, a > b >. The Euclidea algorithm geerates fiite

More information

Fermat s Little Theorem. mod 13 = 0, = }{{} mod 13 = 0. = a a a }{{} mod 13 = a 12 mod 13 = 1, mod 13 = a 13 mod 13 = a.

Fermat s Little Theorem. mod 13 = 0, = }{{} mod 13 = 0. = a a a }{{} mod 13 = a 12 mod 13 = 1, mod 13 = a 13 mod 13 = a. Departmet of Mathematical Scieces Istructor: Daiva Puciskaite Discrete Mathematics Fermat s Little Theorem 43.. For all a Z 3, calculate a 2 ad a 3. Case a = 0. 0 0 2-times Case a 0. 0 0 3-times a a 2-times

More information

AN ALMOST LINEAR RECURRENCE. Donald E. Knuth Calif. Institute of Technology, Pasadena, Calif.

AN ALMOST LINEAR RECURRENCE. Donald E. Knuth Calif. Institute of Technology, Pasadena, Calif. AN ALMOST LINEAR RECURRENCE Doald E. Kuth Calif. Istitute of Techology, Pasadea, Calif. form A geeral liear recurrece with costat coefficiets has the U 0 = a l* U l = a 2 " ' " U r - l = a r ; u = b, u,

More information

The Sumudu transform and its application to fractional differential equations

The Sumudu transform and its application to fractional differential equations ISSN : 30-97 (Olie) Iteratioal e-joural for Educatio ad Mathematics www.iejem.org vol. 0, No. 05, (Oct. 03), 9-40 The Sumudu trasform ad its alicatio to fractioal differetial equatios I.A. Salehbhai, M.G.

More information

Curve Sketching Handout #5 Topic Interpretation Rational Functions

Curve Sketching Handout #5 Topic Interpretation Rational Functions Curve Sketchig Hadout #5 Topic Iterpretatio Ratioal Fuctios A ratioal fuctio is a fuctio f that is a quotiet of two polyomials. I other words, p ( ) ( ) f is a ratioal fuctio if p ( ) ad q ( ) are polyomials

More information